首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaporitic materials have been studied by means of ground penetrating radar (GPR) in order to evaluate the collapse hazard. The obtained 200 MHz GPR profiles show a low signal-noise ratio over the first 3 m depth, where well-defined and continuous reflectors can be observed. Between 3 and 4.5 m depth, the signal to noise ratio decreases due to attenuation of the electromagnetic (EM) waves. As a result, reflectors located deeper than 3 m become more discontinuous and poorly defined. GPR profiles show trails of continuous and subhorizontal reflectors, with a slightly undulated and irregular geometry. Although some of these reflectors laterally vanish or seem to disappear, sudden interruptions or hyperbolic reflections that could be originated by the occurrence of cavities have not been detected. These reflectors have been interpreted as corresponding to several evaporitic layers (gypsum) that constitute the main lithology in the area. Clear interruptions of reflectors have only been observed in some GPR profiles, and they could be attributed to small (1–2 m long) subvertical faults, with only a few centimetres offset. These faults may be generated by the accommodation of the evaporitic layers to local collapses affecting deeper materials.  相似文献   

2.
The Ground Penetrating Radar (GPR) is a newly developing geophysical tool for imaging the sub-surface and is potentially useful in groundwater exploration. We test its usefulness in characterizing a groundwater rich lineament near Gajularamaram in the Hyderabad granite terrain, where groundwater is limited to soil, weathering zone and lineaments. The lineament is 2 km long and 50–100 m wide, and oriented in WNW-ESE direction. It is characterized by many closely spaced sub-vertical fractures and faults, majority of which are parallel to the lineament. On either sides of the lineament, sub-horizontal sheet joints are abundant. The lineament is saturated with groundwater that discharge as springs at some places. About 450 m long, 400–100 MHz GPR data (~5–30 m depth) were acquired along five profiles across the lineament. In the lineament, soil thickness varies from ~0.5 m to 5 m, and is underlain by weathered granite. In the WNW part, a thick weathering zone (~15 m) is present and a 10 m wide vertical anomaly zone (lineament) is also present. The presence of shallow reflectors at 1 m depth in the lineament is attributed to the groundwater surface. The GPR images reveal many sub horizontal to gently dipping reflectors, which are interpreted to be the sheet joints. The GPR data clearly reveal the saturated lineament, from which groundwater may migrate laterally to long distance through the sheet joints. We demonstrate the GPR as a rapid geophysical tool that can be used successfully to explore the nearsurface groundwater.  相似文献   

3.
4.
The Norwich Crag of north-eastern Suffolk is mainly composed of near-shore sands representing several sequences (cycles of transgression and regression). It is difficult to separate out the different sequences but the final sequence here is well known for the localised development of beds of flint gravel that have been interpreted as the in-situ remnants of prograding beaches. While a review of the evidence supports the involvement of this sedimentary environment in the overall processes, the evidence shows that virtually only gravels associated with rip-channels represent in-situ beach gravels and that thicker gravel beds are the infill of much larger channels. From consideration of the characteristics of the large channels it is concluded that these large channels were tidal-inlets between prograding barrier islands and that the gravels were derived from the adjacent up-drift beach faces of the barrier-islands.  相似文献   

5.
A cross-section of fluvial gravel deposits of late Pleistocene age exposed at Po Chue Tam, Lantau Island, Hong Kong contains two facies: a lower facies of planar cross-bedded gravel (Gp) and an overlying facies of clast-supported, massive gravels (Gcm). The Gp gravels include five gravel couplets. Each couplet consists of a clast-supported, coarse gravel-dominated bed and an overlying clast-supported, fine gravel-dominated bed with a discrete bounding surface. Tectonic uplift predating the last interglacial transgression produced a large amount of detritus in the source area. Excessive peak rainfall intensity resulting from enhanced seasonality of monsoonal precipitation in the following glacial period triggered catastrophic floods, which transported mature detritus in large quantities into a fault-controlled piedmont basin. The Gp gravels were deposited by pulsating flood flows. In relation to kinematic waves of particles, bedload sediment was longitudinally sorted and segregated into a train of gravel sheets. They draped over each other and accreted laterally due to expansion of flow, producing planar cross stratifications that are characteristic of recurrent, couplet-style coarse/fine cross beds. In contrast, Gcm gravels were laid down as a single, nearly horizontal bed by a catastrophic flood that was not subject to flow pulsation.  相似文献   

6.
The morphology and dynamics of modern gravel shorefaces are poorly documented. This hinders the interpretation of possible ancient counterparts. A comparative study of a modern (Chesil Beach, England) and an ancient (Baytree Member of the Cardium Formation, Alberta) gravel shoreface shows that the two systems are very similar close to and above sea-level, with a high (about 1 m) gravel plunge step lying below plane-bedded sands and gravels of the beachface. The shoreface at Chesil Beach is dominated by asymmetrical gravel wave ripples. These are oriented offshore near the toe of the shoreface, and onshore in shallower depths. This may reflect offshore movement during storms and landward reworking during fair weather. The Baytree Member is over 12 m thick and comprises over 80% conglomerate. Conglomerate is decimetre-bedded, massive or cross-bedded, with sets over 60 cm thick produced by gravel bedforms migrating alongshore. It is interbedded with discontinuous cm- to dm-bedded sandstones which may be cross-bedded. Pebble fabric and cross-bed orientation both indicate strong alongshore sediment transport. Near the base of the section, pebble orientations suggest that gravel wave-ripples developed below the zone of strong longshore flows. Differences between these two examples may be attributed to different directions of wave approach.  相似文献   

7.
探地雷达(GPR)在海南岛东北部海岸带调查中的应用 *   总被引:2,自引:0,他引:2  
对海南岛东北部海岸带调查采用了探地雷达(GPR)研究海岸带沙体的结构、展布和沉积序列,取得了很好的效果。文章通过和有限的露头资料对比以及对反射波形态、结构的研究,确定了海滩脊、海岸沙丘的反射特征以及潜水面的位置。雷达图像显示五龙港古海滩脊由亚水平、不连续、高振幅和透镜状反射波组成;木兰头海岸沙丘已受到人类活动的扰动,短的、陡倾斜反射可能代表未受扰动的海岸风成沙的前积层。研究表明探地雷达是一种可靠、快速和经济的地球物理方法,在砂砾质海岸可产生高质量、高分辨率和连续的反射剖面,值得加以推广。  相似文献   

8.
Four major sedimentary facies are present in coarse-grained, ice-marginal deposits from central East Jylland, Denmark. Facies A and B are matrix-supported gravels deposited by subaerial sediment gravity flows as mudflows (facies A) and debris flows (facies B). Facies C consists of clast-supported, water-laid gravels and facies D are cross-bedded sand and granules. The facies can be grouped into three facies associations related to the supraglacial and proglacial environments: (1) the flow-till association is made up of alternating beds of remobilized glacial mixton (facies A) and well-sorted cross-bedded sand (facies D); (2) the outwash apron association resembles the sediments of alluvial fans in containing coarse-grained debris-flow deposits (facies B), water-laid gravel deposited by sheet floods (facies C) and cross-bedded sand and granules (facies D) from braided distributaries; (3) the valley sandur association comprises water-laid gravel (facies C) interpreted as sheet bars and longitudinal bars interbedded with cross-bedded sand and granules (facies D) deposited in channels between bars in a braided environment.The general coarsening-upward trend of the sedimentary sequences caused by the transition of bars and channel-dominated facies to debris-flow-dominated facies indicate an increasing proximality of the outwash deposits, picturing the advance and still stand of a large continental lowland ice-sheet. The depositional properties suggest that sedimentation was caused by melting along a relatively steep, active glacier margin as a first step towards the final vanishing of the Late Weichselian icesheet (the East Jylland ice) covering eastern Denmark.  相似文献   

9.
Proglacial Lake Humber formed in the Vale of York and Ancholme Valley during the Late Devensian (Weichselian) glaciation, but its lake levels and their precise ages are uncertain. Three-dimensional geological modelling, based on 193 borehole sediment logs from the eastern part of the Vale of York, indicates that glaciolacustrine sediments extend no higher than 10?m O.D. By contrast, recent palaeoenvironmental reconstructions for the region that suggest Lake Humber had eight recessional shorelines, extending from 42?m to 5?m O.D. Above 10?m O.D., the sediments become more discontinuous, and comprise clay with occasional chalk and flint gravel, and matrix-rich diamicton interdigitated with sands and gravels. Sedimentary and geochemical analyses of sands and gravels from one of the putative shorelines, at 25?m O.D., indicate an easterly provenance for these sediments. They are interpreted here as colluvial deposits, sourced largely by periglacial weathering of Jurassic and chalk bedrock. Collectively, the geological evidence suggests that the highest level of Lake Humber during the Late Devensian did not exceed 10?m O.D., and therefore reconstructions invoking higher lake levels are thought to be unlikely.  相似文献   

10.
Sedimentological outcrop analysis and sub‐surface ground‐penetrating radar (GPR) surveys are combined to characterize the three‐dimensional sedimentary architecture of Quaternary coarse‐grained fluvial deposits in the Neckar Valley (SW Germany). Two units characterized by different architectural styles are distinguished within the upper part of the gravel body, separated by an erosional unconformity: (i) a lower unit dominated by trough‐shaped depositional elements with erosional, concave‐up bounding surfaces that are filled by cross‐bedded sets of mainly openwork and filled framework gravel; and (ii) an upper unit characterized by gently inclined sheets of massive and openwork gravels with thin, sandy interlayers that show lateral accretion on a lower erosional unconformity. The former is interpreted as confluence scour pool elements formed in a multi‐channel, possibly braided river system, the latter as extensive point bar deposits formed by the lateral migration of a meandering river channel. The lateral accretion elements are locally cut by chute channels mainly filled by gravels rich in fines, and by fine‐grained abandoned channel fills. The lateral accretion elements are associated with gravel dune deposits characterized by steeply inclined cross‐beds of alternating open and filled framework gravel. Floodplain fines with a cutbank and point bar morphology cover the gravel deposits. The GPR images, revealing the three‐dimensional geometries of the depositional elements and their stacking patterns, confirm a change in sedimentary style between the two stratigraphic units. The change occurred at the onset of the Holocene, as indicated by 14C‐dating of wood fragments, and is related to a re‐organization of the fluvial system that probably was driven by climatic changes. The integration of sedimentological and GPR results highlights the heterogeneity of the fluvial deposits, a factor that is important for modelling groundwater flow in valley‐fill aquifers.  相似文献   

11.
《Sedimentary Geology》2007,193(1-4):167-192
The coarse-grained, ice-contact, Porta Subaqueous Fan/Delta Complex was deposited in glacial Lake Rinteln at the margin of the Saalian ice sheet that advanced south of the Weser Chains, NW Germany. The ice-proximal depositional system was up to 15 km long and 10 km wide. The present study deals with ice-proximal subaqueous fan deposits, which are interpreted as products of a subcritical plane-wall outflow jet that periodically passed into a supercritical jet with hydraulic jump. The proximal facies assemblage consists of the coarse, clast-supported gravelly deposits of a hyperconcentrated (high-density) effluent and of related cohesionless debris flows attributed to the conduit or immediate proximal jet outflow zone of flow establishment. The intermediate facies assemblage, attributed to the outflow jet proximal zone of flow transition, is dominated by normally graded and cross-stratified gravels with scour structures at their bases; these gravels were deposited by a high-density effluent capable of forming mouthbar-like features. These deposits pass downcurrent into an assemblage of planar parallel-stratified and planar and trough cross-stratified sands and pebbly sands (partially interpreted as antidunes), with abundant scour structures and intercalated layers of fine sand/silt and silty mud, attributed to the jet distal zone of flow transition. The distal facies assemblage consists of trough cross-stratified sands and pebbly sands, and is attributed to the outflow jet proximal zone of established flow. The sedimentary succession as a whole has wedge-shape geometry, with a gentle fan-shaped inclination of the bedding from the southeast to the southwest. Repeated vertical alternations of supercritical and subcritical deposits and muddy interlayers can be attributed to temporary fluctuations in the meltwater outflow, whereas the overall upward fining of the succession indicates a net decline of meltwater discharges.  相似文献   

12.
The large-scale (i.e. bar-scale) structure of channel deposits of the braided, low-sinuosity Calamus River, Nebraska, is described using ground-penetrating radar (GPR) profiles combined with vibracores. Basal erosion surfaces are generally overlain by medium-scale, trough-cross-stratified (sets 3–25 cm thick), very coarse to medium sands, that are associated with relatively high amplitude, discontinuous GPR reflectors. Overlying deposits are bioturbated, small-scale cross-stratified (sets <3 cm thick) and vegetation-rich, fine to very-fine sands, that are associated with low-amplitude discontinuous reflectors. Near-surface peat and turf have no associated GPR reflectors. In along-stream profiles through braid and point bars, most GPR reflectors dip downstream at up to 2° relative to the basal erosion surface, but some reflectors in the upstream parts of bars are parallel to the basal erosion surface or dip upstream. In cross-stream profiles through bars, GPR reflectors are either approximately parallel to bar surfaces or have low-angle inclinations (up to 6°) towards cut banks of adjacent curved channels. Basal erosion surfaces become deeper towards cut banks of curved channels. These structures can be explained by lateral and downstream growth of bars combined with vertical accretion. Convex upwards forms up to 0·5 m high, several metres across and tens of metres long represent episodic accretion of unit bars (scroll bars and bar heads). Stratal patterns in channel fills record a complicated history of erosion and deposition during filling, including migration of relatively small bars. A revised facies model for this type of sandy, braided river has been constructed based on this new information on large-scale bedding structure.  相似文献   

13.
Ground-penetrating radar (GPR) was used in an effort to locate a major active fault that traverses Aqaba City, Jordan. Measurements over an exposed (trenched) cross fault outside of the city identify a radar signature consisting of linear events and horizontal offset/flexured reflectors both showing a geometric correlation with two known faults at a control site. The asymmetric linear events are consistent with dipping planar reflectors matching the known direction of dip of the faults. However, other observations regarding this radar signature render the mechanism generating these events more complex and uncertain.GPR measurements in Aqaba City were limited to vacant lots. Seven GPR profiles were conducted approximately perpendicular to the assumed strike of the fault zone, based on regional geological evidence. A radar response very similar to that obtained over the cross fault was observed on five of the profiles in Aqaba City, although the response is weaker than that obtained at the control site. The positions of the identified responses form a near straight line with a strike of 45°. Although subsurface verification of the fault by trenching within the city is needed, the geophysical evidence for fault zone location is strong. The location of the interpreted fault zone relative to emergency services, military bases, commercial properties, and residential areas is defined to within a few meters. This study has significant implications for seismic hazard analysis in this tectonically active and heavily populated region.  相似文献   

14.
Recent work in southern Ontario, Canada, demonstrates anomalously high vertical groundwater flow velocities (>1 m/year) through a thick (as much as 60 m), sandy silt till aquitard (Northern till), previously assumed to be of very low permeability (hydraulic conductivity <10–10 m/s). Rapid recharge is attributed to the presence of fractures and sedimentary heterogeneities within the till, but the field-scale flow regime is poorly understood. This study identifies the nature of physical groundwater pathways through the till and provides estimates of the associated groundwater fluxes. The aquitard groundwater flow system is characterized by integrating details of the outcrop and subsurface sedimentary characteristics of the till with field-based hydrogeologic investigation and numerical modeling. Outcrop and subsurface data identify a composite internal aquitard stratigraphy consisting of tabular till beds (till elements) separated by laterally continuous sheet-like sands and gravels (interbeds) and boulder pavements. Individual till elements contain sedimentary heterogeneities, including discontinuous sand and gravel lenses, vertical sand dikes, and zones of horizontal and vertical fractures. Hydrogeologic field investigations indicate a three-layer aquitard flow system, consisting of upper and lower zones of more hydraulically active and heterogeneous till separated by a middle unit of relatively lower hydraulic conductivity. Groundwater pathways and fluxes in the till were evaluated using a two-dimensional aquitard/aquifer flow model which indicates a step-wise flow mechanism whereby groundwater moves alternately downward along vertical pathways (fractures, sedimentary dikes) and laterally along horizontal sand interbeds within the till. This model is consistent with observed hydraulic-head and isotope profiles, and the presence of tritiated pore waters at various depths throughout the till. Simulations suggest that a bulk aquitard vertical hydraulic conductivity on the order of 1×10–9 m/s is required to reproduce observed hydraulic-head and tritium profiles. Electronic Publication  相似文献   

15.
A contaminated site from a downstream municipal solid waste disposal site in Brazil was investigated by using a 3D resistivity and induced polarization (IP) imaging technique. This investigation purpose was to detect and delineate contamination plume produced by wastes. The area was selected based on previous geophysical investigations, and chemical analyses carried out in the site, indicating the presence of a contamination plume in the area. Resistivity model has successfully imaged waste presence (ρ < 20 Ωm), water table depth, and groundwater flow direction. A conductive anomaly (ρ < 20 Ωm) outside wastes placement was interpreted as a contamination plume. Chargeability model was also able to imaging waste presence (m > 31 mV/V), water table depth, and groundwater flow direction. A higher chargeability zone (m > 31 mV/V) outside wastes placement and following conductive anomaly was interpreted as a contamination plume. Normalized chargeability (MN = m/ρ) confirmed polarizable zone, which could be an effect of a salinity increase (contamination plume), and the clay presence in the environment.  相似文献   

16.
The Guelph esker (Ontario, Canada) consists of a sinuous, steep-sided and segmented ridge which comprises poorly sorted, matrix-supported sands and gravels. These sands and gravels were probably deposited during the sliding bed stage which has been observed by others in closed-conduit hydraulic experiments. The poor sorting probably resulted from a high concentration of bed-material load in the lower part of a subglacial tunnel, sorting being restricted to that produced by particle collisions. Inclusive graphic standard deviation is characteristically large for the sands and gravels, indicating that virtually all sizes available were in transport. The overall grain size distribution shows a characteristic undulatory shape on arithmetic probability paper, mostly because of selective removal of pebble gravel and granule sizes. This poorly sorted fades is believed to be diagnostic of transport in a subglacial tunnel flowing full of water, and may be used to identify subglacial conditions in other eskers. Deltaic sands and gravels occur downcurrent of the esker and contain a greater diversity of structures; climbing-ripple cross-laminae, parallel laminae and massive structure, deposited in large-scale foresees at the end of a subglacial tunnel. These deltaic sands and gravels grade distally into outwash sands and gravels.  相似文献   

17.
Meltwater flows emanating from the Pyrenees during the Pleistocene constructed a braided outwash plain in the Ebro Basin and led to the karstification of the Neogene gypsum bedrock. Synsedimentary evaporite dissolution locally increased subsidence rates and generated dolines and collapses that enabled the accumulation and preservation of outwash gravels and associated windblown deposits that were protected from erosion by later meltwater flows. In these localized depocentres, maximum rates of wind deceleration resulted from airflow expansion, enabling the accumulation of cross‐stratified sets of aeolian strata climbing at steep angles and thereby preserving up to 5 m thick sets. The outwash plain was characterized by longitudinal and transverse fluvial gravel bars, channels and windblown facies organized into aeolian sand sheets, transverse and complex aeolian dunes, and loess accumulations. Flat‐lying aeolian deposits merge laterally to partly deformed aeolian deposits encased in dolines and collapses. Synsedimentary evaporite dissolution caused gravels and aeolian sand deposits to subside, such that formerly near‐horizontal strata became inclined and generated multiple internal angular unconformities. During episodes when the wind was undersaturated with respect to its potential sand transporting capacity, deflation occurred over the outwash plain and coarse‐grained lags with ventifacts developed. Subsequent high‐energy flows episodically reached the aeolian dune field, leading to dune destruction and the generation of hyperconcentrated flow deposits composed in part of reworked aeolian sands. Lacustrine deposits in the distal part of the outwash plain preserve rhythmically laminated lutites and associated Gilbert‐type gravel deltas, which developed when fluvial streams reached proglacial lakes. This study documents the first evidence of an extensive Pleistocene proglacial aeolian dune field located in the Ebro Basin (41˙50° N), south of what has hitherto been considered to be the southern boundary of Pleistocene aeolian deposits in Europe. A non‐conventional mechanism (evaporite karst‐related subsidence) for the preservation of aeolian sands in the stratigraphic record is proposed.  相似文献   

18.
19.
Facies relationships in Pleistocene braided outwash deposits in southern Ontario demonstrate the presence of a large braid bar with adjacent side channel. The core of the bar is up to 6 m high, and consists of crudely horizontally stratified gravels. Downstream from the core is the bar front facies, consisting of large gravelly foresets up to 4 m high, rounded off in many places by reactivation surfaces. Upstream from the core is the bar stoss side facies consisting of several sets (individually up to 35 cm thick) of tabular cross-bedding, arranged in coarsening-upward sequences. The stoss side—core—bar front relationships are continuously exposed in one 400 m long quarry face which is cut almost parallel to the palaeoflow direction. A transverse quarry face shows the side channel facies, which consists of trough cross-bedded sands. Gravel layers can be seen to finger from the main gravelly bar into the sandy side channel, but they do not reach the base of the channel. This surprising relationship indicates that gravel moved only in the topographically higher parts of the system. After deposition in the side channel, and growth upstream and downstream from the bar core, the entire system aggraded. Crudely horizontally stratified, and imbricated gravel sheets were laid down as a bar top facies. Grain size analyses indicate strongly bimodal distributions, implying that much of the sand in the spaces between pebbles and boulders filtered in after the gravel had been deposited. This interpretation is strengthened by velocity calculations—mean velocities in excess of 300 cm/s would be needed to roll the gravel as bed load, but at such a velocity, a large amount of sand would be transported entirely in suspension. In a final section of the paper, our results are combined with other work on braided systems in an attempt to formulate a more general facies model.  相似文献   

20.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号