首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Several experimentally-based, empirical calibrations of the fO2 of natural silicate melts at atmospheric pressure as a function of melt composition, melt Fe2+/Fe3+, and crystallization temperature have been developed (e.g.Sack et al., 1980;Kilinc et al., 1983;Kress andCarmichael, 1988;Borisov andShapkin, 1990). Cr-Al spinel is a liquidus phase of primitive mantle-derived melts, and is commonly found as inclusions in near-liquidus phenocrysts (mainly olivine). The established atmospheric pressure correlation between Fe2+/Fe3+ values in spinel and coexisting melts over a broad range of basaltic compositions (Maurel andMaurel, 1982) can be used to calculate the Fe2+/Fe3+ value of a melt if the composition of the equilibrium spinel is known. Compositions and crystallization temperatures of primitive melts can be determined by experimental studies of melt inclusions trapped by early-formed refractory phenocrysts. Thus, the association of spinel and melt inclusions in early liquidus phenocrysts can be used to estimate fO2 conditions at the time of their crystallization.In this paper, we present a calibration of this method and discuss its applications. We conclude that combination of the equations ofMaurel andMaurel (1982) andBorisov andShapkin (1990) can be used to calculate fO2 with an accuracy of ±0.71og units, when liquidus spinels have TiO2 <2.5 wt% and Cr2O3 > 13 wt.%, and melt compositions are in the range from basaltic to picritic with H2O contents <6 wt.%.Using this technique we find NNO fO2 values of –0.8 to –1.4 for MORB dredged at the VEMA Fracture Zone in the Atlantic, and 0 to + 1 for Tongan high-Ca boninites.
Die Berechnung von Fe2+/Fe3+ und der Sauerstoff-Fugazitäten für primitive Mantelschmelzen: Kalibration einer empirischen Methode
Zusammenfassung Empirische, auf Experimenten basierende, Kalibrationen zur Berechnung von fO2 natürlicher Silikatschmelzen bei atmosphärischem Druck in Abhängigkeit von der Schmelzzusammensetzung, des Fe2+/Fe3+ Verhältnisses und der Kristallisationstemperatur wurden z.B. vonSack et al. (1980),Kilinc et al. (1983),Kress undCarmichael (1988) undBorisov undShapkin (1980) entwickelt. Cr-Al-Spinell ist eine Liquidusphase primitiver Mantelschmelzen und kommt üblicherweise als Einschluß in near-liquidus Phänokristallen (hauptsächlich in Olivin) vor. Die Korrelation des Atmosphärendruckes zwischen Fe2+/Fe3+ in Spinell und koexistierender Schmelze kann dazu verwendet werden, das Verhältnis von Fe2+/Fe3+ der Schmelze für einen weiten Bereich basaltischer Zusammensetzungen zu berechnen, wenn die Zusammensetzung des im Gleichgewicht gebildeten Spinells bekannt ist (Maurel undMaurel, 1982). Die Zusammensetzungen und Kristallisationstemperaturen primitiver Schmelzen können durch experimentelle Studien von Schmelzeinschlüssen, die in früh gebildeten refraktären Phänokristallen eingeschlossen wurden, ermittelt werden. Daher lassen sich Spinelle und assoziierte Schmelzeinschlüsse in frühen Liquidus-Phänokristallen dazu benützen, die fO2-Bedingungen während der Kristallisation abzuschätzen.In dieser Arbeit präsentieren wir eine neue Kalibration dieser Methode und diskutieren ihre Anwendungen. Wir schlußfolgern, daß unter Kombination der verwendeten Gleichungen vonMaurel undMaurel (1982) sowie vonBorisov undShapkin (1990) fO2 mit einer Genauigkeit von ±0.7 log Einheiten berechnet werden kann, soferne die Liquidus-Spinelle < 2.5 Gew.% TiO2 und > 13 Gew.% Cr2O3 haben und die Schmelzzusammensetzungen von basaltisch bis pikritisch, mit maximal 6 Gew.% H2O, reichen.Unter Verwendung dieser Technik wurden die NNO fO2 Werte für die von der VEMA Fracture Zone im Atlantik stammenden MORB Proben mit 0.8 bis - 1.4, die der der High-Ca Boninite von Tonga mit 0 bis + 1 bestimmt.


With 7 Figures  相似文献   

2.
Partition coefficients (D) for Nb and Ta between rutile and haplogranite melts in the K2O-Al2O3-SiO2 system have been measured as functions of the K2O/Al2O3 ratio, the concentrations of Nb2O5 and Ta2O5, the temperature, in air and at 1 atmosphere pressure. The Ds increase in value as the K* [K2O/(K2O + Al2O3)] molar ratio continuously decreases from highly peralkaline [K* ∼ 0.9] to highly peraluminous [K* ∼ 0.35] melts. The D values increase more dramatically with a unit decrease in K* in peraluminous melts than in peralkaline melts. This compositional dependence of Ds can be explained by the high activity of NbAlO4 species in peraluminous melts and the high activity of KONb species (or low activity of NbAlO4 species) in peralkaline melts. A coupled substitution, Al+3 + Nb+5 (or Ta+5) = 2Ti+4, accounts for the Ds of Nb (Ta) being much greater in peraluminous melts than in peralkaline melts because this substitution allows Nb (Ta) to enter into the rutile structure more easily. The Ds of Ta between rutile and melt are greater than those of Nb at comparable concentrations because the molecular electronic polarizability of Ta is weaker than that of Nb. The Nb+5 with a large polarizing power forms a stronger covalent bond with oxygen than Ta+5 with a small polarizing power. The formation of the strong bond, Nb-O, distorts the rutile structure more severely than the weak bond, Ta-O; therefore, it is easier for Ta to partition into rutile than for Nb. These results imply that the utilization of the Nb/Ta ratio in liquid as a petrogenetic indicator in granitic melts must be done with caution if rutile (or other TiO2-rich phases) is a liquidus phase. The crystallization of rutile will increase the Nb/Ta ratio of the residual liquid because the Ds of Ta between rutile and melts are greater than those of Nb. Received: 28 December 1998 / Accepted 27 September 1999  相似文献   

3.
The carbon isotopic fractionation between CO2 vapour and sodamelilite (NaCaAlSi2O7) melt over a range of pressures and temperatures has been investigated using solid-media piston-cylinder high pressure apparatus. Ag2C2O4 was the source of CO2 and experimental oxygen fugacity was buffered at hematite-magnetite by the double capsule technique. The abundance and isotopic composition of carbon dissolved in sodamelilite (SM) glass were determined by stepped heating and the 13C of coexisting vapour was determined directly by capsule piercing. CO2 solubility in SM displays a complex behavior with temperature. At pressures up to 10 kbars CO2 dissolves in SM to form carbonate ion complexes and the solubility data suggest slight negative temperature dependence. Above 20 kbars CO2 reacts with SM to form immiscible Na-rich silicate and Ca-rich carbonate melts and CO2 solubility in Na-enriched silicate melt rises with increasing temperature above the liquidus. Measured values for carbon isotopic fractionation between CO2 vapour and carbonate ions dissoived in sodamelilite melt at 1200°–1400° C and 5–30 kbars average 2.4±0.2, favouring13C enrichment in CO2 vapour. The results are maxima and are independent of pressure and temperature. Similar values of 2 are obtained for the carbon isotopic fractionation between CO2 vapour and carbonate melts at 1300°–1400° C and 20–30 kbars.  相似文献   

4.
Syngenetic garnet of eclogitic/pyroxenitic composition included in a polycrystalline diamond aggregate from the Venetia kimberlite, Limpopo Belt, South Africa shows multiple inclusions of spherules consisting of 61±5 vol% Fe3C (cohenite), 30±2 vol% Fe-Ni and 9±3 vol% FeS (troilite). Troilite forms shells around the native iron-cohenite assemblage, implying that both compositions were immiscible melts and were trapped rapidly by the silicate. It is proposed that this polycrystalline diamond-silicate-metallic spherule assemblage formed in very local pressure and fO2 conditions in cracks at the base of the subcratonic lithosphere from a C-H-O fluid that reacted with surrounding silicate at about 1,300–1,400 °C. In a mantle fluid consisting of CH4>H2O>H2 near fO2=IW, the H2 activity increases rapidly when carbon from the fluid is consumed by diamond precipitation, driving the oxygen fugacity of the system to lower values along the diamond saturation curve. Water from the fluid induces melting of surrounding silicate material, and hydrogen reduces metals in the silicate melt, reflected by an unusually low Ni content of the garnet. The carbon isotopic composition of 13C=–13.69 (PDB) and the lack of nitrogen as an impurity is consistent with formation of the diamond from non-biogenic methane, whereas 18O=7.4 (SMOW) of the garnet implies derivation of the silicate from subduction-related material. Hence, very localized and transient reducing conditions within the subcratonic lithosphere can be created by this process and do not necessarily call for involvement of fluids derived from subducted material of biogenic origin.Editorial responsibility: J. Hoefs  相似文献   

5.
We explore the partial melting behavior of a carbonated silica-deficienteclogite (SLEC1; 5 wt % CO2) from experiments at 3 GPa and comparethe compositions of partial melts with those of alkalic andhighly alkalic oceanic island basalts (OIBs). The solidus islocated at 1050–1075 °C and the liquidus at 1415 °C.The sub-solidus assemblage consists of clinopyroxene, garnet,ilmenite, and calcio-dolomitic solid solution and the near solidusmelt is carbonatitic (<2 wt % SiO2, <1 wt % Al2O3, and<0·1 wt % TiO2). Beginning at 1225 °C, a stronglysilica-undersaturated silicate melt (34–43 wt % SiO2)with high TiO2 (up to 19 wt %) coexists with carbonate-richmelt (<5 wt % SiO2). The first appearance of carbonated silicatemelt is 100 °C cooler than the expected solidus of CO2-freeeclogite. In contrast to the continuous transition from carbonateto silicate melts observed experimentally in peridotite + CO2systems, carbonate and silicate melt coexist over a wide temperatureinterval for partial melting of SLEC1 carbonated eclogite at3 GPa. Silicate melts generated from SLEC1, especially at highmelt fraction (>20 wt %), may be plausible sources or contributingcomponents to melilitites and melilititic nephelinites fromoceanic provinces, as they have strong compositional similaritiesincluding their SiO2, FeO*, MgO, CaO, TiO2 and Na2O contents,and CaO/Al2O3 ratios. Carbonated silicate partial melts fromeclogite may also contribute to less extreme alkalic OIB, asthese lavas have a number of compositional attributes, suchas high TiO2 and FeO* and low Al2O3, that have not been observedfrom partial melting of peridotite ± CO2. In upwellingmantle, formation of carbonatite and silicate melts from eclogiteand peridotite source lithologies occurs over a wide range ofdepths, producing significant opportunities for metasomatictransfer and implantation of melts. KEY WORDS: carbonated eclogite; experimental phase equilibria; partial melting; liquid immiscibility; ocean island basalts  相似文献   

6.
The chemical interaction between fluorine and highly polymerized sodium aluminosilicate melts [Al/(Al+Si)= 0.125–0.250 on the join NaAlO2-SiO2] has been studied with Raman spectroscopy. Fluorine is dissolved to form F ions that are electrically neutralized with Na+ or Al3+. There is no evidence for association of fluorine with either Si4+ or Al3+ in four-fold coordination and no evidence of fluorine in six-fold coordination with Si4+ in these melt compositions. Upon solution of fluorine nonbridging oxygens are formed and are a part of structural units with nonbridging oxygen per tetrahedral cations (NBO/T) about 2 and 1. The proportions of these two depolymerized units in the melts increase systematically with increasing F/(F+O) at constant Al/(Al+Si) and with decreasing Al/(Al+Si) at constant F/(F+O). Depolymerization (increasing NBO/T) of silicate melts results from a fraction of aluminum and alkalies (in the present study; Na+) reacting to form fluoride complexes. In this process an equivalent amount of Na+ (orginally required for Al-3+charge-balance) or Al3+ (originally required Na+ to exist in tetrahedral coordination) become network-modifiers.The structural data have been used to develop a method for calculating the viscosity of fluorine-bearing sodium aluminosilicate melts at 1 atm. Where experimental viscosity data are available, the calculated and measured values are within 5% of each other.A method is also suggested by which the liquidus phase equilibria of fluorine-bearing aluminosilicate melts may be predicted. In accord with published experimental data it is suggested, for example, that — on the basis of the determined solubility mechanism of fluorine in aluminosilicate melts — with increasing fluorine content of feldspar-quartz systems, the liquidus boundaries between aluminosilicate minerals (e.g., feldspars) and quartz shift away from silica.  相似文献   

7.
Thermally metamorphosed and metasomatised fragments of basement actinolite-chlorite-calcite-quartz schists and quartz-bearing marbles are found as inclusions in Quaternary agglomerates and historic (197 B. C.—1950) dacitic lavas of Santorini volcano, Greece.Inclusions in agglomerates preserve the structure of parent schists in the alternation of bands rich in diopside or salite with bands rich in plagioclase. By contrast, inclusions in historic dacites are not banded. Most develop a thin zone of hybrid material at the contact with enclosing lava. The assemblage calcic clinopyroxene-wollastonite-plagioclase is commonly developed. The clinopyroxene is a Fe3+-rich salite or ferrosalite. Andradite-rich garnet and sphene are accessory minerals. Most examples carry interstitial siliceous glass of distinctive chemical composition, and several show minor olivine, augite, hypersthene and calcic plagioclase of magmatic origin.Other inclusions exhibit the assemblage anhydrite-calcic clinopyroxene, the latter mineral ranging widely in Al content. A single example has been observed to develop two distinct assemblages, the first coarsely crystalline melilite-wollastonite-magnetite, the second finely intergrown melilite-wollastonite-andraditic garnet (-xonotlite).Stability data for hedenbergite and andradite as constituents of skarn assemblages suggest that the clinopyroxene-rich assemblages of inclusions in historic dacites formed at temperatures near to or above 800° C and oxygen fugacity (fO2) considerably greater than that which could be imposed upon the inclusions by dacite magma (T 900° C, fO210–13 atm.). Thermal breakdown of original carbonates of the inclusions probably supplied the necessary oxygen. T-fO2 data for the reaction 4 Magnetite+18 Wollastonite 6 Andradite indicate that the assemblage melilite-wollastonite-magnetite of the last inclusion described formed at higher T and/or lower fO2 than the assemblage melilite-wollastonite-garnet. The latter assemblage undoubtedly formed during inclusion of the fragment by dacite magma, while metamorphism by a more basic, high temperature magma may have produced the former. Temperature data for reactions limiting the stability of melilite in the system CaO-Al2O3-SiO2-H2O indicate a minimum temperature of around 800° C for formation of both assemblages.  相似文献   

8.
The mineralogy and chemistry of picrites from Mauna Loa and Kilauea have been investigated to evaluate, for Hawaiian tholeiitic picrites, the contrasting genetic models which have been proposed for these Mg-rich volcanics, namely products of direct crystallization of high-Mg melts (20–25% MgO) or the result of accumulation of olivine phenocrysts into less Mg-rich melts. Genetic interpretations rely heavily on Mg-Fe partitioning relations between olivines and their picrite hosts. Although the 100 Mg/(Mg + Fe2+) ratios (M) of picrites are wide-ranging (M=73.6–82.9 for Fe2O3/FeO=0.15), with MgO as high as 27.8%, the average 100 Mg/(Mg+Fe) ratios (mg) of the cores of olivine phenocrysts (megacrysts) show only restricted compositional variation (mg=87.2–89.0). Successive olivine generations are progressively more Fe-rich. Olivine/liquid Mg-Fe partitioning data and the Mn and Ni abundances in olivine phenocrysts collectively indicate that they were precipitated by Mg-rich basaltic melts with 12–14% MgO. Spinel compositions range from liquidus magnesiochromites, occurring mainly as inclusions in olivine phenocrysts, to groundmass titanomagnetites which crystallized at nearsolidus temperatures. The Cr2O3 contents and M values of liquidus magnesiochromites suggest that their parent melts were neither Mg-rich picritic (MgO>20%) nor relatively Mg-poor basaltic types.On MgO variation diagrams (extending from approximately 7% to more than 25% MgO), Mauna Loa and Kilauea picrites and their respective microcrystalline/glassy groundmasses (the major component of quickly-cooled picrites) plot on linear regression lines (olivine control lines). At a given MgO content, Kilauean picrites and tholeiites (M<75) generally contain more TiO2 FeO t , CaO, K2O and P2O5, and less SiO2 and Na2O than Mauna Loan types. The compositions of the groundmasses in picrites and Mg-rich ol-tholeiites equate closely with those of the Mg-poor tholeiites (7–9% MgO) which dominate the petrology of each shield.Low-pressure closed system differentiation of Hawaiian tholeiitic magmas (10–15% MgO) can yield picritic derivatives which differ, however, from the extrusive picrites by virtue of distinctly higher FeO t contents and correspondingly more Fe-rich olivines and Cr-spinels.The calculated Mg-Fe olivine megacryst-liquid partition coefficient K D for individual picrites indicate that lowpressure equilibria (K D =0.30–0.34) are defined only by melts with approximately 12–14% MgO (M 71–74). Assessed in conjunction with Ni-MgO modeling, these data indicate that the more Mg-rich picrites (MgO> 14–15%) are indeed olivine-enriched and do not represent melt compositions. Olivine enrichment resulted from post-eruptive mechanical (flow) differentiation of extruded mushes of intratelluric cognate olivine phenocrysts (mg88) and tholeiitic melts (M60), which are residua of the parental magmas (12–14% MgO), following the crystallization of the olivine phenocrysts. The parental magmas of both picrite suites were generated by 35–40% melting of relatively Fe-rich spinel lherzolites (mg84) containing kaersutitic amphibole as a major primary constituent.  相似文献   

9.
The join CaMgSi2O6–KAlSi3O8 has been studied at 6 GPa (890–1,500°C) and 3.5 GPa (1,000–1,100°C). K-rich melts in the join produce assemblages Cpx + Grt, Cpx + Opx, Cpx + San, and Cpx + Grt + San at 1,100–1,300°C. At NSansystem<~70 mol%, sanidine is unstable on the solidus and appears at the liquidus, if NSansystem>90 mol%. This explains a scarcity of San in mantle Cpx-rich assemblages and its association with high-K aluminosilicate melt inclusions in diamonds. In absence of San, KCpx is the only host for potassium. The K-jadeite content in KCpx systematically increases with decreasing temperature and reaches 10–12 mol% near the solidus. However, KCpx coexists with San at NSansystem>70 mol% and <1,300°C, being formed via reaction San + L=KCpx. The KJd content in KCpx is controlled by the equilibrium San=KJd + SiO2L that displaces to the right with increasing pressure and decreasing both the temperature and This equilibrium is considered to be responsible for the formation of San lamellae in natural UHP Cpx. In our experiments at 3.5 GPa, garnet is absent whereas the KJd and Ca-Eskola contents in Cpx are low, and the join CaMgSi2O6–KAlSi3O8 is close to binary (with the eutectic Cpx + San + L). Different topologies of the join at 6 and 3.5 GPa define a sequence of mineral crystallization from K-rich aluminosilicate melts during cooling and decompression: from KCpx + Grt without San at P>4 GPa to Cpx + San at P<4 GPa. Similar sequence of assemblages is observed in some eclogitic xenoliths from kimberlites and Grt–Cpx rocks of the Kokchetav Complex (Northern Kazakhstan).  相似文献   

10.
Melting relations at 5 and 20 kbar on the composition join sanidine-potassium carbonate are dominated by a two-liquid region that covers over 60% of the join at 1,300 ° C. At this temperature, the silicate melt contains approximately 19 wt% carbonate component at 5 kbar and 32 wt% carbonate component at 20 kbar. The conjugate carbonate melt contains less than 5 wt% silicate component, and it varies less as a function of temperature than does the silicate melt.Partition coefficients for Ce, Sm, and Tm between the immiscible carbonate and silicate melts at 1,200 ° and 1,300 ° C at 5 and 20 kbar are in favor of the carbonate melt by a factor of 2–3 for light REE and 5–8 for heavy REE. The effect of pressure on partitioning cannot be evaluated independently because of complementary changes in melt compositions.Minimum REE partition coefficients for CO2 vapor/carbonate melt and CO2 vapor/silicate melt can be calculated from the carbonate melt/silicate melt partition coefficients, the known proportions of melt, and maximum estimates of the proportion of CO2 vapor. The vapor phase is enriched in light REE relative to both melts at 20 kbar and enriched in all REE, especially the light elements, at 5 kbar. The enrichment of REE in CO2 vapor relative to both melts is 3–4 orders of magnitude in excess of that in water vapor (Mysen, 1979) at 5 kbar and is approximately the same as that in water vapor at 20 kbar.Mantle metasomatism by a CO2-rich vapor enriched in light REE, occurring as a precursor to magma genesis, may explain the enhanced REE contents and light REE enrichment of carbonatites, alkali-rich silicate melts, and kimberlites. Light REE enrichment in fenites and the granular suite of nodules from kimberlites attests to the mobility of REE in CO2-rich fluids under both mantle and crustal conditions.  相似文献   

11.
12.
The sulfur content in basaltic melts coexisting with eithersulfide or sulfate melts was determined experimentally. Theexperimental conditions were in the range of 1300–1355°Cand 1·0–1·6 GPa, conditions appropriatefor the melting of the upper mantle above subduction zones.Under these conditions, both sulfide and sulfate were presentas immiscible liquids, as inferred from the round geometriesof the quenched sulfide and sulfate phases. The measured S contentin basaltic melts saturated with sulfate liquids ([S] = 1·5± 0·2 wt %) was 10 times higher than the S contentin basaltic melts saturated with sulfide liquids ([S] = 0·14± 0·02 wt %). In our experiments, sulfate liquidswere stable at fO2 as low as FMQ = +1·85 [FMQ = log (fO2)sample– log (fO2)FMQ, where FMQ is the fayalite–magnetite–quartzoxygen buffer], and evidence from other sources indicates thatsulfates will be stable at lower fO2 in melts with lower activitiesof silica. Because chalcophile and highly siderophile elements,such as Cu, Ni, Au, and Pd, are partitioned preferentially intosulfide phases, melting of sufficiently oxidized sources, inwhich sulfides are not stable, would favor incorporation ofthese elements into the silicate melt produced. Such melts wouldhave a higher potential to generate ore deposits. This studyshows that the high sulfur contents of such oxidized basaltsalso means that relatively small amounts of such magmas canprovide significant amounts of sulfur to exsolving volatilephases and account for the bulk of the sulfur expelled in somevolcanic eruptions, such the 1991 eruption of Mount Pinatubo. KEY WORDS: basalt; mantle; oxidation state; sulfate; sulfur  相似文献   

13.
We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10–20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C–1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than 12 kbar.  相似文献   

14.
The electrical conductivity of basaltic melts has been measured in real-time after fO2 step-changes in order to investigate redox kinetics. Experimental investigations were performed at 1 atm in a vertical furnace between 1200 and 1400 °C using air, pure CO2 or CO/CO2 gas mixtures to buffer oxygen fugacity in the range 10−8 to 0.2 bars. Ferric/ferrous ratios were determined by wet chemical titrations. A small but detectable effect of fO2 on the electrical conductivity is observed. The more reduced the melt, the higher the conductivity. A modified Arrhenian equation accounts for both T and fO2 effects on the electrical conductivity. We show that time-dependent changes in electrical conductivity following fO2 step-changes monitor the rate of Fe2+/Fe3+ changes. The conductivity change with time corresponds to a diffusion-limited process in the case of reduction in CO-CO2 gas mixtures and oxidation in air. However, a reaction at the gas-melt interface probably rate limits oxidation of the melt under pure CO2. Reduction and oxidation rates are similar and both increase with temperature. Those rates range from 10−9 to 10−8 m2/s for the temperature interval 1200-1400 °C and show activation energy of about 200 kJ/mol. The redox mechanism that best explains our results involves a cooperative motion of cations and oxygen, allowing such fast oxidation-reduction rates.  相似文献   

15.
The saturation surface of pseudobrookite (Fe2TiO5) was determined for melts in the system SiO2-Al2O3-K2O-FeO-Fe2O3-TiO2 at 1400° C and 1 atm. The variation in concentrations of Fe2O3, TiO2 and Fe2TiO5 in liquids can be used to infer relative changes in activity coefficients of these components with changing K2O/(K2O+Al2O3) of the melts. Saturation concentrations of these components are low and relatively constant in the peraluminous melts and increase with increasing K2O/(K2O+Al2O3) in peralkaline liquids. The activity coefficients of Fe2O3 and TiO2 and Fe2TiO5, therefore, are higher in peraluminous liquids than in peralkaline liquids in this system. In addition, the iron redox ratio was measured as a function of K2O/(K2O+Al2O3) for liquids just below the saturation surface; was fixed so all variations in redox ratio are entirely due to changes in melt composition. The redox ratio from unsaturated liquids was applied to saturated liquids where redox analysis of the glass is impossible. The homogeneous equilibrium experiments indicate that the activity coefficient of Fe2O3 relative to that of FeO is significantly greater in peraluminous melts than peralkaline melts. Both the heterogeneous and homogeneous equilibria suggest that in peralkaline liquids K+in excess of that required to charge balance tetrahedral Al+3 is used to stabilize both Fe+3 and Ti+4. Calculations show that ferric iron and titanium compete equally effectively for charge-balancing potassium but neither can outcompete aluminum. The observed changes in solution properties of Fe2O3 and TiO2 in the synthetic melts are used to explain variations in Fe-Ti oxide stabilities in natural peraluminous and peralkaline rhyolites and granites. Since the activity coefficients of both ferric iron and titanium are significantly higher in peraluminous liquids than in peralkaline liquids, Fe-Ti oxides should occur earlier in the crystallization sequence in peraluminous rhyolites than in peralkaline rhyolites. In addition, iron will be reduced in peraluminous granites and rhyolites relative to peralkaline ones under comparable P, T, and . Finally, observed crystallization patterns for minerals containing highly charged cations other than ferric iron and titanium are evaluated in the context of this and other experimental studies.  相似文献   

16.
The influence of melt composition and structure on the oxygen isotope fractionation was studied for the multicomponent (SiO2 ± TiO2 + Al2O3 ± Fe2O3 + MgO ± CaO) system at 1500°C and 1 atm. The experiments show that significant oxygen isotope effects can be observed in silicate melts even at such high temperature. It is shown that the ability of silicate melt to concentrate 18O isotope is mainly determined by its structure. In particular, an increase of the NBO/T ratio in the experimental glasses from 0.11 to 1.34 is accompanied by a systematic change of oxygen isotope difference between melt and internal standard by values from–0.85 to +1.29‰. The obtained data are described by the model based on mass-balance equations and the inferred existence of O0, O, and O2– (bridging, non-bridging, and free oxygen) ions in the melts. An application of the model requires the intra-structure isotope fractionation between bridging and non-bridging oxygens. Calculations show that the intra-structure isotope fractionation in our experiments is equal to 4.2 ± 1.0‰. To describe the obtained oxygen isotope effects at the melts relatively to temperature and fraction of non-bridging oxygen a general equation was proposed.  相似文献   

17.
We present new experimental data on Mg tracer diffusion in oriented single crystals of forsterite (Fo100) and San Carlos olivine (Fo92) between 1000–1300° C. The activation energies of diffusion are found to be 400 (±60) kJ/mol (96 kcal/mol) and 275 (±25) kJ/mol (65 kcal/ mol) in forsterite and San Carlos olivine, respectively, along [001] at a fO2 of 10–12 bars. There is no change in activation energy of Mg tracer diffusion within this temperature range. Mg tracer diffusion in a nominally pure forsterite is found to be anisotropic (Dc > Da > D b) and a function of fO2. This fO2 dependence is different from that in olivine containing Fe as a major element, which suggests that the diffusion mechanism of Mg in forsterite is different from that in Fe-bearing olivine at least over some range of fO2. The diffusion mechanism in nominally pure forsterites may involve impurities present below the limits of detection or alternately, Si or Fe3+ interstitial defects, Fe being present as impurity (ppm level) in forsterite. Pressure dependence of Mg tracer diffusivity in forsterite measured to 10 GPa in a multianvil apparatus yields an activation volume of approximately 1–3.5 cm3/ mol. It is found that presence of small amounts of hydrogen bearing species in the atmosphere during diffusion anneal (fH2 0.2 bars, fH20 0.24 bars) do not affect Mg tracer diffusion in forsterite within the resolution of our measurement at a total pressure of 1 bar. The observed diffusion process is shown to be extrinsic; hence extrapolation of the diffusion data to lower temperatures should not be plagued by uncertainties related to change of diffusion mechanism from intrinsic to extrinsic.  相似文献   

18.
The effect of composition on the relaxed adiabatic bulk modulus (K0) of a range of alkali- and alkaline earth-titanosilicate [X 2 n/n+ TiSiO5 (X=Li, Na, K, Rb, Cs, Ca, Sr, Ba)] melts has been investigated. The relaxed bulk moduli of these melts have been measured using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz in the temperature range of 950 to 1600°C (0.02 Pa s < s < 5 Pa s). The bulk moduli of these melts decrease with increasing cation size from Li to Cs and Ca to Ba, and with increasing temperature. The bulk moduli of the Li-, Na-, Ca- and Ba-bearing metasilicate melts decrease with the addition of both TiO2 and SiO2 whereas those of the K-, Rb- and Cs-bearing melts increase. Linear fits to the bulk modulus versus volume fraction of TiO2 do not converge to a common compressibility of the TiO2 component, indicating that the structural role of TiO2 in these melts is dependent on the identity of the cation. This proposition is supported by a number of other property data for these and related melt compositions including heat capacity and density, as well as structural inferences from X-ray absorption spectroscopy (XANES). The compositional dependence of the compressibility of the TiO2 component in these melts explains the difficulty incurred in previous attempts to incorporate TiO2 in calculation schemes for melt compressibility. The empirical relationship KV-4/3 for isostructural materials has been used to evaluate the compressibility-related structural changes occurring in these melts. The alkali metasilicate and disilicate melts are isostructural, independent of the cation. The addition of Ti to the metasilicate composition (i.e. X2TiSiO5), however, results in a series of melts which are not isostructural. The alkaline-earth metasilicate and disilicate compositions are not isostructural, but the addition of Ti to the metasilicate compositions (i.e. XTiSiO5) would appear, on the basis of modulus-volume systematics, to result in the melts becoming isostructural with respect to compressibility.  相似文献   

19.
Longitudinal acoustic velocities were measured at 1 bar in 10 Na2O-TiO2-SiO2 (NTS) liquids for which previous density and thermal expansion data are reported in the literature. Data were collected with a frequency-sweep acoustic interferometer at centered frequencies of 4.5, 5, and 6 MHz between 1233 and 1896 K; in all cases, the sound speeds decrease with increasing temperature. Six of the liquids have a similar TiO2 concentration (∼25 mol %), so that the effect of varying Na/Si ratio on the partial molar compressibility of the TiO2 component can be evaluated. Theoretically based models for βT and (∂V/∂P)T as a function of composition and temperature are presented. As found previously for the partial molar volume of TiO2 in sodium silicate melts, values of (13.7-18.8 × 10−2/GPa) vary systematically with the Na/Si and Na/(Si + Ti) ratio in the liquid. In contrast values of for the SiO2 and Na2O components (6.6 and 8.0 × 10−2/GPa, respectively, at 1573 K) are independent of composition. Na2O is the only component that contributes to the temperature dependence of the compressibility of NTS liquids (1.13 ± 0.04 × 10−4/GPa K). The results further indicate that the TiO2 component is twice as compressible as the Na2O and SiO2 components. The enhanced compressibility of TiO2 appears to be related to the abundance of five-coordinated Ti ([5]Ti) in these liquids, but not with a change in Ti coordination. Instead, it is proposed that the asymmetric geometry of [5]Ti in a square pyramidal site promotes different topological rearrangements in alkali titanosilicate liquids, which lead to the enhanced compressibility of TiO2.  相似文献   

20.
The enthalpies of solution of La2O3, TiO2, HfO2, NiO and CuO were measured in sodium silicate melts at high temperature. When the heat of fusion was available, we derived the corresponding liquid-liquid enthalpies of mixing. These data, combined with previously published work, provide insight into the speciation reactions in sodium silicate melts. The heat of solution of La2O3 in these silicate solvents is strongly exothermic and varies little with La2O3 concentration. The variation of heat of solution with composition of the liquid reflects the ability of La(III) to perturb the transient silicate framework and compete with other cations for oxygen. The enthalpy of solution of TiO2 is temperature-dependent and indicates that the formation of Na-O-Si species is favored over Na-O-Ti at low temperature. The speciation reactions can be interpreted in terms of recent spectroscopic studies of titanium-bearing melts which identify a dual role of Ti4+ as both a network-former end network-modifier. The heats of solution of oxides of transition elements (Ni and Cu) are endothermic, concentration-dependent and reach a maximum with concentration. These indicate a charge balanced substitution which diminishes the network modifying role of Na+ by addition of Ni2+ or Cu2+. The transition metal is believed to be in tetrahedral coordination, charge balanced by the sodium cation in the melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号