首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
地下工程岩体开挖卸载后,围岩体承受的地应力随空间位置呈梯度形式变化。梯度地应力导致岩石的波阻抗呈梯度形式变化,进而影响应力波传播衰减特性。为研究梯度地应力对岩石应力波传播特性的影响,利用自主研发的具有梯度静应力岩石应力波传播试验系统,对红砂岩长试件进行了9种应力梯度工况下的应力波传播试验。通过分析岩石应力波传播速度、波阻抗随应力梯度的变化规律,构建应力波幅值与传播距离、传播时间和应力梯度之间的经验模型,探索梯度应力影响红砂岩应力波传播衰减的机制。结果表明,相同应力梯度工况下,随传播距离增加,应力波形状变化较小,但幅值逐渐减小。随应力梯度增大,岩石各测点区段内应力波传播速度、波阻抗均增大,但增大速率逐渐减缓,相邻测点区段波阻抗差值比先快速增大,后缓慢减小。随传播距离和传播时间增加,应力波幅值均呈指数形式减小;随应力梯度增大,时空衰减系数均呈先快速增大,后缓慢减小趋势变化。随应力梯度增大,相同测点应力波幅值先快速减小,后缓慢变化,在低应力梯度阶段,距离自由端越远的测点幅值衰减速率越快。  相似文献   

2.
Mechanical twinning along calcite e-planes has been used for paleostress analyses. Since the twinning has a critical resolved shear stress at ∼10 MPa, not only principal stress axes but also differential stress can be determined from the twins. In this article, five-dimensional stress space used in plasticity theory was introduced to describe the yield loci of calcite e-twinning. The constraints to paleostress from twin and untwin data and from calcite grains twinned on 0, 1, 2 and 3 e-planes were quantified by using their information contents, which were defined in the stress space. The orientations of twinned and untwinned e-planes are known to constrain not only stress axes but also differential stress, D, but they loose the resolution of D if the twin lamellae were formed at D greater than 50–100 MPa. On the other hand, it is difficult to observe twin lamellae subparallel to a thin section. The stochastic modeling of this effect showed that 20–25% of twin lamellae can be overlooked. The degradation of the constraints by this sampling bias can be serious especially for the determination of D.  相似文献   

3.
Strains in rocks can be observed but ancient stresses can only be inferred. We should re-examine the potential of strain geometry as the key to understanding and interpreting common shear structures ranging from faults to plastic shear zones. The concept of failure along zero extension directions can be applied to natural structures in rocks and is predicated on strain compatibility between differently strained volumes. Zero extension directions are considered for two strain configurations, plane strain (k=1) and uniaxial shortening (k=0). The crucial difference between shear fractures, or faults, and plastic yield zones is that the former are preceded by dilatation while the latter are isovolumetric. Volume changes during deformation affect the orientations of zero extension directions and hence of the resulting structures. With isovolumetric strain, yield occurs on planes at 45° to the principal shortening direction in plane strain and at 54.7° to this axis in uniaxial shortening. Uniaxial shortening experiments on rock samples allow estimation of the relative volumetric strains when yield zones initiate. When this volumetric strain is used to estimate the orientation of shear fractures in plane strain, ca 70° dips are predicted for normal faults at high crustal levels, decreasing downwards to 45°.  相似文献   

4.
5.
Chang  Ching S.  Deng  Yibing 《Acta Geotechnica》2022,17(7):2675-2696

The energy equation is an expression of the first law of thermodynamics or the law of conservation of energy. According to the first law of thermodynamics, the externally applied work to a system is equal to the sum of dissipation energy and Helmholtz free energy of the system. However, most of the currently available stress–dilatancy relationships are based on the energy equation of Taylor-Cam Clay type, which hypothesizes that the applied plastic work is equal solely to the frictional dissipation energy. The Helmholtz free energy has been completely neglected. Recently, observed from acoustic experiments, it has been recognized that Helmholtz free energy can be caused by deformation mechanisms other than friction between particles. Thus, it is necessary to include additional terms in the energy equation in order to correctly model the stress-dilatancy behavior. This paper addresses the issue regarding the balance of this energy equation. Analyses of experimental results are presented. Specific forms of the frictional energy and Helmholtz free energy are proposed. The proposed energy equation is verified with the experimental data obtained from Silica sand, Ottawa sand, and Nevada sand.

  相似文献   

6.
Deformation patterns in subduction zones, feeder systems of volcanoes, and rifts are compared and investigated in terms of relations among elastoplastic strain, rheology, pore fluids, and temperature. Regional-scale subduction processes have been explored in segments of the Kuriles–Kamchatka, Izu-Bonin, and Mariana zones. Slab geometry constraints from the 3D velocity structure are used to model the balance of forces in the three subduction zones and to distinguish the regions of predominant push or pull. Stress and strain variations in suprasubduction crust are considered for the case of magma sources beneath the Klyuchevskoy group of volcanoes. Time-lapse (4D) seismic tomography shows crustal magma reservoirs to appear and disappear rapidly as the volcanoes become active or dormant, respectively. This behavior is due to rapid strain changes which cause fast flow of fluids and the ensuing decrease or increase of melting temperature in the magma reservoirs. In addition to subduction zones, stress–strain patterns are modeled for collisional (compressive) settings, with the example of the Altai–Sayan area and the Caucasus, and for the conditions of rifting (extension), in the case of the Vilyui basin. As the modeling shows, formation of a superdeep basin does not necessarily require the crust to stretch twice or more: only 20% stretching in the necking region is enough to produce a 10–15 km deep basin.  相似文献   

7.
The progressive bond breakage of artificially cemented sands induced by shear straining was investigated through conventional isotropically consolidated drained triaxial compression tests. Sand specimens were prepared with a low degree of cementation by adopting a chemical grout. Test results were interpreted in terms of two stress–dilatancy theories for cohesive-frictional materials proposed in literature. The influence of debonding on the stress–dilatancy behaviour of cemented sands was analysed with particular emphasis on the ‘delayed dilatancy’ phenomenon. A bonding degradation curve was determined for each test relating the interparticle cohesion (c) to the magnitude of the total plastic strain vector (εd) and a bond degradation rate factor (Dc) was assessed from each curve. The maximum value of interparticle cohesion (c0) before the onset of bond degradation under shearing was found to correspond with a sharp decrease in the soil stiffness of the specimens. The influence of the effective confining stress (pc) on both c0 and Dc parameters gathered from each test was also ascertained.  相似文献   

8.
9.
Tsegaye  Anteneh Biru  Benz  Thomas  Nordal  Steinar 《Acta Geotechnica》2020,15(10):2727-2739
Acta Geotechnica - Stress–dilatancy theories play a central role in the modeling of the plastic dissipation of geomaterials. There exist several mathematical frameworks for describing the...  相似文献   

10.
Backgrounds: Coal is and will remain a major energy resource worldwide with P.R. China and the U.S. the leading producers. It has long been known that coal mining causes health problems such as coal workers' pneumoconiosis (CWP) and chronic obstructive pulmonary disease (e.g., emphysema). Yet, there are no accurate methods for predicting their occurrence. The goals of the present study are to determine whether bioavailable iron (BAI) is the active component in coal dust-induced lung diseases and to develop a model using BAI for the prediction of coal's pneumoconiotic potency. Methods: Thirty coal samples from Utah (UT), West Virginia (WV) and Pennsylvania (PA) coalmine regions with a low, moderate, and high prevalence of CWP, respectively,  相似文献   

11.
In this paper, a simple bounding surface plasticity model is used to reproduce the yielding and stress–strain behavior of the structured soft clay found at Shanghai of China. A series of undrained triaxial tests and drained stress probe tests under isotropic and anisotropic consolidation modes were performed on undisturbed samples of Shanghai soft clay to study the yielding characteristics. The degradation of the clay structure is modeled with an internal variable that allows the size of the bounding surface to decay with accumulated plastic strain. An anisotropic tensor and rotational hardening law are introduced to reflect the initial anisotropy and the evolution of anisotropy. Combined with the isotropic hardening rule, the rotational hardening rule and the degradation law are incorporated into the bounding surface formulation with an associated flow rule. Validity of the model is verified by the undrained isotropic and anisotropic triaxial test and drained stress probe test results for Shanghai soft clay. The effects of stress anisotropy and loss of structure are well captured by the model.  相似文献   

12.
An application of Artificial Neural Networks for predicting the stress–strain response of jointed rocks under different confining pressures is presented in this paper. Rocks of different compressive strength with different joint properties (frequency, orientation and strength of joints) are considered in this study. The database for training the neural network is formed from the results of triaxial compression tests on different intact and jointed rocks with different joint properties tested at different confining pressures reported by various researchers in the literature. The network was trained using a three-layered network with the feed-forward back propagation algorithm. About 85% of the data was used for training and the remaining 15% was used for testing the network. Results from the analyses demonstrated that the neural network approach is effective in capturing the stress–strain behaviour of intact rocks and the complex stress–strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress–strain response of different jointed rocks, whose intact strength varies from 11.32 MPa to 123 MPa, spacing of joints varies from 10 cm to 100 cm, and confining pressures range from 0 to 13.8 MPa.  相似文献   

13.
Property and behaviour of sand–pile interface are crucial to shaft resistance of piles. Dilation or contraction of the interface soil induces change in normal stress, which in turn influences the shear stress mobilised at the interface. Although previous studies have demonstrated this mechanism by laboratory tests and numerical simulations, the interface responses are not analysed systematically in terms of soil state (i.e. density and stress level). The objective of this study is to understand and quantify any increase in normal stress of different pile–soil interfaces when they are subjected to loading and stress relief. Distinct element modelling was carried out. Input parameters and modelling procedure were verified by experimental data from laboratory element tests. Parametric simulations of shearbox tests were conducted under the constant normal stiffness, constant normal load and constant volume boundary conditions. Key parameters including initial normal stress ( $ \sigma_{{{\text{n}}0}}^{\prime } $ ), initial void ratio (e 0), normal stiffness constraining the interface and loading–unloading stress history were investigated. It is shown that mobilised stress ratio ( $ \tau /\sigma_{\text{n}}^{\prime } $ ) and normal stress increment ( $ \Updelta \sigma_{\text{n}}^{\prime } $ ) on a given interface are governed by $ \sigma_{{{\text{n}}0}}^{\prime } $ and e 0. An increase in $ \sigma_{{{\text{n}}0}}^{\prime } $ from 100 to 400 kPa leads to a 30 % reduction in $ \Updelta \sigma_{\text{n}}^{\prime } $ . An increase in e 0 from 0.18 to 0.30 reduces $ \Updelta \sigma_{\text{n}}^{\prime } $ by more than 90 %, and therefore, shaft resistance is much lower for piles in loose sands. A unique relationship between $ \Updelta \sigma_{\text{n}}^{\prime } $ and normal stiffness is established for different soil states. It can be applied to assess the shaft resistance of piles in soils with different densities and subjected to loading and stress relief. Fairly good agreement is obtained between the calculated shaft resistance based on the proposed relationship and the measured results in centrifuge model tests.  相似文献   

14.
15.
The Mesozoic structural deformation and sedimentation as well as the volcanism in the Chengde area, central part of intraplate Yanshan orogenic belt, have been systematically investigated in the last two decades. The paleostress fields leading to these complicated tectonic deformations remain unrevealed. Paleostress inversion of fault slip vectors, combining with the newly defined structural levels and the latest age dating results on the key lithostratigraphic units, is employed to establish the paleostress fields in the Chengde area during Middle Jurassic and Early Cretaceous. Three generations including five phases of paleostress fields have been identified in this study. The first generation is believed to be the Middle Jurassic NNW compression (D1) after the sedimentation of the Xiahuayuan Formation and previous to that of the Tiaojishan Formation volcanism (~173 Ma-165 Ma); The second generation includes two phases, the Late Jurassic and earliest Cretaceous N-S compression (D2-1) during and after the sedimentation of the Tuchengzi Formation(~152 Ma-139 Ma) followed by the NNE compression (D2-2) post to the Tuchengzi Formation and predate the Zhangjiakou Formation (~139 Ma-135 Ma). The third generation of paleostress field is inferred to be later than 125 Ma and characterized by a widespread multidirectional extension (D3-1) induced from vertical compression, followed by a leading and weak NW-NNW compression (D3-2). It is inferred that the contraction regime dominated in the Chengde area during the Middle Jurassic and the early Early Cretaceous, with the maximum principal stress axes (σ1) rotated ca 60° clockwise from NNW to NNE, and the sedimentation of the Tuchengzi Formation occurred in this compressive tectonic setting. Extension regime characterized the Early Cretaceous in the central Yanshan belt, even a weak compression once occurred during this period. There is no nearly W-E or NW-SE compressional stress field previously inferred as far-field response to the suspected subduction of paleo-Pacific Plate or Izanagi Plate have been identified in this area, which is likely resulted from intracratonic heterogeneous deformation or strain. ©, 2015, Science Press. All right reserved.  相似文献   

16.
Future earthquake potential in the Bohai–Zhangjiakou Seismotectonic Zone (BZSZ) in North China deserves close attention. Tectonic stress accumulation state is an important indicator for earthquakes; therefore, this study aims to analyse the stress accumulation state in the BZSZ via three-dimensional visco-elastic numerical modelling. The results reveal that the maximum shear stress in the BZSZ increases gradually as the depth increases, and the stress range is wider in the lower layer. In the upper layer, the maximum shear stress is high in the Zhangjiakou area, whereas in the lower layer, relatively high values occur in the Penglai–Yantai area, which may be affected by the depth of the Moho surface. Besides, weak fault zones will be easily fractured when the maximum shear stress is not sufficiently high due to their low strengths, resulting in earthquakes. Therefore, based on the modelling results, the upper layer of the Zhangjiakou area and the lower layer of the Penglai–Yantai area in the BZSZ in North China are more likely to experience earthquakes.  相似文献   

17.
We present new fault data for the region of the Manaus, Central Amazonia, Brazil. Field measurements concentrate on the Miocene–Holocene sedimentary deposits exposed on the Amazonas River Basin, in order to investigate the development of this region in this time-interval. Two faulting events are distinguished since the Miocene. The oldest one is related to NW–SE extension during Miocene times and associated with paleoseismicity, while the younger is associated with NE–SW extension direction and seems to persist today. These two deformational events may be thereby considered Neotectonic. Moreover, the second extensional pulse with NE–SW orientation can be explained by the surface hydrological loading, which induces the Central Amazonia flexural subsidence and may promote extensional stresses in the upper crust.  相似文献   

18.
Tun Tun  Win  Sato  Tomotaka  Saito  Hirotaka  Kohgo  Yuji 《Acta Geotechnica》2020,15(7):1799-1813
Acta Geotechnica - Most studies investigating the effect of cyclic loading on soil properties have been conducted for saturated soils. Embankments such as fill dams, roads and railways are usually...  相似文献   

19.
A series of swelling tests is performed on a typical Nanyang expansive soil with medium swelling capacity compacted at various initial densities and water contents. The swelling tests are separately conducted using the conventional oedometer to confine the lateral swelling of the soil specimens, and using the GDS triaxial apparatus to allow the free volumetric swelling. The multiple nonlinear mathematical method is adopted to obtain the lateral swelling model (i.e. K-0 model), which fully considers the coupled effect of initial degree of compaction, moisture content and overburden pressure on the swelling strain. Also, an empirical model for the relationship between spherical stress and volumetric strain is proposed by triaxial swelling test. Based on the K-0 swelling model, a formula is proposed to quantitatively evaluate the swell potential, and also a theoretical calculation method is derived to determine the processing layer thickness of expansive soil slope. Based on the assumption that volumetric swelling strain only changes with spherical stress and is not affected by the deviatoric stress, the correlations between the K-0 model and triaxial model are analyzed, and a method to calculate the volumetric swelling strain by only employing the K-0 model is given. Experimental results show that the proposed K-0 model with multifactor coupling is reasonable to predict the swelling potential of compacted expansive soil. It is found that the key factor to link the K-0 model and triaxial swelling model is assuming an average static lateral pressure coefficient. The average static lateral pressure coefficient tends to decreases with increasing overburden pressure by inversion method. This tendency of average static lateral pressure coefficient is believed to rely on the fact that lateral swelling pressure decreases with the increase of overburden pressure.  相似文献   

20.
The macroscopic mechanical behavior of granular materials inherently depends on the properties of particles that compose them. Using the discrete element method, the effect of particle contact friction and polydispersity on the macroscopic stress response of 3D sphere packings is studied. The analytical expressions for the pressure, coordination number and fraction of rattlers proposed for isotropically deformed frictionless systems also hold when the interparticle coefficient of friction is finite; however, the numerical values of the parameters such as the jamming volume fraction change with varying microscopic contact and particle properties. The macroscopic response under deviatoric loading is studied with triaxial test simulations. Concerning the shear strength, our results agree with previous studies showing that the deviatoric stress ratio increases with particle coefficient of friction μ starting from a nonzero value for μ = 0 and saturating for large μ. On the other hand, the volumetric strain does not have a monotonic dependence on the particle contact friction. Most notably, maximum compaction is reached at an intermediate value of the coefficient of friction μ ≈ 0.3. The effect of polydispersity on the macroscopic stress–strain relationship cannot be studied independent of initial packing conditions. The shear strength increases with polydispersity when the initial volume fraction is fixed, but the effect of polydispersity is much less pronounced when the initial pressure of the packings is fixed. Finally, a simple hypoplastic constitutive model is calibrated with numerical test results following an established procedure to ascertain the relation between particle properties and material coefficients of the macroscopic model. The calibrated model is in good qualitative agreement with simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号