首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Over the last decades there have been a considerable number of deforestation studies in Latin America reporting lower rates compared with other regions; although these studies are either regional or local and do not allow the comparison of the intraregional variability present among countries or forest types. Here, we present the results obtained from a systematic review of 369 articles (published from 1990 to 2014) about deforestation rates for 17 countries and forest types (tropical lowland, tropical montane, tropical and subtropical dry, subtropical temperate and mixed, and Atlantic forests). Drivers identified as direct or indirect causes of deforestation in the literature were also analysed. With an overall annual deforestation rate of −1.14 (±0.092 SE) in the region, we compared the rates per forest type and country. The results indicate that there is a high variability of forest loss rates among countries and forest types. In general, Chile and Argentina presented the highest deforestation rates (−3.28 and −2.31 yearly average, respectively), followed by Ecuador and Paraguay (−2.19 and −1.89 yearly average, respectively). Atlantic forests (−1.62) and tropical montane forests (−1.55) presented the highest deforestation rates for the region. In particular, tropical lowland forests in Ecuador (−2.42) and tropical dry forests in Mexico (−2.88) and Argentina (−2.20) were the most affected. In most countries, the access to markets and agricultural and forest activities are the main causes of deforestation; however, the causes vary according to the forest types. Deforestation measurements focused at different scales and on different forest types will help governments to improve their reports for international initiatives, such as reducing emissions from deforestation and forest degradation (REDD+) but, more importantly, for developing local policies for the sustainable management of forests and for reducing the deforestation in Latin America.  相似文献   

2.
The Reduced Emissions from Deforestation and forest Degradation (REDD+) mechanism of a future post-2012 global climate-change treaty would aim to give incentive to tropical countries to reduce deforestation and thus forest-carbon emissions. It would do so by crediting tropical countries for reducing deforestation relative to a baseline scenario describing carbon emissions and removals from forest-cover change expected in the absence of REDD+. Defining a credible and accurate baseline is both critical and challenging. One approach considered promising is spatial modelling to project forest-cover change on the basis of historical trends; yet few such projections have been validated at a national scale. We develop and validate a novel GEOMOD projection of forest-cover change in Panama over 2000–2008, based on trends over 1990–2000 and 25 drivers of forest-cover change. Compared with the actual landscape of 2008, our projection is 85.2% accurate at a 100-m pixel resolution. More error is attributable to the location of projected forest (8.6%) than to its area (6.2%). Accuracy was least where forest regeneration predominated (80%), and greatest where deforestation predominated (90%). Despite the sophistication of our projection, it is slightly less accurate than if we had assumed no forest-cover change over 2000–2008. We identify factors limiting projection accuracy, including the complexity of forest-cover change, the spatial variability of forest-carbon density, and the relatively small area of change at the national scale. We conclude that, with the exception of contexts where forest-cover change is significant and straightforward and where forest-carbon density relatively uniform (e.g., agricultural frontiers), spatially projected baselines are of limited value for REDD+ – their accuracy is too limited given their relative lack of transparency. Simpler, relatively coarse scale, retrospective baselines are recommended instead.  相似文献   

3.
This paper discusses methodological issues relevant to the calculation of historical responsibility of countries for climate change (‘The Brazilian Proposal’). Using a simple representation of the climate system, the paper compares contributions to climate change using different indicators: current radiative forcing, current GWP-weighted emissions, radiative forcing from increased concentrations, cumulative GWP-weighted emissions, global-average surface-air temperature increase and two new indicators: weighted concentrations (analogue to GWP-weighted emissions) and integrated temperature increase. Only the last two indicators are at the same time ‘backward looking’ (take into account historical emissions), ‘backward discounting’ (early emissions weigh less, depending on the decay in the atmosphere) and ‘forward looking’ (future effects of the emissions are considered) and are comparable for all gases. Cumulative GWP-weighted emissions are simple to calculate but are not ‘backward discounting’. ‘Radiative forcing’ and ‘temperature increase’ are not ‘forward looking’. ‘Temperature increase’ discounts the emissions of the last decade due to the slow response of the climate system. It therefore gives low weight to regions that have recently significantly increased emissions. Results of the five different indicators are quite similar for large groups (but possibly not for individual countries): industrialized countries contributed around 60% to today’s climate change, developing countries around 40% (using the available data for fossil, industrial and forestry CO2, CH4 and N2O). The paper further argues including non-linearities of the climate system or using a simplified linear system is a political choice. The paper also notes that results of contributions to climate change need to be interpreted with care: Countries that developed early benefited economically, but have high historical emission, and countries developing at a later period can profit from developments in other countries and are therefore likely to have a lower contribution to climate change.  相似文献   

4.
If a binding agreement can be reached on a post-2012 international climate regime, it is likely to include the phased introduction of a market-linked mechanism for reducing emissions from deforestation and forest degradation in developing countries (REDD). Under such a scheme, countries that reduce net REDD emissions below a pre-set baseline would receive credits that could be sold in carbon markets and used by purchasing nations to meet their international mitigation obligations. This paper draws on the Australian experience with deforestation to identify some of the issues that might obstruct progress on REDD. For the past 20 years, Australia has had the highest rate of deforestation in the developed world; ~416,000 ha of forests were cleared annually between 1990 and 2009, resulting in the emission of almost 80 MtCO2-e/yr. It is also the only developed country that will rely on reduced deforestation emissions as the primary way of meeting its quantified emissions target under the Kyoto Protocol. Australia’s approach to deforestation issues provides valuable insights into the difficulties an international REDD scheme might encounter.  相似文献   

5.
The present study estimates the net emission of carbon from the forest sector in India. For the reference year (1986), the gross emission from deforestation in that year, plus committed emissions from deforestation in the preceding years, is estimated to be 64 × 106 t of C. The carbon sequestration (or net woody biomass accumulation in trees for long-term storage) from the area brought under tree plantations and the existing forest area under forest succession is estimated to offset the gross carbon emission in India, leading to no net emissions of carbon from the forest sector. Medium-term projections for India (for the year 2011) show that under a business as usual scenario at current rates of afforestation, projected carbon emissions would continue to be balanced by sequestration.  相似文献   

6.
Tropical Deforestation and the Kyoto Protocol   总被引:11,自引:3,他引:8  
The current annual rates of tropical deforestation from Brazil and Indonesia alone would equal four-fifths of the emissions reductions gained by implementing the Kyoto Protocol in its first commitment period, jeopardizing the goal of Protocol to avoid “dangerous anthropogenic interference” with the climate system. We propose the novel concept of “compensated reduction”, whereby countries that elect to reduce national level deforestation to below a previously determined historical level would receive post facto compensation, and commit to stabilize or further reduce deforestation in the future. Such a program could create large-scale incentives to reduce tropical deforestation, as well as for broader developing country participation in the Kyoto Protocol, and leverage support for the continuity of the Protocol beyond the 2008–2012 first commitment period.  相似文献   

7.
Estimates of carbon emissions from the forest sector in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. The analysis covers both tropical and temperate closed forests. In the mid-1980s, approximately 804,000 ha/year of closed forests suffered major perturbations, of which 668,000 ha was deforestation. Seventy-five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance from land-use change is estimated at 67.0 × 106 tons/year, which lead to net emissions of 52.3 × 106 tons/year accounting for the carbon uptake in restoration plantations and degraded forest lands. This last figure represents approximately 40% of the country's estimated annual total carbon emissions for 1985–1987. The annual carbon balance from the forest sector in 2025 is expected to decline to 28.0 × 106 t in the reference scenario and to become negative (i.e., a carbon sink), 62.0 × 106 t in the policy scenario. A number of policy changes are identified that would help achieve the carbon sequestration potential identified in this last scenario.  相似文献   

8.
Despite remaining uncertainties, Reducing Emissions from Deforestation and forest Degradation in developing countries (REDD) projects are being planned and implemented across the tropics, primarily targeting countries with high forest cover and high deforestation rates. However, there is growing recognition that REDD planning requires a broadened approach; a future REDD mechanism should incentivise emissions reduction in all developing forested countries, and should address critical non-carbon dimensions of REDD implementation—quality of forest governance, conservation priorities, local rights and tenure frameworks, and sub-national project potential. When considering this broader suite of factors, different REDD priorities can emerge, including in countries with low forest cover that would be overlooked by conventional site selection criteria. Using the Philippines as a case study, the paper highlights the importance of an enabling environment to REDD implementation, and presents a more comprehensive and inclusive approach for thinking about what comprises a “REDD country.”  相似文献   

9.
We investigated the ‘local’ and ‘global’ similarity of vertical turbulent transfer of heat, water vapour, and CO2 within an urban surface layer. The results were derived from field measurements in a residential area of Tokyo, Japan during midday on fair-weather days in July 2001. In this study, correlation coefficients and quadrant analysis were used for the evaluation of ‘global’ similarity and wavelet analysis was employed for investigating ‘local’ similarity. The correlation coefficients indicated that the transfer efficiencies of water vapour and CO2 were generally smaller than that of heat. Using wavelet analysis, we found that heat is always efficiently transferred by thermal and organized motions. In contrast, water vapour and CO2, which are passive quantities, were not transferred as efficiently as heat. The quadrant analyses showed that the heat transfer by ejection exceeded that by sweep, and the ratios of ejection to sweep for water vapour and CO2 transfer were less than that for heat. This indicated that heat is more efficiently transferred by upward motions and supported the findings from wavelet analysis. The differences of turbulent transfer between heat and both CO2 and water vapour were probably caused both by the active role of temperature and the heterogeneity in the source distribution of scalars  相似文献   

10.
减少毁林可为减缓大气温室气体浓度上升做出重要贡献,因此减少毁林的议题已被提上气候公约谈判的议事日程(议题6),将成为今后相当长时间内谈判的重要议题之一。通过调研和分析各缔约方提交的对减少毁林提案的意见及附属科学技术咨询机构(SBSTA)第24届会议的谈判情况,对各国的观点进行了归纳总结和剖析。  相似文献   

11.
Tropical forests: Present status and future outlook   总被引:3,自引:0,他引:3  
Myers N 《Climatic change》1991,19(1-2):3-32
Tropical forests still cover almost 8 million km2 of the humid tropics. But they are being destroyed at ever-more rapid rates. In 1989 the area deforested amounted to 142 200 km2, or nearly 90% more than in 1979. So whereas the 1989 total amounted to 1.8% of the remaining biome, the proportion could well continue to rise for the foreseeable future, until there is little forest left in just another few decades.Deforestation patterns are far from even throughout the biome. In much if not most of Southeast and Southern Asia, East and West Africa, and Central America, there is likely to be little forest left by the year 2000 or shortly thereafter. But in the Zaire basin, western Brazilian Amazonia and the Guyana highlands, sizeable expanses of forest could persist a good while longer.The main agent of deforestation is the shifted cultivator or displaced peasant, who, responding to land hunger and general lack of rural development in traditional farming areas of countries concerned, feels there is no alternative but to adopt a slash-and-burn lifestyle in forestlands. This person is now accounting for at least 60% of deforestation, a proportion that is expanding rapidly. Yet he receives far less policy attention than the commercial logger, the cattle rancher and other agents of deforestation.This is a summary review of a report Deforestation Rates in Tropical Forests and Their Climatic Implications, prepared by the author and Richard A. Houghton for Friends of the Earth U.K. (available from 26–28 Underwood St., London N1 7JQ). A similar review, albeit with less updating than is included here, has been published by Myers, 1990a. The original report, being five times longer than the present paper, contains much detail of deforestation assessments on a country-by-country basis, backed by 400 references. It also presents information on research methodologies and reliability of data among other background materials, plus an analysis of carbon emissions from deforestation, as well as some policy appraisal and conservation recommendations.  相似文献   

12.
《Climate Policy》2013,13(2):207-220
Since 2005, Parties to the UNFCCC have been negotiating policy options for incentivizing reductions of (greenhouse gas) emissions from deforestation and degradation (REDD) in a future climate regime. Proposals on how to operationalize REDD range from market-based to pure fund-based approaches. Most of the current proposals suggest accounting for REDD at the national level. Accounting for emission reductions and implementing policy reform for curbing deforestation will take time and imply high levels of technical and institutional capacity. Therefore it is essential that developing countries receive sufficient support to implement national REDD programmes. To save time and ensure prompt action in reducing deforestation, a REDD approach is proposed that integrates project-level and subnational REDD schemes into national-level accounting. This ‘nested approach’ can achieve meaningful reductions in GHG emissions from improved forest governance and management, while allowing for an immediate and broad participation by developing countries, civil society and the private sector.  相似文献   

13.
《Climate Policy》2013,13(2):216-231
Reducing emissions from deforestation and forest degradation (REDD) in developing countries has been at the centre of negotiations on a renewed international climate regime. Developing countries have made it clear that their ability to engage in REDD activities would depend on obtaining sufficient and stable funding. Two alternative REDD financing options are examined to find possible ways forward: financing through a future compliance market and financing through a non-offset fund. First, global demand for hypothetical REDD credits is estimated. The demand for REDD credits would be highest with a base year of 1990, using gross—net accounting. The key factors determining demand in this scenario are the emission reduction targets and the allowable cap. A proportion of emission reduction targets available for offsets lower than 15% would fail to generate a sufficient demand for REDD. Also examined is the option of financing REDD through a fund. Indirectly linking the replenishment of a REDD fund to the market is a promising mechanism, but its feasibility depends on political will. The example of overseas development assistance for global health indicates the conditions for possible REDD financing. The best financial approach for REDD would be a flexible REDD mechanism with two tracks: a market track serving as a mitigation option for developed countries, and a fund track serving as a mitigation option for developing countries.  相似文献   

14.
Despite accounting for 17–25% of anthropogenic emissions, deforestation was not included in the Kyoto Protocol. The UN Convention on Climate Change is considering its inclusion in future agreements and asked its scientific board to study methodological and scientific issues related to positive incentives to reduce emissions from deforestation. Here we present an empirically derived mechanism that offers a mix of incentives to developing countries to reduce emissions from deforestation, conserve and possibly enhance their ecosystem's carbon stocks. We also use recent data to model its effects on the 20 most forested developing countries. Results show that at low CO2 prices (~US$ 8/t CO2) a successful mechanism could reduce more than 90% of global deforestation at an annual cost of US$ 30 billion.  相似文献   

15.
Here I present a new approach to forecasting the effects of climate change on catastrophic events, based on the ‘self-organised criticality’ concept from statistical physics. In particular, I develop the ‘self-organised critical fuel succession model’ (SOCFUS), which deals with wildland fires. I show that there is good agreement between model and data for the response pattern of the whole fire size statistical distribution to weather fluctuations in a boreal forest region. I tentatively predict the fire regime in this region for an instance of possible climate change scenario. I show that the immediate response is sharper than usually thought, but part of the added burning rate might not persist indefinitely. A large fraction of the extra burning in the transition period is likely to be concentrated in a few ‘climate change fires’, much larger than the largest fires that could currently occur. I also suggest that the major fire events recently observed in some tropical rainforest regions belong to a qualitatively different, even more abrupt type of response, which is also predicted by the model. Electronic supplementary material Electronic supplementary material is available for this article at  相似文献   

16.
REDD (Reducing Emissions from Deforestation and Forest Degradation) has been suggested as a climate change mitigation strategy that is based on the philosophy to reward countries for reducing their deforestation and forest degradation by financial benefits via the generation of carbon credits. While the potential of REDD has been widely discussed, minor attention has been drawn to the implication of uncertainties and costs associated with the estimation of carbon stock changes. To raise awareness of these issues, we conducted a simulation study for a set of countries that show high to low deforestation rates, which demonstrates that the potential to generate benefits from REDD depends highly on the magnitude of the total error while assessment costs and the price of carbon credits play a minor role. For countries with low deforestation rates REDD is obviously not an option for generating benefits as they would need to implement monitoring systems that are able to estimate carbon stock changes with a total error well below 1 %. Total errors feasible under operational monitoring systems are only sufficient to gain revenues from REDD-regimes under high deforestation rates.  相似文献   

17.
South America’s tropical dry forests and savannas are under increasing pressure from agricultural expansion. Cattle ranching and soybean production both drive these forest losses, but their relative importance remains unclear. Also unclear is how soybean expansion elsewhere affects deforestation via pushing cattle ranching to deforestation frontiers. To assess these questions, we focused on the Chaco, a 110 million ha ecoregion extending into Argentina, Bolivia, and Paraguay, with about 8 million ha of deforestation in 2000–2012. We used panel regressions at the district level to quantify the role of soybean expansion in driving these forest losses using a wide range of environmental and socio-economic control variables. Our models suggest that soybean production was a direct driver of deforestation in the Argentine Chaco only (0.08 ha new soybean area per ha forest lost), whereas cattle ranching was significantly associated with deforestation in all three countries (0.02 additional cattle per hectare forest loss). However, our models also suggested Argentine soybean cultivation may indirectly be linked to deforestation in the Bolivian and Paraguayan Chaco. We furthermore found substantial time-delayed effects in the relationship of soybean expansion in Argentina and Paraguay (i.e., soybean expansion in one year resulted in deforestation several years later) and deforestation in the Chaco, further suggesting that possible displacement effects within and between Chaco countries may at least partly drive forest loss. Altogether, our study showed that deforestation in the Chaco appears to be mainly driven by the globally surging demand for soybean, although regionally other proximate drivers are sometimes important. Steering agricultural production in the Chaco and other tropical dry forests onto sustainable pathways will thus require policies that consider these scale effects and that account for the regional variation in deforestation drivers within and across countries.  相似文献   

18.
A new analysis of ‘global’ sea level has been made that largely avoids space/time bias of previous works. A coherent pattern of increasing relative sea level (RSL) was found to exist on average at all stations analyzed between 1903–1969. Subject to considerable assumption, the rate of RSL increase associated with this pattern was 15 cm/century. A similar analysis of the period 1930–1975 again showed RSL increasing on average everywhere but in the western half of the North Pacific Ocean. Decrease of RSL in this area was substantiated by hydrographic data. Thus in recent years the concept of a ‘global’ sea level rise is not supported. The temporal behavior of thenear global signals from both time periods was well approximated by a simple linear trend. There was no evidence of a more rapid rise in RSL in recent years. Potential causes of the above RSL change were investigated. Changes in the position of the earth's axis of rotation support the idea that the RSL change was due to approximately equal melting of Greenland/Antarctica. Changes in the length of day only marginally support this idea. However, other attractive geophysical explanations for variations in both these astronomical parameters exist. Observed change in sea surface temperature (SST), if representative of reasonable changes in vertical thermal structure, could give the observed RSL change. However, the SST data are likely biased instrumentally toward increasing trend. Also, thermal expansion of the oceans would not significantly affect the rotational parameters although changes in these parameters could be due to non-RSL related processes. Changes in ocean circulation and/or subsidence along all the coastal margins simultaneously seem unlikely causes of the observed change in RSL. In summary, it is not possible at this time to explain reliably the apparent increase in RSL.  相似文献   

19.
Recent work on global patterns of deforestation has shown that countries with high per capita GDP or low remaining forest cover are more likely to be experiencing afforestation than deforestation. Here, I show that the relationship is more complex than previously described, because the effect of one variable is dependent upon the value of the other. As a result, high-income nations exhibit the opposite response to disappearing forest cover than low-income nations. In an analysis of 103 countries, I found that high-income countries with low forest cover have the highest rates of afforestation, typically through the establishment of new plantations. In contrast, low-income countries with little forest are more likely to consume that remaining portion at a faster proportional rate than do low-income countries with more forest. Nations with large amounts of forest have approximately equal deforestation rates, regardless of national wealth. These results highlight for the first time that there is a strong interaction between forest cover and economic development that determines rates of forest change among nations.  相似文献   

20.
Issues left undecided at COP-18 in Doha in December 2012 are critical to containing the two greatest threats to Brazil’s Amazon forest: direct deforestation and forest loss through drought and fire provoked by climate change. Brazil’s diplomatic positions on the role of tropical forests in mitigating global warming currently call for receiving donations through a voluntary fund, but without generating carbon credit valid against emissions-reduction commitments by countries that accept limits on their national emissions (i.e., Annex I countries). Brazil has long rejected accepting a target (assigned amount), and has instead presented a non-binding “voluntary objective.” At COP-17 in Durban, Brazil expressed willingness to accept a commitment after 2020, but only if all of the rest of the world agreed to do the same. This author argues that Brazil’s national interests would be better served by accepting a target now and by supporting fully marketable carbon credit from Reducing Emissions from Deforestation and Degradation (REDD). The global goal of preventing mean temperature from increasing beyond 2 °C above pre-industrial levels would be much more likely to be achieved in practice with tropical forests fully included in a carbon market as part of an agreement for the period after 2012.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号