首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the present study,the flow field around a circular pier is investigated with experimental measurements and numerical simulations.The transient flow patterns during erosion are studied in detail.The results show that the traditional equations of particle motion are not perfect for the calculation of the sand motion under this complex flow situation.The scouring agents,such as turbulent intensity,the fluctuating pressure and the vertical pressure gradient,having many effects on the sand motion with the increasing scouring depth,need to be considered in modifying the traditional model.  相似文献   

2.
Presented in this paper is a mathematical model to calculate the probability of the sediment incipient motion,in which the effects of the fluctuating pressure and the seepage are considered.The instantaneous bed shear velocity and the pressure gradient on the bed downstream of the backward-facing step flow are obtained according to the PIV measurements.It is found that the instantaneous pressure gradient on the bed obeys normal distribution.The probability of the sediment incipient motion on the bed downstream of the backward-facing step flow is given by the mathematical model.The predicted results agree well with the experiment in the region downstream of the reattachment point while a large discrepancy between the theory and experiment is seen in the region near the reattachment point.The possible reasons for this discrepancy are discussed.  相似文献   

3.
Most previous investigations related to composite breakwaters have focused on the wave forces acting on the structure itself from a hydrodynamic aspect. The foundational aspects of a composite breakwater under wave-induced cyclic loading are also important in studying the stability of a composite breakwater. In this study, numerical simulations were performed to investigate the wave-induced pore water pressure and flow changes inside the rubble mound of the composite breakwater and seabed foundation. The validity and applicability of the numerical model were demonstrated by comparing numerical results with existing experimental data. Moreover, the present model clearly has shown that the instantaneous directions of pore water flow motion inside the seabed induced by surface waves are in good agreement with the general wave-induced pore water flow inside the seabed. The model is further used to discuss the stability of a composite breakwater, i.e., the interaction among nonlinear waves, composite breakwater and seabed. Numerical results suggest that the stability of a composite breakwater is affected by not only downward shear flow generating on the seaward slope face of the rubble mound but, also, a high and dense pore water pressure gradient inside the rubble mound and seabed foundation.  相似文献   

4.
为揭示张力腿平台涡激运动响应规律,采用数值模拟与模型试验相结合的方法研究了全水深系泊张力腿平台涡激运动响应。根据张力腿平台主尺度参数,按照几何相似制作了水池试验模型,在满足运动相似和动力相似的条件下开展了均匀流、剖面流模型试验,并将模型试验结果与数值模拟结果进行了对比,验证了数值模拟与模型试验结果的一致性。分析结果表明在均匀流作用下张力腿平台涡激运动的锁定区间在5.5<Ur<8.5,来流角对涡激运动影响较大。剖面流作用下平台涡激运动规律与均匀流作用基本一致,但剖面流造流引起的能量分散,使平台在XY平面的运动轨迹变得不规律,系泊系统提供的回复力对涡激运动幅值有抑制作用,来流角和流速对张力腿或立管模态影响明显。论文得到结论对于张力腿平台的工程设计有一定借鉴意义。  相似文献   

5.
Seasonal changes in the distribution of submesoscale (SM) flow features were examined using a fine-resolution numerical simulation. The SM flows are expected to be strong where mesoscale (MS) eddies actively develop and also when the mixed layer depth (MLD) is deep due to enhanced baroclinic instability. In the East Sea (ES), MS eddies more actively develop in summer while the MLD is deeper in winter, which provided the motivation to conduct this study to test the effects of MLD and MS eddies on the SM activity in this region. Finite-scale Liapunov exponents and the vertical velocity components were employed to analyze the SM activities. It was found that the SM intensity was marked by seasonality: it is stronger in winter when the mixed layer is deep but weaker in summer - despite the greater eddy kinetic energy. This is because in summer the mixed layer is so thin that there is not enough available potential energy. When the SM activity was quantified based on parameterization, (MLD × density gradient), it was determined that the seasonal variation of MLD plays a more important role than the lateral density gradient variation on SM flow motion in the ES.  相似文献   

6.
东海黑潮地转流计算中的零流面选取问题   总被引:1,自引:0,他引:1  
零流面的选取是东海黑潮地转流计算中的一个基本问题。通过对东海黑潮主流段PN断面上选取不同零流面时地转流计算结果的比较分析,考虑了东海黑潮的主要特征因子,确定了计算零流面的选取标准和选择结果。结果表明,为使计算结果可以反映实际的流速剖面结构,当水深大于700 m和小于700 m时可分别选取700 m层和底边界作为地转流动力计算零流面。  相似文献   

7.
《Marine Geology》2005,216(3):169-189
Simultaneous high frequency field measurements of water depth, flow velocity and suspended sediment concentration were made at three fixed locations across the high tide swash and inner surf zones of a dissipative beach. The dominant period of the swash motion was 30–50 s and the results are representative of infragravity swash motion. Suspended sediment concentrations, loads and transport rates in the swash zone were almost one order of magnitude greater than in the inner surf zone. The vertical velocity gradient near the bed and the resulting bed shear stress at the start of the uprush was significantly larger than that at the end of the backwash, despite similar flow velocities. This suggests that the bed friction during the uprush was approximately twice that during the backwash.The suspended sediment profile in the swash zone can be described reasonably well by an exponential shape with a mixing length scale of 0.02–0.03 m. The suspended sediment transport flux measured in the swash zone was related to the bed shear stress through the Shields parameter. If the bed shear stress is derived from the vertical velocity gradient, the proportionality coefficient between shear stress and sediment transport rate is similar for the uprush and the backwash. If the bed shear stress is estimated using the free-stream flow velocity and a constant friction factor, the proportionality factor for the uprush is approximately twice that of the backwash. It is suggested that the uprush is a more efficient transporter of sediment than the backwash, because the larger friction factor during the uprush causes larger bed shear stresses for a given free-stream velocity. This increased transport competency of the uprush is necessary for maintaining the beach, otherwise the comparable strength and greater duration of the backwash would progressively remove sediment from the beach.  相似文献   

8.
The Northern Nordeste of Brazil has its short rainy season narrowly concentrated around March–April, when the interhemispheric southward gradient of sea surface temperature (SST) is weakest and the Intertropical Convergence Zone (ITCZ), which is the main rainbearing system for the Nordeste, reaches its southernmost position in the course of the year. The recurrent Secas (droughts) have a severe socio-economic impact in this semi-arid region. In drought years, the pre-season (October–January) rainfall is scarce, the interhemispheric SST gradient weakened and the basin-wide southerly (northerly) wind component enhanced (reduced), all manifestations of an anomalously far northward ITCZ position. Apart from this ensemble of Atlantic indicators, the Secas also tend to be preceded by anomalously warm equatorial Pacific waters in January. During El Niño years, an upper-tropospheric wave train extends from the equatorial eastern Pacific to the northern tropical Atlantic, affecting the patterns of upper-tropospheric topography and divergence, and hence of vertical motion over the Atlantic. The altered vertical motion leads to a weaker meridional pressure gradient on the equatorward flank of the North Atlantic subtropical high, and thus weaker North Atlantic tradewinds. The concomitant reduction of evaporation and wind stirring allows for warmer surface waters in the tropical North Atlantic and thus steeper interhemispheric meridional thermal gradient. Consequently, the ITCZ stays anomalously far North and the Nordeste rainy season becomes deficient.  相似文献   

9.
A series of experiments is described in which energy losses are measured in a reversing oscillatory flow through a pipe exit. The experiments provide a comparative study of the losses associated with sinusoidal flow through exits of various shape, and in particular how the curvature of the exit determines the degree of flow loss due to the shedding of vortices. It is shown that geometrical factors relating the amplitude of motion to the curvature of the mouth and radius of the tube have an important bearing on the incidence of energy loss; significant losses are only observed to occur once a particular amplitude of motion is exceeded. In addition photographic visualization is used to provide evidence connecting the generation of eddies with increased losses.  相似文献   

10.
A theory for lenses whose geometric and internal deformation radii are comparable is developed. By constraining the lenses to be elliptical, it is possible to treat the nonlinear terms in the hydrodynamic equations in a complete fashion. This means that thes terms are balanced exactly by the local, Coriolis, and hydrostatic head gradient accelerations. Two examples of the dynamical evolution of such a lens are presented. The first considers the motion in the absence of any external flow. The second examines the dynamical response of the lens to large-scale deformation. The principal conclusion of the study is that the inclusion of the nonlinear terms in the dynamical balance induces fluctuations in the internal wave band of the hydrodynamic fields.Department of Oceanography, Old Dominion University, Norfolk, VA 23529-0276, USA.  相似文献   

11.
Estimates of area-averaged tidal bottom stress are made for four channel segments of the Great Bay Estuary, N.H. Current and sealevel measurements are used to estimate acceleration and pressure gradient terms in the equation of motion, while the equation of motion itself is used to infer the remaining stress term. Dynamic terms, bottom stress values, friction coefficients and energy dissipation rates are estimated for each site. The analysis shows that while throughout the estuary the principal force balance is between the frictional stress and the pressure gradient forcing, RMS values of total bottom stress range from 2·67 to 10·38 Nm?2 and friction coefficients vary from 0·015 to 0·054. Both stress and energy dissipation are largest in the seaward portion of the estuary with an order of magnitude decrease in dissipation at the most inland site.These distributions of stress and energy dissipation are consistent with cotidal charts of the principal semi-diurnal tidal constituent (M2) which indicate that the estuary is composed of a highly dissipative more progressive tidal wave regime seaward and a less dissipative standing wave regime landward.  相似文献   

12.
A method is suggested for simulating axisymmetric laminar or turbulent flows formed during the motion of a vortex-ring bunch of given geometry and circulation toward a plane screen. Earlier, similar problems were simulated with the numerical solution of the Navier-Stokes equations for laminar flows. Turbulent flows have remained unconsidered until now. When a vortex ring approaches the screen, the secondary nonstationary flow is induced near the screen’s surface and this secondary flow causes the formation of the radial boundary layer (provided that air viscosity is taken into account). First, the medium spreads out from the critical point at the screen’s center with the negative pressure gradient along the radial coordinate and then detaches in the region of the positive pressure gradient. This radial wall flow and the corresponding boundary layer are considered in the quasi-stationary approximation. When the boundary layer detaches at successive instances, the flow is replenished with the radially moving secondary vortex rings whose circulations have the sign opposite to that of the circulation of the primary vortex ring. It is the interaction of the primary and secondary vortices that governs process dynamics, which differs substantially from that in the case when the formation of secondary vortices is disregarded. The suggested method is based on the method of discrete vortices (a perfect liquid) and the boundary-layer (laminar or turbulent) theory. During the development of the flow under investigation, the nonstationary ascending flow in the direction perpendicular to the screen’s plane is formed and then this flow decays and dissipates. Simulations for large Reynolds numbers corresponding to the formation of the turbulent boundary layer show that the velocity of ascending vortices in the plane of the initial vortex bunch is less than one-tenth of the initial velocity of the descending vortex ring. The boundary layer is introduced into calculations with the sole goal of determining the parameters of the secondary vortex rings formed during boundary-layer detachments. The interaction of the primary and secondary vortices is then considered within the framework of a perfect medium. Simulations for large Reynolds numbers corresponding to the formation of the turbulent boundary layer on the screen were correlated with the available data obtained in laboratory experiments for small Reynolds numbers. Qualitative agreement between the simulations and experiments is fairly satisfactory. The simulation for one combination of the circulation and vortex-ring geometry takes at most 10–15 min with the use of an average PC.  相似文献   

13.
The flow mechanism of contractive and dilative motion was numerically investigated to obtain a propulsive force in a highly viscous fluid. The computing program for the analysis of complicated motions was numerically developed with a cell-centered, unstructured grid scheme. The developed program was validated by the well-known equation of an oscillating plane below viscous fluid for an unsteady problem, which is known as Stokes’ second problem. Validation has continued through comparison with the experimental results.In this case, sinusoidal motion was applied to the validation, instead of trochoidal motion, because it was very difficult to actually simulate trochoidal motion in this experiment. Finally, the validation and comparison with the nodal-point scheme was accomplished by Stokes’ problem, which is the famous problem at a low Reynolds number. The validated code was applied to contractive and dilative motion in a narrow tube, whose motion was embodied by trochoidal movement. In a highly viscous fluid, such as a very sticky honey or a swamp, the computed results show that a viscous force can be used for propulsion instead of a dynamic force.From the present results, it was found that a propulsive force can be obtained by contractive and dilative motion at a low Reynolds number, which can be applied to the propulsion of micro-robots in a highly viscous fluid such as a blood vessel or a swamp. This research could also be considered fundamental research for the propulsion of micro-hydro robots, which are expected to be actively studied in the future in accord with further development of nanotechnology.  相似文献   

14.
Numerical experiments with a two-dimensional nonhydrostatic ocean model have been carried out to investigate the dynamical process of descending density current on a continental slope. The associated deep water formation has been also examined by tracking labeled particles. The descending flow along the continental slope occurs in the bottom Ekman layer. The net pressure gradient determining the volume transport consists of not only the pressure gradient due to density deviation but also the surface pressure gradient due to the depth-mean alongshore flow. Since these constituents have the opposite signs and strengthen each other, the oscillation with an alternation of intense up- and downslope flows appears around the shelf break. This temporal variation of the flow field causes the effective mixing on the slope between descending shelf and interior waters and forms the deep water as a mixture of them at a ratio of about 1:3. The present result is applied to the slope current around Antarctica, using velocity and density fields calculated by an ocean general circulation model. The Ekman volume transport is estimated at 0.97 Sv (1 Sv = 106 m3s–1) in the Weddell Sea, 0.35 Sv in the Ross Sea, and 1.8 Sv in total. About 70% of them is attributed to the depth-mean alongshore flow, such as the East Wind Drift and the Weddell Gyre driven by the wind. This suggests that the pressure gradient due to other factors than density deviation may play an important role in the deep and bottom water formation in the actual oceans.  相似文献   

15.
An analytical solution has been developed in this paper to quantify the flow field and the surge motion of a porous tension leg platform with an impermeable top layer induced by linear waves. The porous layer of the TLP is considered to be anisotropic but homogeneous. The nonlinear form drag in the porous layer is replaced by a linear drag according to Lorentz’s hypothesis of equivalent work. The convergence of the series solution is verified. The dependence of the flow field, the surge motion of the platform, and its resonant frequency on wave and structure properties has been studied.  相似文献   

16.
Y. Kim  B.W. Nam  D.W. Kim  Y.S. Kim 《Ocean Engineering》2007,34(16):2176-2187
This study considers the coupling effects of ship motion and sloshing. The linear ship motion is solved using an impulse-response-function (IRF) method, while the nonlinear sloshing flow is simulated using a finite-difference method. The IRF method requires the frequency-domain solution prior to conversion to time domain, but the computational effort is much less than that of direct time-domain approaches. The developed scheme is verified by comparing the motion RAOs between the frequency-domain solution and the solution obtained by the IRF method. Furthermore, a soft-spring concept and linear roll damping are implemented to predict more realistic motions of surge, sway, yaw, and roll. For the simulation of sloshing flow in liquid tanks, a physics-based numerical approach adopted by Kim [2001. Numerical simulation of sloshing flows with impact load. Applied Ocean Research 23, 53–62] and Kim et al. [2004. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Applied Ocean Research 26, 213–226] is applied. In particular, the present method focuses on the simulation of the global motion of sloshing flow, ignoring some local phenomena. The sloshing-induced forces and moments are added to wave-excitation forces and moments, and then the corresponding body motion is obtained. The developed schemes are applied for two problems: the sway motion of a box-type barge with rectangular tanks and the roll motion of a modified S175 hull with rectangular anti-rolling tank. Motion RAOs are compared with existing results, showing fair agreement. It is found that the nonlinearity of sloshing flow is very important in coupling analysis. Due to the nonlinearity of sloshing flow, ship motion shows a strong sensitivity to wave slope.  相似文献   

17.
In practical maritime conditions, ship hulls experience heave motion due to the action of waves, which can further drive the ship’s propellers to oscillate relative to the surrounding water. In order to investigate the motion of a propeller working behind a surface vessel sailing in waves, a numerical simulation is conducted on a propeller impacted by heave motion in cavitating flow using the Reynolds-averaged Navier-Stokes (RANS) method. The coupling of the propeller’s rotation and translation is fulfilled using equations of motion defined for this purpose. The heave motion is simplified as a periodic motion based on a sinusoidal function. The numerical transmission of information from the unsteady flow field is achieved using the overset grid approach. In this manner, the unsteady thrust coefficient and torque coefficient of propellers in different periods of heave motion are analyzed. A comparative study is implemented on the unsteady cavitation performance and wake characteristics of propeller. With the propeller’s heave motion, the flow field non-uniformity constantly changes the load on the propeller during each revolution period and each heaving period, the propeller load and the wake field are closely related to the variation of heave motion period. The results obtained from the numerical simulation are expected to serve as a useful theoretical reference for the numerical analysis of a propeller in a heave motion.  相似文献   

18.
19.
An axisymmetric underwater vehicle (UV) at a steady drift angle experiences the complex three-dimensional crossflow separation. This separation arises from the unfavorable circumferential pressure gradient developed from the windward side toward the leeward side. As is well known, the separated flow in the leeward side gives rise to the formation of a pair of vortices, which affects considerably the forces and moments acting on the UV. In this regard, the main purpose of the present study is to evaluate the role of the leeward vortical flow structure in the hydrodynamic behavior of a shallowly submerged UV at a moderate drift angle traveling beneath the free surface. Accordingly, the static drift tests are performed on the SUBOFF UV model using URANS equations coupled with a Reynolds stress turbulence model. The simulations are carried out in the commercial code STARCCM+ at a constant advance velocity based on Froude number equal to Fn = 0.512 over submergence depths and drift angles ranging from h = 1.1D to h = ∞ and from β = 0 to β = 18.11°, respectively. The validation of the numerical model is partially conducted by using the existing experimental data of the forces and moment acting on the totally submerged bare hull model. Significant interaction between the low-pressure region created by the leeward vortical flow structure and the free surface is observed. As a result of this interaction, the leeward vortical flow structure appears to be largely responsible for the behavior of the forces and moments exerted on a shallowly submerged UV at steady drift.  相似文献   

20.
The most widely used mathematical model to represent flow-induced in-line forces on structures is based on the Morison1 equation. The present paper investigates the validity of using an extension of Morison's equation for non-stationary structures, by comparing predictions with results from a simple laboratory experiment. An elastically-mounted circular cylinder is placed in the sinusoidal flow of a U-tube, and responds in-line with the flow. Cylinder forces and responses are recorded over a range of Keulegan Carpenter numbers up to 35. An equation of motion is solved simply by using relative coordinates and by employing equivalent linearisation. The linear results are compared over a wide variation of parameters with solutions using the full nonlinear equation. Thereafter experimental results are compared with linear predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号