首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41 ± 0.03 for   M r ≈−18  ellipticals and 0.76 ± 0.04 for   M r ≈−22.5  ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth.
There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS DR6 are consistent with flat discs with a mean and dispersion of thickness to diameter ratio of (21 ± 2) per cent, and a face-on ellipticity, e , of  ln( e ) =−2.33 ± 0.79  . Not including the effects of dust in the model leads to discs that are systematically rounder by up to 60 per cent. More luminous spiral galaxies tend to have thicker and rounder discs than lower luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies.
The marginalized value of the edge-on r -band dust extinction E 0 in spiral galaxies is   E 0≃ 0.45  mag for galaxies of median colours, increasing to   E 0= 1  mag for   g − r > 0.9  and   E 0= 1.9  for the luminous and most compact galaxies, with half-light radii  <2  h −1 kpc  .  相似文献   

5.
We investigate the environments and clustering properties of starburst galaxies selected from the 2dF Galaxy Redshift Survey (2dFGRS) in order to determine which, if any, environmental factors play a role in triggering a starburst. We quantify the local environments, clustering properties and luminosity functions of our starburst galaxies and compare to random control samples. The starburst galaxies are also classified morphologically in terms of their broad Hubble type and evidence of tidal merger/interaction signatures. We find the starburst galaxies to be much less clustered on large (5–15 Mpc) scales compared to the overall 2dFGRS galaxy population. In terms of their environments, we find just over half of the starburst galaxies to reside in low to intermediate luminosity groups, and a further ∼30 per cent residing in the outskirts and infall regions of rich clusters. Their luminosity functions also differ significantly from that of the overall 2dFGRS galaxy population, with the sense of the difference being critically dependent on the way their star formation rates are measured. In terms of pin-pointing what might trigger the starburst, it would appear that factors relating to their local environment are most germane. Specifically, we find clear evidence that the presence of a near neighbour of comparable luminosity/mass within 20 kpc is likely to be important in triggering a starburst. We also find that a significant fraction (20–30 per cent) of the galaxies in our starburst samples have morphologies indicative of either an ongoing or a recent tidal interaction and/or merger. These findings notwithstanding, there remain a significant portion of starburst galaxies where such local environmental influences are not in any obvious way playing a triggering role, leading us to conclude that starbursts can also be internally driven.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
We have carried out a study of known clusters within the 2dF Galaxy Redshift Survey (2dFGRS) observed areas and have identified 431 Abell, 173 APM and 343 EDCC clusters. Precise redshifts, velocity dispersions and new centroids have been measured for the majority of these objects, and this information is used to study the completeness of these catalogues, the level of contamination from foreground and background structures along the cluster's line of sight, the space density of the clusters as a function of redshift, and their velocity dispersion distributions. We find that the Abell and EDCC catalogues are contaminated at the level of about 10 per cent, whereas the APM catalogue suffers only 5 per cent contamination. If we use the original catalogue centroids, the level of contamination rises to approximately 15 per cent for the Abell and EDCC catalogues, showing that the presence of foreground and background groups may alter the richness of clusters in these catalogues. There is a deficiency of clusters at     that may correspond to a large underdensity in the Southern hemisphere. From the cumulative distribution of velocity dispersions for these clusters, we derive a space density of     clusters of     This result is used to constrain models for structure formation; our data favour low-density cosmologies, subject to the usual assumptions concerning the shape and normalization of the power spectrum.  相似文献   

14.
15.
We estimate the fraction of star-forming galaxies in a catalogue of groups, constructed from the 2dF Galaxy Redshift Survey by Merchán & Zandivarez. We use the η spectral type parameter of galaxies and subdivide the sample of galaxies in groups into four types depending on the values of the η parameter following Madgwick et al. We obtain a strong correlation between the relative fraction of galaxies with high star formation and the parent group virial mass. We find that even in the environment of groups with low virial mass   M ∼1013 M  the star formation of their member galaxies is significantly suppressed. The relation between the fraction of early-type galaxies and the group virial mass obeys a simple power law spanning over three orders of magnitude in virial mass. Our results show quantitatively the way that the presence of galaxies with high star formation rates is inhibited in massive galaxy systems.  相似文献   

16.
In the 2dF Galaxy Redshift Survey, we study the properties of voids and of fainter galaxies within voids that are defined by brighter galaxies. Our results are compared with simulated galaxy catalogues from the Millennium simulation coupled with a semi-analytical galaxy formation recipe. We derive the void size distribution and discuss its dependence on the faint magnitude limit of the galaxies defining the voids. While voids among faint galaxies are typically smaller than those among bright galaxies, the ratio of the void sizes to the mean galaxy separation reaches larger values. This is well reproduced in the mock galaxy samples studied. We provide analytic fitting functions for the void size distribution. Furthermore, we study the galaxy population inside voids defined by galaxies with   B J− 5 log  h < −20  and diameter larger than  10  h −1 Mpc  . We find a clear bimodality of galaxies inside voids and in the average field but with different characteristics. The abundance of blue cloud galaxies inside voids is enhanced. There is an indication of a slight blueshift of the blue cloud. Furthermore, galaxies in void centres have slightly higher specific star formation rates as measured by the η parameter. We determine the radial distribution of the ratio of early- and late-type galaxies through the voids. We find and discuss some differences between observations and the Millennium catalogues.  相似文献   

17.
18.
19.
The dust‐to‐gas ratios in three different samples of luminous, ultraluminous, and hyperluminous infrared galaxies are calculated by modelling their radio to soft X‐ray spectral energy distributions (SED) using composite models which account for the photoionizing radiation from H II regions, starbursts, or AGNs, and for shocks. The models are limited to a set which broadly reproduces the mid‐IR fine structure line ratios of local, IR bright, starburst galaxies. The results show that two types of clouds contribute to the IR emission. Those characterized by low shock velocities and low preshock densities explain the far‐IR dust emission, while those with higher velocities and densities contribute to the mid‐IR dust emission. Clouds with shock velocities of 500 km s–1 prevail in hyperluminous infrared galaxies. An AGN is found in nearly all of the ultraluminous infrared galaxies and in half of the luminous infrared galaxies of the sample. High IR luminosities depend on dust‐to‐gas ratios as high as ∼0.1 by mass, however most hyperluminous IR galaxies show dustto‐gas ratios much lower than those calculated for the luminous and ultraluminous IR galaxies. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号