首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Different phases of remanent magnetizations have been identified in the Cretaceous–Tertiary rocks collected from the northern margin of the Kohistan Island Arc, northern Pakistan. Among them, a magnetite-related component is recognized as the most useful one because of its relatively stable behaviour and widespread presence in the volcanics and red beds. Calculation of mean direction for this component reveal two visible groupings in terms of paleomagnetic directions (Yasin + Baris Group: D?=?341.6º, I?=?10.6º, α 95?=?23.3 º, k?=?11.7, N?=?5; Sandhi Group: D?=?28.4º, I?=??27.4º, α 95?=?32.5 º, k?=?8.96, N?=?4). The fold tests applied to both these groups are inconclusive, indicating a syn-folding to post-folding origin for this component. A set of inclinations from this study provide new insight into post-collision northward displacement of the Kohistan Arc with respect to its surrounding terranes. Reliability of the paleomagnetic declinations from this study is not fully guaranteed, but when compared with previously reported paleomagnetic directions, a systematic increase in counter-clockwise deflections towards west has been detected along this paleo-island arc. This trend of declinations is well matched with the extrusion model of Asia, where counter-clockwise rotation has been suggested for the tectonic terranes around Western Himalaya. Another important observation is a divergence in paleomagnetic declinations across the rivers, which may indicate the presence of faulted zones under the cover of flowing water. This aspect can be compared to recent geological interpretations that Kohistan may not have acted as a rigid block following its collision with India but may have been deformed through localized shears and faults.  相似文献   

2.
《Precambrian Research》1999,93(2-3):201-213
New palaeomagnetic results are presented from the recently dated Palaeoproterozoic ultramafic Konchozero sill, and associated basalts (three sites, 38 oriented samples). Three stable components of remanence have been isolated during thermal and alternating field demagnetisation. The component I, with a mean direction of D=103°, I=40°, k=18, α95=11° (N=11 samples), pole position of 14°S, 282°E, has been obtained from the unaltered deeper part of the sill and from baked schists. The study of the baked contact confirms the conclusion that component I is supposed to be primary and corresponds to the Sm–Nd age of the sill of 1974±27 Ma. The palaeopole of component I is not consistent with the accepted Fennoscandian apparent polar wander path (APWP) for the period 2120–1880 Ma, and for that part the Fennoscandian APWP should be revised. Two other components (component II: D=349°, I=39°, k=35, α95=6°, N=19 samples, pole position 49°N, 231°E; and component III: D=17°, I=41°, k=44, α95=5°, N=19 samples, pole position 50°N, 190°E) fit the APWP well, with palaeomagnetically estimated ages of ca. 1860 and 1760 Ma respectively.  相似文献   

3.
The mid-late Eocene “Valley of Whales” in the Fayum province of Egypt contains hundreds of marine-mammals’ skeletons. Given its paleontological importance, we carried out a paleomagnetic study of the fossil-bearing formations. A sequence of basalts directly overlying the upper Eocene rocks in three distant clusters within a 25 km-long NW–SE graben in the southwestern part of the area was also studied. Thermal demagnetization of three-axis IRM was used to identify and eliminate sites dominated by hematite and/or goethite as potential remanence carriers. Progressive thermal demagnetization of the NRM isolated a characteristic NNE–SSW dual-polarity direction with a shallow inclination that passes both tilt and reversal tests. The mean tilt-corrected direction of the sedimentary formations is D/I = 16°/30° (k = 50, α95 = 3°) yielding a paleomagnetic pole at 70°N/159°E. The anisotropy of magnetic susceptibility (AMS) indicated that the observed inclinations were free from inclination shallowing, as did the nearly identical characteristic remanence of the overlying basalt flows (with a tilt-corrected reversed-polarity direction of D/I = 198°/−28° (k = 38, α95 = 7°) and a pole at 68°N/158°E). The new paleopoles place the Fayum province at a lower paleolatitude (15–17°N) than today (29.5°N), and point to the possible prevalence of tropical climate in northeast Africa during mid-late Eocene times. This tropical position is nearly identical to the paleolatitudes extrapolated from the mean of 36 coeval poles rotated from the other major cratons and from Africa itself. The declinations show a minor easterly deviation from those predicted by extrapolation from other continents. This is interpreted as due to a small clockwise rotation internal to NE Africa, possibly related to Red Sea/Gulf of Suez rifting after the late Eocene. The alternative explanation that the geomagnetic field had a non-zonal non-dipole field contribution is not favored.  相似文献   

4.
Four distinct components of natural remanent magnetization were isolated from a single site in welded tuffs in the Upper Cretaceous Kisin Group of the Sikhote Alin mountain range, Russia. In order to contribute toward a basis for an interpretation of multicomponent magnetization, rock magnetic experiments were performed on the welded tuffs. All four magnetization components essentially reside in magnetite. The lowest-temperature component up to 300 °C (component A: D=349.3°, I=60.9°, α95=7.3°, N=7) is a present day viscous magnetization. The third-removed component (component C: D=41.4°, I=51.8°, α95=3.5°, N=8), isolated over the temperature range of 450–560 °C, is a primary remanence. The second- and fourth-demagnetized components (component B: D=174.7°, I=−53.1°, α95=21.2°, N=3 and component D: D=188.1°, I=−64.5°, α95=4.0°, N=8, respectively) are secondary magnetizations related to a thermal event in Sikhote Alin between 66 and 51 Ma. Components B and D were acquired through different remagnetization processes. Component B is ascribed to a thermoviscous remanent magnetization carried by single-domain magnetite, and component D is a chemical remanent magnetization.  相似文献   

5.
Jurassic to Cretaceous red sandstones were sampled at 33 sites from the Khlong Min and Lam Thap formations of the Trang Syncline (7.6°N, 99.6°E), the Peninsular Thailand. Rock magnetic experiments generally revealed hematite as a carrier of natural remanent magnetization. Stepwise thermal demagnetization isolates remanent components with unblocking temperatures of 620–690 °C. An easterly deflected declination (D = 31.1°, I = 12.2°, α95 = 13.9°, N = 9, in stratigraphic coordinates) is observed as pre-folding remanent magnetization from North Trang Syncline, whereas westerly deflected declination (D = 342.8°, I = 22.3°, α95 = 12.7°, N = 13 in geographic coordinates) appears in the post-folding remanent magnetization from West Trang Syncline. These observations suggest an occurrence of two opposite tectonic rotations in the Trang area, which as a part of Thai–Malay Peninsula received clockwise rotation after Jurassic together with Shan-Thai and Indochina blocks. Between the Late Cretaceous and Middle Miocene, this area as a part of southern Sundaland Block experienced up to 24.5° ± 11.5° counter-clockwise rotation with respect to South China Block. This post-Cretaceous tectonic rotation in Trang area is considered as a part of large scale counter-clockwise rotation experienced by the southern Sundaland Block (including the Peninsular Malaysia, Borneo and south Sulawesi areas) as a result of Australian Plate collision with southeast Asia. Within the framework of Sundaland Block, the northern boundary of counter-clockwise rotated zone lies between the Trang area and the Khorat Basin.  相似文献   

6.
The Lake District terrane of northern England comprises Upper Cambrian–Silurian sediments and volcanics accumulated at the northern margin of the Avalonian Plate during growth and demise of the Iapetus Ocean. Ocean closure and suturing resulted in Late Ordovician and Acadian tectonism and were accompanied by emplacement of a large regional batholith. Palaeomagnetic study of intrusive igneous rocks, including application of thermal demagnetization, field tests and principal component analysis, identifies a history of Ordovician to Devonian magnetization. Late plutons (Shap and Skiddaw granites and/or aureoles) record a shallow dipolar (A3) axis (mean declination/inclination (D/I=278/+17°) dating from emplacement in late Early Devonian times (c. 395 Ma). Although this axis is recorded as a sporadic overprint in older rocks, no pervasive remagnetization is attributable to batholith emplacement. Instead, the Carrock Fell Complex Layered Gabbros have a mid- to late Ordovician (A1) remanence (D/I)=17·4/−58·1°, 36 samples, α95=4·8°) predating regional F2 folding. Later events in this igneous complex comprise the Carrock Fell Granophyre with a post-folding Ordovician remanence, and Round Knott Dolerite with a remanence linked to hydrothermal alteration late in the Ordovician magmatic episode. A Late Ordovician (Ashgill) palaeofield is also defined by remanence (A2) in the Threlkeld–St John's Microgranite and aureole (438 Ma, D/I=236·5/63·3°, 41 samples, α95=4·7°). Other intrusions carrying a remanence predating the Acadian deformation include the Great Cockup Picrite (458 Ma, D/I=43·2/−31·8°, 31 samples, α95=7·7°) and basic intrusives in the aureole of the Eskdale Granite (429 Ma, D/I=174·5/25·8°, 32 samples, α95=8·8°). Collectively the palaeomagnetic data from this terrane identify a hairpin in the apparent polar wander path during Late Ordovician (Caradoc–Ashgill) times corresponding to ‘soft’ closure of the Iapetus suture and accompanying deformation. The same motion is recognized in contemporaneous data from the Welsh Caledonides where declinations are rotated by c. 55° relative to contemporaneous results from the Lake District. Adjustment for this (probable late Acadian) rotation beings fold trends of the Paratectonic Caledonides into alignment and identifies a parallel mid- to late Ordovician destructive plate margin comprising forearc (Lake District) and backarc (North Wales). This arc was oriented latitudinally in mid-southerly latitudes during formation and the bulk of the magmatism occurred during a single normal-polarity chron. The relationships between magnetization and folding in both the Lake District and Welsh Borderlands identify the importance of Late Ordovician deformation along this arc during collision of Avalonia and Laurentia. Arc-related volcanism was succeeded in Silurian times by parallel foreland basins embracing the Welsh Basin and southern Lake District as the Laurentian Plate overrode the Avalonian Plate. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
对印支地块思茅地区始新世陆相红层进行古地磁研究,获得勐伴剖面特征剩磁方向为Ds=118.2°,Is=22.1°,k=31.6,α95=10.9°;勐腊剖面特征剩磁方向为Ds=47.6°,Is=22.8°,k=20.2,α95=5.9°。其特征剩磁方向与前人研究结果基本一致。利用Hodych等的磁倾角校正方法得到校正磁倾角为28.4°±4.3°,对前人的数据重新进行E/I统计得到的校正磁倾角值为30.7°,置信区间为[25.4°,35.9°],两种不同方法得到了较一致的结果,思茅地区的古近纪磁倾角显示了一定程度的偏低。E/I磁倾角偏低检验方法在应用时存在一定的局限性,变形微弱地层的古地磁学数据适合进行E/I磁倾角偏低校正,以避免倾伏褶皱或差异性旋转变形作用对E/I磁倾角偏低校正的影响。Hodych等提出的磁倾角校正方法是现今比较可靠的磁倾角校正方法。结合前人印支地块的古地磁研究成果,本次研究结果表明印支地块思茅地区自始新世以来相对于华南板块向南滑移量约500km。  相似文献   

8.
Paleomagnetic studies have been carried out on Palawan and on the island of Busuanga to the north. Results from the Cretaceous Espina Basalts of the Calatuigas Ophiolite in the South Palawan Block (SPB) pass a fold test, yield normal and reversed directions with a magnetic intensity and AF demagnetization characteristics consistent with a primary TRM. The mean direction is 293.9° and an inclination of 5.8°, with a k of 37.7 and an α95 of 12.6°. This suggests that these ophiolites have moved northward and rotated counterclockwise by 66°±+13° with respect to the geocentric axial dipole (GAD) field. It also suggests that they were obducted from the south.Paleomagnetic directions from the Jurassic Busuanga Cherts and the Cretaceous Guinlo Formation from the island of Busuanga in the North Palawan Block (NPB) and from the Guinlo on the main island of Palawan are similar, fail regional fold tests, and have AF demagnetization characteristics consistent with secondary magnetization. Their inclinations are statistically indistinguishable at a 95% significance level, but variation in declination suggests differential local rotation about a vertical axis. The paleolatitude is comparable to that of regions of pervasive Cretaceous remagnetization in the South China borderland and may reflect similar remagnetization, consistent with the NPB’s proposed South China origin.  相似文献   

9.
华南早三叠世的古地磁学与大地构造   总被引:50,自引:0,他引:50       下载免费PDF全文
从华南几个具代表性地点的下三叠统灰岩中,获得了有意义的古地磁学初步结果。这些结果支持华南存在分离板块的设想。根据新近获得的地质与古地磁学证据,推断华南存在4个岩石图板块。它们是扬子(D=232.4°,I=-11.8°,K=28.2,α95=5.5°),湘桂(D=198.0°,I=32.2°,α95=12.9°),华夏(D=88.0°,I=13.0°,K=20.1,α95=9.1°)和海南(上二叠统D=338.2°,I=15.9°,K=10.2,α95=14.3°)板块。4个板块的古地磁极位分散,纬度差明显,并存在碰撞后的局部与区域性的旋转作用,尤其是顺时针旋转。华南早中生代的大地构造可理解为4个来自古特提斯和冈瓦纳的岩石圈碎块与欧亚大陆聚合作用的产物。  相似文献   

10.
With the aim of obtaining Tertiary palaeomagnetic directions for the Adriatic Foreland of the Dinaric nappe system, we carried out a palaeomagnetic study on platform carbonates from stable Istria, from the northwestern and the Central Dalmatia segment of imbricated Adria. Despite the weak to very weak natural remanences of these rocks, we obtained tectonically useful palaeomagnetic directions for 25 sites from 20 localities. All exhibit westerly declinations, both before and after tilt correction. Concerning the age of the magnetizations, we conclude that five subhorizontal and magnetite bearing Eocene localities from stable Istria are likely to carry primary remanence, whereas three tilted and hematite-bearing ones were remagnetized. In the northwestern segment of imbricated Adria the cluster of the mean directions improved after tectonic correction indicating pre-tilting magnetization. In contrast, Maastrichtian–Eocene platform carbonates from Central Dalmatian were remagnetized in connection with the late Eocene–Oligocene deformation or Miocene hydrocarbon migration. Based on the appropriate site/locality means, we calculate mean palaeomagnetic directions for the above three areas and suggest an alternative interpretation of the data of Kissel et al. [J. Geophys. Res. 100 (1995) 14999] for the flysch of Central Dalmatia. The four area mean direction define a regional palaeomagnetic direction of Dec=336°, Inc=+52°, k=107, α95=9°. From these data we conclude that stable Istria, in close coordination with imbricated Adria, must have rotated by 30° counterclockwise in the Tertiary, relative to Africa and stable Europe. We suggest that the latest Miocene–early Pliocene counterclockwise rotations observed in northwestern Croatia and northeastern Slovenia were driven by that of the Adriatic Foreland, i.e. the rotation of the latter took place between 6 and 4 Ma.  相似文献   

11.
A paleomagnetic study has been conducted on a formation dated as Autunian in the Nekheila area (31.4°N, 1.5°W) in the Mezarif basin. ChRM was thermally isolated in 117 samples from seven sites. This ChRM (D = 131.8°, I = 15.7°, k = 196, α95 = 3.8° after dip correction; corresponding pole 29.3°S, 56.4°E) is very similar to that obtained in the neighboring Abadla basin from a formation of the same age. Fold tests associated with progressive unfolding applied to the full merged data from the dated formations of these two basins clearly indicate that the magnetization acquisition predates the deformation, which is attributed to the last phase of the late-Hercynian. The magnetization in these basins is therefore primary or acquired just after deposition. For the African Apparent Polar Wander Path, the age of the paleomagnetic poles of the Autunian part is now confirmed by paleomagnetic test.  相似文献   

12.
280 core samples were collected from Upper Jurassic, Cretaceous and Eocene sediments outcropping in the Istria peninsula (Yugoslavia). Due to the very low intensities of the initial natural remanent magnetizations, more than 50% of the collection, consisting mainly of rock samples of Jurassic and Eocene sediments, was not suitable for paleomagnetic studies.The Cretaceous samples yield a mean paleomagnetic pole (lat. 53°, long. 275° and α95 = 4.8°), which is significantly different from the African and European paleomagnetic poles of the same age. The position of the Istria peninsula on the autochthonous Adriatic platform allows the result to be interpreted as applicable to all the autochthonous Periadriatic region. This new paleomagnetic result indicates that the autochthonous Adriatic platform rotated counterclockwise over an angle of about 30° with respect to Africa in post-Mesozoic times.  相似文献   

13.
《Precambrian Research》2004,128(1-2):167-188
Thirty-nine oriented block samples of iron-formation were collected at 13 sites, including opposite limbs of major folds, from the 1.88-Ga Sokoman Formation (Knob Lake Group) in the Schefferville–Knob Lake area of the central New Québec Orogen, northern Québec. The samples assayed up to 80.24% Fe2O3T (54.08% Fe), implying Fe-enrichment of the iron-formation up to ore grade. Anisotropy of magnetic susceptibility measurements on 245 standard specimens indicate a well preserved bedding-parallel fabric in the iron-formation, suggesting minimal alteration of the magnetic mineralogy since deposition and/or a mimetic secondary magnetic mineralogy. The iron-formation has not been internally deformed since the magnetic mineralogy was established. Analyses by variable-field translation balance and X-ray diffraction showed that the predominant magnetic mineral is hematite but a small amount of magnetite also is present in most samples. Following low-temperature pre-treatment as appropriate, stepwise thermal and alternating-field demagnetization of 218 specimens revealed a low-temperature, post-folding component (maximum Tub≈400 °C, D=27.1°, I=20.1°, α95=10.9°, from seven sites; pole position of 40.6°S, 257.0°E), and components carried by magnetite (maximum Tub≈580 °C, D=35.8°, I=3.9°, α95=9.1°, from 10 sites; pole position of 29.6°S, 250.9°E) and hematite (maximum Tub≈680 °C, D=40.0°, I=1.6°, α95=18.6°, from seven sites; pole position of 26.8°S, 247.0°E). The components carried by magnetite and hematite are pre-, syn- and post-folding depending on the sampling site, indicating that the magnetization was acquired continuously with deformation in the New Québec Orogen at 1.84–1.83 Ga. No evidence was found for acquisition of magnetization during the Mesozoic, when many of the iron oxide orebodies in the Schefferville–Knob Lake area are thought to have formed. Our findings imply that an episode of Fe-enrichment of iron-formation in the Sokoman Formation involved the circulation of hydrothermal fluids related to late Paleoproterozoic orogenesis. Such orogenic circulation of fluids may have contributed to the development of hematitic orebodies in the central New Québec Orogen.  相似文献   

14.
Progressive thermal demagnetization of samples from the Tan y Grisiau granite defines a coherent easterly positive characteristic remanence (D/I = 124.9/60.3°;, 42 samples, R = 40–51, a95 = 4.8°;) residing in magnetite. An ancient reversal of magnetization is recovered in the highest blocking temperature spectrum of a few samples and suggests that a cooling-related dipolar axis is recorded by this pluton. Only facies of the granite which have been reddened, probably by submagmatic streaming, have recorded a stable remanence. Adjustment for tilt yields a very steep remanence (D/I = 193/88°;) incompatible with any known Early Palaeozoic and younger field direction from Britain. The in situ remanence has a similar declination to the primary magnetization in Late Ordovician dolerites from the Welsh Borderlands and yields a comparable palaeolatitude (41.5°;S). It is concluded that the Tan y Grisiau pluton was magnetized in Late Ordovician times after deformation. Folding in this region is therefore interpreted to be substantially of Taconic (Late Ordovician) origin and not Acadian in age. As both in situ and tilt-adjusted remanence directions are incompatible with Silurian and younger palaeofield directions from Britain, the pluton is interpreted as a subvolcanic component of the North Wales igneous province. Large anticlockwise rotation of Avalonia is identified between Late Ordovician and Late Silurian times.  相似文献   

15.
During the Mesozoic and Paleogene, the Precambrian rocks in the Pilbara, Western Australia, underwent erosion and deep weathering that produced an undulating landform now represented by the duricrusted and partly eroded Hamersley Surface. A reddened, ferruginous weathering zone occurs immediately beneath this duricrusted surface. Oriented block samples of ferruginised strata of the Neoarchean–early Paleoproterozoic Hamersley Group exposed within approximately 15 m below the duricrust were collected at 20 sites in roadcuts along the Great Northern Highway between Munjina and Newman and exposures along the adjoining Karijini Drive. Stepwise thermal demagnetisation of cored specimens revealed a stable, high-temperature (680°C) component carried by hematite, with a mean direction (n = 55 specimens) of declination D = 182.0°, inclination I = 52.9° (α95 = 3.6°), indicating a pole position at latitude λp = 77.6°S, longitude ?p = 113.2°E (A95 = 4.3°) and a paleolatitude λ = 33.5 +3.6/–3.3°S. Both normal and reversed polarities are present, indicating that the remanent magnetism was acquired over an interval of at least two polarity chrons (say 105–106 years). Chi-square tests on the determined pole position and three different sets of Cenozoic poles, namely those for dated volcanic rocks in eastern Australia supplemented by poles for Australian Cenozoic weathering horizons, and inferred poles from Pacific Ocean and Indian Ocean hotspot analyses and North American Cenozoic poles rotated to Australian coordinates, yielded a mean age of ca 24 ± 3 Ma, i.e. late Oligocene to early Miocene, interpreted as the time of formation of hematite in the sampled ferruginous zone. The ferruginous weathering occurred under globally warm conditions and was followed during the early to middle Miocene climatic optimum by the deposition of channel iron deposits, which incorporated detrital hematitic material derived from erosion of the ferruginous weathering zone beneath the Hamersley Surface.  相似文献   

16.
New pole positions for Triassic and Cretaceous times have been obtained from volcanic and sedimentary sequences in Central Iran. These new results confirm the general trend of the Apparent Polar Wander Path (APWP) of the Central-East-Iran microplate (CEIM) from the Triassic through the Tertiary as published by Soffel and Förster (1983, 1984). Two new palaeopoles for the Triassic of the CEIM have been obtained; limestones and tuffs from the Nakhlak region yield a mean direction of 094.0°/25.0°, N=12, k=4.1,α 95=24.7°, after bedding correction, corresponding to a palaeopole position of 310.8°E; 3.9°S, and volcanic rocks from the Sirjan regions yield a mean direction of 114.5°/35.1°, N=44, k=45.9,α 95=3.2° after bedding correction and a palaeopole position of 295.8°E; 10.3°N. Combining these with the two previously published results yields a new palaeopole position of 317.5°E; 12.7°N, for the Triassic of the CEIM, thus confirming that large counterclockwise rotations of the CEIM have occurred since the Triassic time. New results have also been obtained from Cretaceous limestones from the Saghand region of the CEIM. The mean direction of 340.7°/26.3°, N=33, k=44.3,α 95=3.8°, and the corresponding palaeopole position of 283.1°E; 64.4°N, is in agreement with previously determined Cretaceous palaeopole positions of the CEIM. Furthermore, results have also been obtained from Triassic dolomite, limestone, sandstone and siltstone from the Natanz region, which is located to the west of the CEIM. A total of 161 specimens from 44 cores taken at five sites gave a mean direction of the five sites at 033.3°/25.1°, N=5, k=69.0,α 95=9.3° and a palaeopole position of 167.2°E; 53.7°N. They pass the positive fold test of McElhinny (1964) on the level of 99% confidence. This pole position is in fairly good agreement with the mean Triassic pole position of the Turan Plate (149°E; 49°N). It indicates that the area of Natanz has not undergone the large counterclockwise rotation relative to the Turan plate since the Triassic, which has been shown for the CEIM. A Triassic palaeogeographic reconstruction of Iran, Arabia (Gondwana) and the Turan Plate (Eurasia) is also presented.  相似文献   

17.
A combined paleomagnetic and geochronological investigation has been performed on Cretaceous rocks in southern Qiangtang terrane (32.5°N, 84.3°E), near Gerze, central Tibetan Plateau. A total of 14 sites of volcanic rocks and 22 sites of red beds have been sampled. Our new U–Pb geochronologic study of zircons dates the volcanic rocks at 103.8 ± 0.46 Ma (Early Cretaceous) while the red beds belong to the Late Cretaceous. Rock magnetic experiments suggest that magnetite and hematite are the main magnetic carriers. After removing a low temperature component of viscous magnetic remanence, stable characteristic remanent magnetization (ChRM) was isolated successfully from all the sites by stepwise thermal demagnetization. The tilt-corrected mean direction from the 14 lava sites is D = 348.0°, I = 47.3°, k = 51.0, α95 = 5.6°, corresponding to a paleopole at 79.3°N, 339.8°E, A95 = 5.7° and yielding a paleolatitude of 29.3° ± 5.7°N for the study area. The ChRM directions isolated from the volcanic rocks pass a fold test at 95% confidence, suggesting a primary origin. The volcanic data appear to have effectively averaged out secular variation as indicated by both geological evidence and results from analyzing the virtual geomagnetic pole (VGP) scatter. The mean inclination from the Late Cretaceous red beds, however, is 13.1° shallower than that of the ~ 100 Ma volcanic rocks. After performing an elongation/inclination analysis on 174 samples of the red beds, a mean inclination of 47.9° with 95% confidence limits between 41.9° and 54.3° is obtained, which is consistent with the mean inclination of the volcanic rocks. The site-mean direction of the Late Cretaceous red beds after tilt-correction and inclination shallowing correction is D = 312.6°, I = 47.7°, k = 109.7, α95 = 3.0°, N = 22 sites, corresponding to a paleopole at 49.2°N, 1.9°E, A95 = 3.2° (yielding a paleolatitude of 28.7° ± 3.2°N for the study area). The ChRM of the red beds also passes a fold test at 99% confidence, indicating a primary origin. Comparing the paleolatitude of the Qiangtang terrane with the stable Asia, there is no significant difference between our sampling location in the southern Qiangtang terrane and the stable Asia during ~ 100 Ma and Late Cretaceous. Our results together with the high quality data previously published suggest that an ~ 550 km N–S convergence between the Qiangtang and Lhasa terranes happened after ~ 100 Ma. Comparison of the mean directions with expected directions from the stable Asia indicates that the Gerze area had experienced a significant counterclockwise rotation after ~ 100 Ma, which is most likely caused by the India–Asia collision.  相似文献   

18.
This paper presents new paleomagnetic results on Cenozoic rocks from northern central Asia. Eighteen sites were sampled in Pliocene to Miocene clays and sandy clays of the Zaisan basin (southeastern Kazakhstan) and 12 sites in the upper Oligocene to Pleistocene clays and sandstones of the Chuya depression (Siberian Altai).Thermal demagnetization of isothermal remanent magnetization (IRM) showed that hematite and magnetite are the main ferromagnetic minerals in the deposits of the Zaisan basin. Stepwise thermal demagnetization up to 640–660 °C isolated a characteristic (ChRM) component of either normal or reverse polarity at nine sites. At two other sites, the great circles convergence method yielded a definite direction. Measurements of the anisotropy of magnetic susceptibility showed that the hematite-bearing sediments preserved their depositional fabric. These results suggest a primary origin of the ChRM and were substantiated by positive fold and reversal tests. The mean paleomagnetic direction for the Zaisan basin (D=9°, I=59°, k=19, α95=11°) is close to the expected direction derived from the APW path of Eurasia [J. Geophys. Res. 96 (1991) 4029] and shows that the basin did not rotated relative to stable Asia during the Tertiary.In the upper Pliocene–Pleistocene sandstones of the Chuya depression, a very stable ChRM carried by hematite was found. Its mean direction (D=9°, I=46°, k=25, α95=7°) is characterized by declination close to the one excepted for early Quaternary, whereas inclination is lower. In the middle Miocene to lower Pliocene clays and sandstones, a stable ChRM of both normal and reverse polarities carried by magnetite was isolated. Its mean direction (D=332°, I=63°, k=31, α95=4°) is deviated with respect to the reference direction and implies a Neogene, 39±8° counterclockwise rotation of the Chuya depression relative to stable Asia. These results and those from the literature suggest that the different amount of rotation found in the two basins is related to a sharp variation in their tectonic style, predominantly compressive in the Zaisan basin and transpressive in the Siberian Altai. At a larger scale, the pattern of vertical axis rotations deduced from paleomagnetic data in northern central Asia is consistent with the hypothesis of a large left-lateral shear zone running from the Pamirs to the Baikal. Heterogeneous rotations, however, indicate changes in style of faulting along the shear zone and local effect for the domains with the largest rotations.  相似文献   

19.
There is a difference of 120° between the strike of the Pindos mountain chain and that of the Argolis peninsula. Both consist of rocks of the same age (Triassic Jurassic).Samples were collected to see if paleomagnetic data also exhibited this difference in angle. 23 samples from two sites and four lava strata of the Pindos resulted in normal and reversed directions with a mean direction D = 334°, I = 22° with α95° = 9°, and 24 samples from four sites of the Argolis peninsula in a mean direction of D = 82°, I = 19° with α95° = 17°. This is a declination difference of D = 108°. Therefore, a relative rotational block movement with an angle of about 110° could be assumed. The result depends to a great extent on the dip correction of the lava flows.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号