首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although eclogites in the Belomorian Province have been regarded as Archean in age and among the oldest in the world, there are also multiple studies that have proposed a Paleoproterozoic age. Here, we present new data for the Gridino‐type eclogites, which occur as boudins and metamorphosed dykes within tonalite–trondhjemite–granodiorite gneisses. Zircon from these eclogites has core and rim structures. The cores display high Th/U ratios (0.18–0.45), negative Eu anomalies and strong enrichment in HREE, and have Neoarchean U–Pb ages of c. 2.70 Ga; they are interpreted to be magmatic in origin. Zircon cores have δ18O of 5.64–6.07‰ suggesting the possibility of crystallization from evolved mantle‐derived magmas. In contrast, the rims, which include the eclogite facies minerals omphacite and garnet, are characterized by low Th/U ratios (<0.035) and flat HREE patterns, and yield U–Pb ages of c. 1.90 Ga; they are interpreted to be metamorphic in origin. Zircon rims have elevated δ18O of 6.23–6.80‰, which was acquired during eclogite facies metamorphism. Based on petrography and phase equilibria modelling, we recognize a prograde epidote amphibolite facies mineral assemblage, the peak eclogite facies mineral assemblage and a retrograde high‐P amphibolite facies mineral assemblage. The peak metamorphic conditions of 695–755°C at >18 kbar for the Gridino‐type eclogites suggest an apparent thermal gradient of <39–42°C/kbar for the Lapland–Kola collisional orogeny.  相似文献   

2.
We present results of geochemical studies and isotope dating of eclogites and associated rocks from the Kuru-Vaara quarry, Belomorian Belt, Northeastern Baltic Shield. The southern and northern eclogites are similar in geochemical features. Their protoliths were primitive, mainly high-Mg basalts of oceanic affinity derived from a primitive mantle source rather than from a depleted mantle source characteristic of modern MORB. The post-eclogitic intrusive rocks show obvious evidence for crustal contamination. The eclogite-hosting tonalitetrondhjemite-granodiorite (TTG) gneisses form a coherent series including high-Al and low-Al varieties. The trace element data show that the TTG series formed through the hydrous partial melting of the southern eclogites in the presence of garnet and amphibole in the field of the rutile stability (>15 kbar). Zircons from the southern eclogites exhibit features of their strong re-equilibration by coupled dissolution–repre-cipitation processes but have locally preserved patches with a primary magmatic zoning. The geochemistry of the patches points to the oceanic provenance of protolithic zircons; their isotope dating (SHRIMP-II) yielded a concordant age of 2821 ± 21 Ma. Zircons from the trondhjemite gneiss with geochemical features of Archean adakite were dated at 2805 ± 11 Ma, which suggests the syneclogitic facies origin of the TTG melts. The concordant age of high-pressure zircons from the northern eclogites is 2722 ± 21 Ma, close to the age of the earlier described Gridino eclogites. The overview of the isotopically dated eclogite bodies show the presence of at least three temporally distinct groups of eclogites in the Belomorian Belt, ~2.86–2.87, ~2.82–2.80, and ~2.72 Ga, which is in a good accordance with the known isotopic ages for major crust-forming events in the belt. This, in turn, implies a close genetic relationship between the eclogites and the TTG origin, which might be consistent with the model of the short intermitted events of subduction of the thickened Archean oceanic crust. The presence of HP/UHP eclogites of different ages and the structural style of the Belomorian Belt permit it to be assigned to megamélange belts.  相似文献   

3.
Archean processes of eclogitization in the Gridino metamorphic association (the Belomorian eclogite province) developed in mafic dykes, boudins, and acidic rocks of the Archean continental crusts. To determine the U-Pb age of the intrusion of the latest dykes, the geochronological samples were taken from the dyke of ferriferious metagabbro that cross-cuts the dyke of eclogitzed and granulitized olivine gabbronorite. The igneous zircons were dated by the SHRIMP II technique. The zircons showed a concordia age of 2846 ± 7 Ma, which is considered as the time of intrusion of a mafic melt. The younger low-thorium zircon rims of 2.78–2.81 Ga age around the igneous cores are typical formations that appeared under metamorphic conditions in equilibrium with a migmatite melt, and may characterize the time of formation of the granite leucosome under metamorphism, probably of eclogite facies.  相似文献   

4.
Plagioclase-bearing garnet-omphacite (Grt-Omp) eclogites and garnet-augite eclogite-like (Grt-Aug) schists from the amphibolite and gneiss beds of the Belomorian Mobile Belt have been studied. They are spread over a large area. In most of the studied objects, these rocks have preserved primary concordant relations with the host amphibolite and gneiss strata; they are not disturbed by late tectonic processes and are not genetically related to tectonic-melange zones. Their protoliths were amphibolite lenses in gneisses or large mafic zones composed of amphibolites. The Grt-Omp eclogites formed in the low-pressure field of the eclogite facies (P = 12.5-13.0 kbar, T = 600-630 °C), and the eclogite-like Grt-Aug rocks, at the boundary between the amphibolite and eclogite facies (P = 9.6-11.1 kbar, T = 630-700 °C), under the intense impact of metamorphic fluid on the amphibolites. The compositional evolution of the rock-forming minerals during the formation of Grt-Omp eclogites and eclogite-like Grt-Aug rocks followed the same scheme. The petrographic diversity of apoamphibolite rocks (Grt-Omp eclogites and Grt-Aug schists) might be due to the difference both in the bulk composition of the metabasic protolith and in the ratios of CaO and Na2O activities in the metamorphic fluid. The relatively low content of CaO leads to the formation of Grt-Omp paragenesis in eclogites. Higher CaO contents give rise to eclogite-like Grt-Aug rocks containing jadeite-poor clinopyroxene.  相似文献   

5.
Zircon from the eclogite-like rocks of the Shirokaya and Uzkaya Salma area (Kola Peninsula) was studied using a complex of mineralogical and geochemical methods (CL, BSE, microprobe, and REE distribution). Different zones distinguished within zircon crystals were dated on a SHRIMP-II mass spectrometer. Mineral and chemical compositions of inclusions in the zircons were analyzed. Based on these studies, the following stages of the formation and transformation of the rocks were determined: (1) formation of basic protolith of the eclogite-like rocks of the Shirokaya and Uzkaya Salma area 2.94–2.93 Ga ago; (2) the granulite-facies metamorphism of the eclogite-like rocks of the Shirokaya Salma 2.72 Ga ago; (3) the onset of decompressional cooling with formation of Cpx-Pl symplectites at 2.70 Ga ago; and (4) final metamorphic reworking together with surrounding TTG under the amphibolite-facies conditions at 1.89 Ga ago. The studied rocks and minerals revealed no isotope-geochemical or geochronological signs of eclogite metamorphism. Geochemistry of the primary magmatic zircons showed that the protolith of eclogite-like rocks was gabbro rather than MOR basalts. The formation of garnet in the rocks of the Uzkaya and Shirokaya Salma area is dated at 2.70 and 1.89 Ga ago, which is consistent with petrological observations of later formation of garnet relative to omphacite. Obtained data led us to prefer a magmatogenic model, which suggests that omphacite in the rocks of the Shirokaya and Uzkaya Salma was presumably formed during crystallization from basic melt, rather than during eclogite-facies metamorphism.  相似文献   

6.
The repeated isotopic and geochemical study of zircons of the eclogite from Stolbikha Island (Gridino settlement area) allows one to interpret the U-Pb age value of about 2700 Ma by central parts of zircon grains as a magmatic event time, probably rejuvenated to a degree by intense manifestation of the eclogite metamorphism of about 1880 Ma age. The Svecofennian high-pressure metamorphism caused a partial recrystallization of zircons of magmatic origin and the appearance of their rims showing typical geochemical characteristics of eclogite zircons.  相似文献   

7.
Diamond formation from metasomatic fluids, rather than from igneous melts, remains controversial but is paramount to our understanding of diamonds' mantle origin(s). Physical and chemical properties of diamonds, their inclusions, and host eclogites from the Mir kimberlite, Yakutia, Russia form the basis for our evaluation of diamond origin. Mir eclogitic diamonds and their multiple inclusions show a definite break in time and temperature between the formation of the core zones and the rims of the diamonds. Extreme changes in chemistry for multiple diamond inclusions (DIs) between the cores and the rims cannot be accounted for by magmatic fractional crystallization. Evidence also exists for large temperature decreases (40° to 140°C) from the cores to the rims of some diamonds. The distinct changes in nitrogen contents and aggregation states from cores to rims of diamonds would appear to reflect different residence times for these portions of the diamonds in the mantle- i.e., formation of cores and rims at vastly different times (e.g., 2 Gy). Many of the mineral-chemical characteristics, including C and N isotopes and N aggregation states of the diamond, can best be explained by crystallization of the diamonds after formation of the eclogite host. This suggests that the formation of the eclogite and the nucleation and growth of some diamonds are not coeval and possibly not cogenetic.

Most diamondiferous eclogite xenoliths probably have never experienced a major magmatic episode (i.e., complete melt stage) after subduction of their crustal protoliths into the mantle. Carbon isotopes in diamond, sulfur isotopes from sulfide DIs, and oxygen isotopes from eclogite minerals all point to crustal protoliths for many eclogites.

All of the factors above, taken as a whole, indicate that many eclogitic diamonds are the result of petrogenesis by metasomatism over a prolonged period of time. Introduction of metasomatic fluids facilitates the precipitation of the diamonds, either in tolo or as rims on previously formed diamonds. Inasmuch as some eclogites are considered to be igneous in origine.g., Group-A eclogites of Taylor and Neal (1989)-it is entirely possible that these eclogites may contain truly igneous diamonds. However, even some of these diamonds may have later metasomatic overgrowths.  相似文献   

8.
南岭地区油山岩体和坪田岩体形成年龄及其地质意义   总被引:1,自引:0,他引:1  
南岭地区的油山岩体和坪田岩体位于诸广山复式岩体东侧,以前的研究认为它们都属于燕山期花岗岩。对油山岩体和坪田岩体进行的LA-ICP-MS 锆石U-Pb 年代学研究结果表明,油山岩体的成岩年龄为(213.4±3.0) Ma,坪田岩体(西北部)的成岩年龄为(238.8±2.2) Ma,因此油山岩体应属于印支期岩体,而坪田岩体可能是一个印支-燕山早期复式岩体,而非前人所划定的燕山期岩体。此外,两个岩体内含有太古代和541 Ma~1 642 Ma 的继承锆石,暗示物源区曾存在太古代和元古代地壳,经历过多期次的岩浆作用。部分油山岩体锆石在CL图像上表现出具有暗色边部的特征,这些暗色边可能与后期热液作用影响有关,其时代为燕山期,表明油山岩体在燕山期受到了流体作用的影响,坪田岩体锆石也存在较窄的暗色边,也是受后期热液作用影响所造成。  相似文献   

9.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   

10.
Mineral stable isotopic and trace element studies in 2 GPa banded eclogites of the Tauern Window, eastern Alps, record mm- to cm-scale heterogeneities that reflect compositional variations in the accompanying metamorphic fluids. A close correlation between dolomite mode and dolomite δ18O is consistent with equilibrium partitioning among coexisting minerals and fluids. Small variations in dolomite δ13C values correspond with δ18O variations, but an overall decrease in dolomite δ13C by c. 1%o across a 12-cm sample is a relict feature that pre-dates eclogite equilibration. Garnet, omphacite, and clinozoisite rims show little systematic mineral-mineral partitioning behaviour for Ti, V, Cr, Y, Sr, or Zr; major elements, however, are well equilibrated among these same minerals. Despite the apparent lack of mineral-mineral trace element equilibration, most of the trace elements vary systematically with water activity calculated in each layer. Trace element behaviour during the eclogite metamorphism thus appears to have been controlled largely by mineral-fluid interactions along grain boundaries. Shallow structural levels in other subduction complexes (c. 10-45 km) typically exhibit fracture-controlled permeability and extensive metasomatism, but there is no field or geochemical evidence for extensive fluid advection during high-pressure metamorphism in the Tauern eclogites. Because most dewatering and devolatilization during tectonic burial occurs prior to eclogite conditions, the volumetric fluid/rock ratio in eclogites should generally be low. Low fluid/rock ratios, coupled with the possible non-wetting nature of the fluids, permits the production and preservation of fine-scale chemical heterogeneities in deeply subducted eclogites and associated fluids. However, the eventual breakdown at greater depth of volatile-bearing dolomite, phengite, clinozoisite, zoisite, or amphibole could lead to renewed fracture-controlled fluid release from the subducted rocks to regions appropriate for arc magma generation.  相似文献   

11.
Late Archean (2.57 Ga) diamond-bearing eclogite xenoliths from Udachnaya, Siberia, exhibit geochemical characteristics including variation in oxygen isotope values, and correlations of δ18O with major elements and radiogenic isotopes which can be explained by an origin as subducted oceanic crust. Trace element analyses of constituent garnet and clinopyroxene by Laser-ICPMS are used to reconstruct whole-rock trace element compositions, which indicate that the eclogites have very low high field strength element (HFSE) concentrations and Zr/Hf and Nb/Ta ratios most similar to modern island arcs or ultradepleted mantle. Although hydrothermal alteration on the Archean sea floor had enough geochemical effect to allow the recognition of its effects in the eclogites and thus diagnose them as former oceanic crust, it was not severe enough to erase many other geochemical features of the original igneous rocks, particularly the relatively immobile HFSEs. Correlations of the trace element patterns with oxygen isotopes show that some, generally Mg-richer, eclogites originated as lavas, whereas others have lower δ18O and higher Sr and Eu contents indicating an origin as plagioclase-bearing intrusive rocks formed in magma chambers within the ocean crust. Major and trace element correlations demonstrate that the eclogites are residues after partial melting during the subduction process, and that their present compositions were enriched in MgO by this process. The original lava compositions were picritic, but not komatiitic, whereas the intrusives had lower, basaltic MgO contents. The HFSE signature of the eclogites may indicate that ocean floor basalts of the time were relatively close to island arcs and recycled material, which would be consistent with a larger number of smaller oceanic plates. Their composition appears to indicate that komatiitic ocean crust compositions were restricted to the early Archean which is not known to be represented among the eclogite xenolith population.  相似文献   

12.
The first geochemical study of titanite from eclogites and associated rocks of the Belomorian Mobile Belt (BMB) by secondary ion mass spectrometry made it possible to establish the compositional features of this mineral in the garnet-bearing and garnet-free assemblages. Titanite from garnet-bearing assemblages is characterized by upward convex REE pattern and lowered HREE content relative to LREE, as well as the average GdN/YbN ratio around 16.5. Titanite from metaultrabasic rock inherits the specific features of the host rock, which should be taken into account when comparing with titanite from metagabbro. Results of U-Pb (TIMS) dating of titanite confirms the identification of the early and late stages of the Svecofennian metamorphism in the studied areas of BMB: early metamorphism with the peak eclogite facies conditions at around 1900 Ma, retrograde amphibolite facies metamorphism at 1870–1880 Ma, and late allochemical metamorphism accompanied by the pegmatite formation with an age of 1840 Ma.  相似文献   

13.
Abundant mafic-ultramafic blocks and dikes occur in the area north of Zunhua City, eastern Hebei Province, and were previously suggested to be part of a late Archean ophiolitic assemblage. We employed SHRIMP zircon dating and a geochemical study on these mafic and surrounding rocks to test the ophiolite hypothesis. The SHRIMP data suggest that three metagabbro samples were metamorphosed at ~1.8 Ga. Numerous ~2.5 Ga zircons display strong oscillatory zoning, characteristic of zircons from granitoid rocks but not from gabbro, so we suggest that these are xenocrystic grains. The age of these xenocrystic zircons and their metamorpbic rims suggests that these mafic blocks formed in Paleoproterozoic. The surrounding gneiss of intermediate composition also contains 2.5 Ga zircons with oscillatory zoning and 1.8 Ga metamorphic rims. Fractionated REE patterns and Nb, Ta, Zr, Hf negative anomalies to variable extent were observed in the mafic blocks and surrounding rocks, also supporting a significant difference in the chemistry of ophiolitic rocks. Our data suggest that many mafic blocks in northern Zunhua are not part of a late Archean ophiolite complex but part of a tectonically dismembered Paleoproterozoic intrusive gabbro complex. This study shows that late Paleoproterozoic metamorphism occurred in the western part of eastern Hebei Province.  相似文献   

14.
The paper focuses on the metamorphic geology of the oldest crustal eclogites discovered in the Late Archean tonalite-trondhjemite-granodiorite (TTG) complex of the Belomorian Mobile Belt on the Kola Peninsula. Eclogite bodies are, most likely, widespread. We studied one of the key objects, the Kuru-Vaara quarry, where several tens of retrogressed eclogite blocks randomly embedded in the TTG gneisses were stripped at the benches. Based on the field observations, two visually different types of eclogites have been recognized: “southern”, strongly retrogressed coarse-grained, and “northern”, well-preserved fine-grained. The southern eclogite blocks bear evidence of their partial melting with the formation of veins and melt percolation channels. The northern eclogite blocks show no evidence of melting. Despite the significant mineralogic difference, both types of eclogites can be assigned to amphibole eclogite facies. The applied jadeite solubility geobarometers yielded the minimum pressures of ~12 kbar for the northern eclogites and ~14–14.5 kbar for the southern ones. The used geothermometers yielded ~700°C and ~750°C, respectively. But the presence of quartz lamellae in Na-clinopyroxenes in both types of eclogites and their bulk compositions corresponding to high-Mg basalts suggest that the Kuru-Vaara eclogites might have reached the field of ultrahigh-pressure metamorphism. Analysis of the tentative P-T paths of metamorphic evolution for both types of eclogites showed that their burial–exhumation cycle might have taken as short as a few million years. The set of presented data suggests that the formation of the Kuru-Vaara eclogites was related to the subduction of the Archean oceanic crust, which should have differed in composition and structure from the modern oceanic crust.  相似文献   

15.
松多榴辉岩是约束拉萨板块中部古特提斯洋演化的重要材料,前人对其形成年代、变质P-T轨迹等诸多方面已进行了详细的研究,然而对其原岩的研究却较为薄弱,地球化学分析是恢复榴辉岩原岩的重要手段,也是反演区域古特提斯洋演化的重要依据.在系统收集区域地球化学数据的基础上,采集了17件松多榴辉岩样品,进行了地球化学研究,意在对区域构造演化提供新的制约.松多地区主要出露双矿物榴辉岩和退变质榴辉岩,两类榴辉岩都表现出亚碱性拉斑玄武岩的特征,在微量元素和各类构造环境判别图解中,两种榴辉岩分别都落入了N-MORB和E-MORB区域.基于上述分析结果,并结合区域地质资料,表明松多古特提斯洋在演化过程中可能长期存在地幔柱岩浆和正常洋中脊亏损地幔岩浆的相互作用.   相似文献   

16.
Eclogite occurs within the southern domain of the East Athabasca mylonite triangle in northern Saskatchewan. Situated at the boundary between the Archean Rae and Hearne Provinces of the western Canadian Shield, the East Athabasca mylonite triangle is a fundamental exposure of the ~3,000-km-long Snowbird tectonic zone. The eclogite occurs in association with a variety of lower crustal high-pressure granulites that record a complex metamorphic history from 2.6 to 1.9 Ga. Temperatures of the eclogite facies metamorphism are constrained by garnet-clinopyroxene exchange thermometry at 920–1,000 °C. Minimum pressure conditions are recorded by the jadeite+quartz=albite geobarometer at 1.8–2.0 GPa. A near-isothermal decompression path to granulite facies conditions is inferred from retrograde reaction textures involving the formation of granulite facies assemblages such as orthopyroxene-plagioclase and pargasite-plagioclase. U-Pb IDTIMS zircon geochronology of the eclogite yields a weighted mean 207Pb/206Pb date of 1,904.0±0.3 Ma, which we interpret as the time of peak eclogite facies metamorphism. SHRIMP in situ analyses of metamorphic zircons included within omphacitic clinopyroxene support this interpretation with a weighted mean 207Pb/206Pb date of 1,905±19 Ma. Inclusion suites of high-pressure phases and the petrographic setting of zircon are a direct link between zircon growth and eclogite facies metamorphism. Zircon from one eclogite sample has older cores that are 2.54 Ga, which is a minimum age for the emplacement or earliest metamorphism of the gabbroic protolith. U-Pb rutile data indicate slow cooling at ~1°C/Ma below ~500 °C from 1.88 to 1.85 Ga. The formation and exhumation of the eclogites at ca.1.9 Ga has important implications for the tectonic significance of the Snowbird tectonic zone during the Paleoproterozoic. The eclogites described here are consistent with transport of continental crust to mantle depths during the Paleoproterozoic, followed by rapid buoyancy-driven exhumation to normal lower crustal depths.Editorial responsibility: T.L. Grove  相似文献   

17.
俄罗斯白海活动带中的太古宙榴辉岩   总被引:1,自引:0,他引:1  
在俄罗斯白海活动区发现的迄今为止最古老的太古宙榴辉岩的出露,对整个地质学领域是一次革命性事件。白海活动带位于芬诺斯干地亚地盾东北部太古宙陆核,处于科拉半岛大陆和卡累利阿克拉通之间的太古宙增生碰撞带中,在新太古代和古元古代期间多次受到中高压变质和构造变形作用。榴辉岩出露包括Gridino和Salma两大地区。Gridino榴辉岩区的榴辉岩产状可分为TTG片麻岩围岩中具有复杂成因的太古宙榴辉岩包裹镶体(2.72 Ga),组成强烈构造变形的混合混杂岩体(mélange),以及众多古元古代侵入岩墙岩脉状基性榴辉岩。Salma榴辉岩区的榴辉岩年龄应该晚于2.87 Ga,其中的Fe Ti 榴辉岩年龄测定为约2.80 Ga。两大榴辉岩区的p T演化轨迹比较类似,Gridino榴辉岩的峰期变质温压值(T=740~865 ℃,p=1.4~1.8 GPa)比Salma榴辉岩(T≈700 ℃,p=1.3~1.4 GPa)要高。Salma榴辉岩原岩可能与大洋环境有关。  相似文献   

18.
Numerous lenses of eclogite occur in a belt of augen orthogneisses in the Gubaoquan area in the southern Beishan orogen, an eastern extension of the Tianshan orogen. With detailed petrological data and phase relations, modelled in the system NCFMASHTO with thermocalc , a quantitative P–T path was estimated and defined a clockwise P–T path that showed a near isothermal decompression from eclogite facies (>15.5 kbar, 700–800 °C, omphacite + garnet) to high‐pressure granulite facies (12–14 kbar, 700–750 °C, clinopyroxene + sodic plagioclase symplectitic intergrowths around omphacite), low‐pressure granulite facies (8–9.5 kbar, ~700 °C, orthopyroxene + clinopyroxene + plagioclase symplectites and coronas surrounding garnet) and amphibolite facies (5–7 kbar, 600–700 °C, hornblende + plagioclase symplectites). The major and trace elements and Sm–Nd isotopic data suggest that most of the Beishan eclogite samples had a protolith of oceanic crust with geochemical characteristics of an enriched or normal mid‐ocean ridge basalt. The U–Pb dating of the Beishan eclogites indicates an Ordovician age of c. 467 Ma for the eclogite facies metamorphism. An 39Ar/40Ar age of c. 430 Ma for biotite from the augen gneiss corresponds to the time of retrograde metamorphism. The combined data from geological setting, bulk composition, clockwise P–T path and geochronology support a model in which the Beishan eclogites started as oceanic crust in the Palaeoasian Ocean, which was subducted to eclogite depths in the Ordovician and exhumed in the Silurian. The eclogite‐bearing gneiss belt marks the position of a high‐pressure Ordovician suture zone, and the calculated clockwise P–T path defines the progression from subduction to exhumation.  相似文献   

19.
大别山西部蓝闪榴辉岩U—Pb测年   总被引:4,自引:0,他引:4  
应用锆石U-Pb法研究了大别山蓝闪榴辉岩的高压低温变质时代和可能的原岩时代。高桥榴辉岩和陈家店榴辉岩给出了基本一致的下交点年龄1138Ma和1127Ma及相似的上交点年龄2872Ma和2647Ma。结合岩石学证据和大别山构造演化史分析,将下交点年龄解释为高压低温变质时代,相当于晋宁运动早期,上交点年龄解释训原岩的可能时代,为新太古代,同位素地质年代学研究表明,古大别洋最初形成于新太古代,闭合于早晋  相似文献   

20.
U–Pb sensitive high resolution ion microprobe (SHRIMP) zircon geochronology, combined with REE geochemistry, has been applied in order to gain insight into the complex polymetamorphic history of the (ultra) high pressure [(U)HP] zone of Rhodope. Dating included a paragneiss of Central Rhodope, for which (U)HP conditions have been suggested, an amphibolitized eclogite, as well as a leucosome from a migmatized orthogneiss at the immediate contact to the amphibolitized eclogite, West Rhodope. The youngest detrital zircon cores of the paragneiss yielded ca. 560 Ma. This date indicates a maximum age for sedimentation in this part of Central Rhodope. The concentration of detrital core ages of the paragneiss between 670–560 Ma and around 2 Ga is consistent with a Gondwana provenance of the eroded rocks in this area of Central Rhodope. Metamorphic zircon rims of the same paragneiss yielded a lower intercept 206Pb/238U age of 148.8±2.2 Ma. Variable post-148.8 Ma Pb-loss in the outermost zircon rims of the paragneiss, in combination with previous K–Ar and SHRIMP-data, suggest that this rock of Central Rhodope underwent an additional Upper Eocene (ca. 40 Ma) metamorphic/fluid event. In West Rhodope, the co-magmatic zircon cores of the amphibolitized eclogite yielded a lower intercept 206Pb/238U age of 245.6±3.9 Ma, which is interpreted as the time of crystallization of the gabbroic protolith. The metamorphic zircon rims of the same rock gave a lower intercept 206Pb/238U age of 51.0±1.0 Ma. REE data on the metamorphic rims of the zircons from both the paragneiss of Central Rhodope and the amphibolitized eclogite of West Rhodope show no Eu anomaly in the chondrite-normalized patterns, indicating that they formed at least under HP conditions. Flat or nearly flat HREE profiles of the same zircons are consistent with the growth of garnet at the time of zircon formation. Low Nb and Ta contents of the zircon rims in the amphibolitized eclogite indicate concurrent growth of rutile. Based on the REE characteristics, the 148.8±2.2 Ma age of the garnet–kyanite paragneiss, Central Rhodope and the 51.0±1.0 Ma age of the amphibolitized eclogite, West Rhodope are interpreted to reflect the time close to the (U)HP and HP metamorphic peaks, respectively, with a good approximation. The magmatic zircon cores of the leucosome in the migmatized orthogneiss, West Rhodope, gave a lower intercept 206Pb/238U age of 294.3±2.4 Ma for the crystallization of the granitoid protolith of the orthogneiss. Two oscillatory zircon rims around the Hercynian cores, yielded ages of 39.7±1.2 and 38.1±0.8 Ma (2σ errors), which are interpreted as the time of leucosome formation during migmatization. The zircons in the leucosome do not show the 51 Ma old HP metamorphism identified in the neighboring amphibolitized eclogite, possibly because the two rock types were brought together tectonically after 51 Ma. If one takes into account the two previously determined ages of ca. 73 Ma for (U)HP metamorphism in East Rhodope, as well as the ca. 42 Ma for HP metamorphism in Thermes area, Central Rhodope, four distinct events of (U)HP metamorphism throughout Alpine times can be distinguished: 149, 73, 51 and 42 Ma. Thus, it is envisaged that the Rhodope consists of different terranes, which resulted from multiple Alpine subductions and collisions of micro-continents, rather similar to the presently accepted picture in the Central and Western Alps. It is likely that these microcontinents were rifted off from thinned continental margins of Gondwana, between the African and the European plates before the onset of Alpine convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号