共查询到19条相似文献,搜索用时 46 毫秒
1.
横向各向同性介质中地震波走时模拟 总被引:15,自引:0,他引:15
横向各向同性介质是地球内部广泛分布的一种各向异性介质.针对这种介质,我们对各向同性介质的最小走时树走时模拟方法进行了推广,推广后的方法可适用于非均匀、对称轴任意倾斜的横向各向同性介质模型.为保证计算效率,最小走时树的构建采用了一种子波传播区域随地震波传播动态变化的改进算法.对于弱各向异性介质,我们使用了一种新的地震波群速度近似表示方法,该方法基于用射线角近似表示相角的思想,对3种地震波(qP, qSV和qSH)均有较好的精度.应用本文地震波走时模拟方法对均匀介质、横向非均匀介质模型进行了计算,并将后者结果与弹性波方程有限元方法的模拟结果进行了对比,结果表明两者符合得很好.本文方法可用于横向各向同性介质的深度偏移及地震层析成像的深入研究. 相似文献
2.
随着地震勘探的深入,对勘探精度的要求越来越高,目前,提高勘探精度的主要方法之一就是提高地震波走时计算的精度,地震走时精度直接影响如动校正、静校正和偏移成像质量.根据地质模型假设条件的不同,有不同的走时计算方法,常用的有各向同性介质假设和各向异性介质假设条件下的走时计算方法,各向异性假设具有比各向同性假设更好的适用性,具有更高的走时计算精度,能够满足大偏移距和高陡构造情况下成像的要求.本文根据Alkhalifah的VTI介质中走时计算方法,以Fomel的TI介质中群速度的计算为基础,利用各向异性介质中Snell定律,提出了在非椭圆各向异性介质中的高阶优化走时计算方法,通过理论和实际数据的应用,表明该方法克服了常规各向异性走时方法中不能够计算大偏深比情况下地震波走时的缺点,具有走时计算精度高、便于实际应用等特点,对叠加和偏移成像有广阔的应用. 相似文献
3.
地震定位是地震学中最基本的问题之一.地震定位的精度和参考模型的准确性密切相关.目前无论是区域地震定位还是全球地震定位,所使用的参考地质模型几乎都是各向同性的,但大量的观测结果表明地球内部介质广泛存在着各向异性. 相似文献
4.
Thomsen提出的横向各向同性(TI)介质各向异性参数(α0、β0、ε、δ、γ)是各向异性理论研究和实际资料处理中的常用参数,Thomsen参数的取值必须符合物理学定律和实际地学情况,随意的取值可能导致无意义乃至错误的结果.本文根据热力学定律和弹性常数的物理意义,结合大量的实测数据,提出常见TI介质的Thomsen参数需要满足以下约束条件:1/4f=1-β02/α02ε>-f/2; 1/2f-1δf-1); -1/2γε)/4(1-f)-1/2.Thomsen参数ε、δ、γ的取值区间主要受P、S波参考速度比β0/α0的约束,其值可正可负,实测参数中ε和γ正多负少;δ、γ、β0/α0的取值范围都有上下界,而ε没有上限;γ与ε正相关且取值上限受到ε的限制;ε、γ与δ之间不存在明显的约束.鉴于椭圆各向异性介质和薄互层等效TI介质在实际应用中的普遍性,专门给出了这两种介质各向异性参数的附加约束条件.一些在实际资料中可观测到的P波特殊偏振方向和SV波三叉现象也能为各向异性参数提供额外的约束.之后,我们将TI介质弹性常数和各向异性参数的约束条件扩展到对正交各向异性介质弹性常数和各向异性参数的约束.本文提出的各向异性参数约束条件简单实用,为各向异性理论研究和数值模拟中参数的选择提供依据,为实际资料的各向异性参数反演提供约束,既能避免出现无物理意义的研究结果,又能加速反演的搜索过程,提高生产效率,具有理论指导意义和实际应用价值. 相似文献
5.
用偏微分方程组特征理论研究层状并以垂直轴为对称轴的横向各向同性(TIV)介质的参数反演问题,首先从弹性波运动方程与TIV介质的应力-应变关系导出了平面波耦合方程组的特征型.根据奇性分析与特征积分法给出了连续情形下的特征线边界条件,连续清形下的波场延拓方程即平面波耦合方程组的特征型与特征线边界条件组成了层状TIV平滑介质、弱间断介质参数反演问题的基本方程组.并导出了间断情形下的波场延拓方程与特征线边界条件,这些方程组可用于层状介质(间断情况)的参数反演.基于这些基本方程组,探讨了利用地面多分量地震资料反演层状TIV介质多个弹性参数的问题. 相似文献
6.
介质的弹性常数为三维四阶张量的分量,共有81个,由于应力张量和应变张量的对称性及能量密度是应变的二次函数,一般各向异常性介质的独立弹性常数可减为21个,如果介质具有较高的对称性,独立弹性常数的数目会更少。 对于地壳和上地幔,具有5个独立弹性常数的横向各向同性介质是一个非常好的近似,本研究中横向各向同性介质的对称轴方向可以是任意的(即对称轴可以不平等于铅直方向),在此情况下,需要进行坐标变换,如果已知介质在某一坐标系(其坐标轴平行或垂直于介质的对称轴)中的弹性常数,我们能够容易地利用变换公式得到变换后新坐标系中的弹性常数。 本文提出了一种方案,利用伪谱法既能模拟横向各向同性介质中的平面波,也能模拟点源激发的波场。在勘探地球物理和地震学中,模拟横向各向同性介拮中传播的平面波及区域源产生的波是最重要的研究课题之一。然而在一般各向异性介质中,很难或不可能确定弹性波的相速度和偏振方向,但在横向各向同性介质中,则可以通过坐标变换来实现,这里我们所提出的方法可以用于横向各向同性介质中弹性波的模拟。 相似文献
7.
假设横向各向同性(TI)介质的对称轴是垂直的(VTI)或者水平的(HTI)能给实际资料处理带来便利,然而实际TI介质的对称轴往往是倾斜的(TTI),忽略对称轴倾角可能给各向异性参数提取和成像带来偏差,因此需要研究是否能、以及什么条件下能忽略TTI介质对称轴倾角.本文通过理论研究和数值分析研究了与TTI介质弹性性质最接近的VTI介质(OAVTI)的弹性常数和各向异性参数与原TTI介质的弹性常数和各向异性参数之间的联系与差别.结果表明:OAVTI介质各向异性参数与原TTI介质各向异性参数之间的差别可统一表示成F(α0/β0,ε,δ,γ)ξ2的形式,其中F(α0/β0,ε,δ,γ)是无量纲各向异性参数(ε, δ, γ)的线性函数,ξ是对称轴倾角;ξ的大小对各参数的误差起主导作用,一般不建议忽略20°~25°以上的对称轴倾角;当ξ较小时,即使是对强各向异性的TTI介质作VTI近似,引起的P波各向异性参数误差也很小,因此在纵波资料处理中忽略TTI介质对称轴倾角通常是可行的;即使在小ξ条件下,倾斜对称轴对SV波也有显著影响,因此在转换波资料处理中,不建议忽略TTI介质的对称轴倾角.本文的研究为分析忽略TTI介质对称轴倾角的可行性提供了理论依据和简便的判据. 相似文献
8.
有限差分法初至波走时计算是一种十分快速、有效及实用的方法,而且不会碰到传统射线法的阴影区、焦散面等问题.文中指出了VanTrier方法存在的问题,并提出了解决的办法.计算结果表明,方法是有效可行的.对速度变化很大的介质模型,仍能得到较精确的解. 相似文献
9.
用偏微分方程组特征理论研究层状并以垂直轴为对称轴的横向各向同性(TIV)介质的参数反演问题,首先从弹性波运动方程与TIV介质的应力-应变关系导出了平面波耦合方程组的特征型.根据奇性分析与特征积分法给出了连续情形下的特征线边界条件,连续清形下的波场延拓方程即平面波耦合方程组的特征型与特征线边界条件组成了层状TIV平滑介质、弱间断介质参数反演问题的基本方程组.并导出了间断情形下的波场延拓方程与特征线边界条件,这些方程组可用于层状介质(间断情况)的参数反演.基于这些基本方程组,探讨了利用地面多分量地震资料反演层状TIV介质多个弹性参数的问题. 相似文献
10.
采用算子表示法,在F-K域内将横向各向同性介质中的波动方程进行算子分解,然后利用留数定理求出格林函数的解析解。并给出了一个算例,得出时空域中qP波、q(SV)波和QsH波的格林函数剖面。 相似文献
11.
An approach to calculate the accurate ray paths and traveltimes in multi-layered VTI media (transversely isotropic media with a vertical symmetry axis) is proposed. The expressions of phase velocity, group velocity and Snell’s law used for computation are all explicit and exact. The calculation of ray paths and traveltimes for a given ele-mentary wave is equivalent to that of a transmission problem which is much easier to be treated with the formulae proposed. In the section of numerical examples, the proce... 相似文献
12.
The well‐known asymptotic fractional four‐parameter traveltime approximation and the five‐parameter generalised traveltime approximation in stratified multi‐layer transversely isotropic elastic media with a vertical axis of symmetry have been widely used for pure‐mode and converted waves. The first three parameters of these traveltime expansions are zero‐offset traveltime, normal moveout velocity, and quartic coefficient, ensuring high accuracy of traveltimes at short offsets. The additional parameter within the four‐parameter approximation is an effective horizontal velocity accounting for large offsets, which is important to avoid traveltime divergence at large offsets. The two additional parameters in the above‐mentioned five‐parameter approximation ensure higher accuracy up to a given large finite offset with an exact match at this offset. In this paper, we propose two alternative five‐parameter traveltime approximations, which can be considered extensions of the four‐parameter approximation and an alternative to the five‐parameter approximation previously mentioned. The first three short‐offset parameters are the same as before, but the two additional long‐offset parameters are different and have specific physical meaning. One of them describes the propagation in the high‐velocity layer of the overburden (nearly horizontal propagation in the case of very large offsets), and the other characterises the intercept time corresponding to the critical slowness that includes contributions of the lower velocity layers only. Unlike the above‐mentioned approximations, both of the proposed traveltime approximations converge to the theoretical (asymptotic) linear traveltime at the limit case of very large (“infinite”) offsets. Their accuracy for moderate to very large offsets, for quasi‐compressional waves, converted waves, and shear waves polarised in the horizontal plane, is extremely high in cases where the overburden model contains at least one layer with a dominant higher velocity compared with the other layers. We consider the implementation of the proposed traveltime approximations in all classes of problems in which the above‐mentioned approximations are used, such as reflection and diffraction analysis and imaging. 相似文献
13.
Wave propagation in a finely layered medium is a very important topic in seismic modelling and inversion. Here we analyse non‐vertical wave propagation in a periodically layered transversely isotropic (VTI) medium and show that the evanescent (attenuation) zones in the frequency‐horizontal slowness domain result in caustics in the group velocity domain. These caustics, which may appear for both the quasi‐compressional (qP) and quasi‐shear (qSV) wave surfaces are frequency dependent but display weak dependence at low frequencies. The caustics computed for a specific frequency differ from those observed at the low‐ and high‐frequency limits. We illustrate these caustics with a few numerical examples and snapshots computed for both qP‐ and qSV‐wave types. 相似文献
14.
Transverse isotropy with a vertical axis of symmetry is a common form of anisotropy in sedimentary basins, and it has a significant influence on the seismic amplitude variation with offset. Although exact solutions and approximations of the PP-wave reflection coefficient for the transversely isotropic media with vertical axis of symmetry have been explicitly studied, it is difficult to apply these equations to amplitude inversion, because more than three parameters need to be estimated, and such an inverse problem is highly ill-posed. In this paper, we propose a seismic amplitude inversion method for the transversely isotropic media with a vertical axis of symmetry based on a modified approximation of the reflection coefficient. This new approximation consists of only three model parameters: attribute A, the impedance (vertical phase velocity multiplied by bulk density); attribute B, shear modulus proportional to an anellipticity parameter (Thomsen's parameter ε−δ); and attribute C, the approximate horizontal P-wave phase velocity, which can be well estimated by using a Bayesian-framework-based inversion method. Using numerical tests we show that the derived approximation has similar accuracy to the existing linear approximation and much higher accuracy than isotropic approximations, especially at large angles of incidence and for strong anisotropy. The new inversion method is validated by using both synthetic data and field seismic data. We show that the inverted attributes are robust for shale-gas reservoir characterization: the shale formation can be discriminated from surrounding formations by using the crossplot of the attributes A and C, and then the gas-bearing shale can be identified through the combination of the attributes A and B. We then propose a rock-physics-based method and a stepwise-inversion-based method to estimate the P-wave anisotropy parameter (Thomsen's parameter ε). The latter is more suitable when subsurface media are strongly heterogeneous. The stepwise inversion produces a stable and accurate Thomsen's parameter ε, which is proved by using both synthetic and field data. 相似文献
15.
Simultaneous estimation of velocity gradients and anisotropic parameters from seismic reflection data is one of the main challenges in transversely isotropic media with a vertical symmetry axis migration velocity analysis. In migration velocity analysis, we usually construct the objective function using the l2 norm along with a linear conjugate gradient scheme to solve the inversion problem. Nevertheless, for seismic data this inversion scheme is not stable and may not converge in finite time. In order to ensure the uniform convergence of parameter inversion and improve the efficiency of migration velocity analysis, this paper develops a double parameterized regularization model and gives the corresponding algorithms. The model is based on the combination of the l2 norm and the non‐smooth l1 norm. For solving such an inversion problem, the quasi‐Newton method is utilized to make the iterative process stable, which can ensure the positive definiteness of the Hessian matrix. Numerical simulation indicates that this method allows fast convergence to the true model and simultaneously generates inversion results with a higher accuracy. Therefore, our proposed method is very promising for practical migration velocity analysis in anisotropic media. 相似文献
16.
Slowness domain offset and traveltime approximations in layered vertical transversely isotropic media 下载免费PDF全文
Considering horizontally layered transversely isotropic media with vertical symmetry axis and all types of pure‐mode and converted waves we present a new wide‐angle series approximation for the kinematical characteristics of reflected waves: horizontal offset, intercept time, and total reflection traveltime as functions of horizontal slowness. The method is based on combining (gluing) both zero‐offset and (large) finite‐offset series coefficients. The horizontal slowness is bounded by the critical value, characterised by nearly horizontal propagation within the layer with the highest horizontal velocity. The suggested approximation uses five parameters to approximate the offset, six parameters to approximate the intercept time or the traveltime, and seven parameters to approximate any two or all three kinematical characteristics. Overall, the method is very accurate for pure‐mode compressional waves and shear waves polarised in the horizontal plane and for converted waves. The application of the method to pure‐mode shear waves polarised in the vertical plane is limited due to cusps and triplications. To demonstrate the high accuracy of the method, we consider a synthetic, multi‐layer model, and we plot the normalised errors with respect to numerical ray tracing. 相似文献
17.
Generalized non‐hyperbolic approximation for qP‐wave relative geometrical spreading in a layered transversely isotropic medium with a vertical symmetry axis 下载免费PDF全文
Compensation for geometrical spreading along the ray‐path is important in amplitude variation with offset analysis especially for not strongly attenuative media since it contributes to the seismic amplitude preservation. The P‐wave geometrical spreading factor is described by a non‐hyperbolic moveout approximation using the traveltime parameters that can be estimated from the velocity analysis. We extend the P‐wave relative geometrical spreading approximation from the rational form to the generalized non‐hyperbolic form in a transversely isotropic medium with a vertical symmetry axis. The acoustic approximation is used to reduce the number of parameters. The proposed generalized non‐hyperbolic approximation is developed with parameters defined by two rays: vertical and a reference rays. For numerical examples, we consider two choices for parameter selection by using two specific orientations for reference ray. We observe from the numerical tests that the proposed generalized non‐hyperbolic approximation gives more accurate results in both homogeneous and multi‐layered models than the rational counterpart. 相似文献
18.
Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P-mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P-mode wave by setting the axial S-wave phase velocity to zero. However, the separated pure P-wave of this approach is coupled with undesired S-wave in anisotropic media called S-wave artefacts. To eliminate the S-wave artefacts in acoustic waves for anisotropic media, we set the vertical S-wave phase velocity as a function related to propagation directions. Then, we derive a pure P-wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S-wave phase velocity. The differential form of new expression for pure P-wave is reduced to second-order by inserting the expression of S-wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P-wave equation. 相似文献
19.
By virtue of the precise integration method (PIM) and the technique of mixed variable formulations, solutions for the dynamic response of the multi-layered transversely isotropic medium subjected to the axisymmetric time-harmonic forces are presented. The planes of cross anisotropy are assumed to be parallel to the horizontal surface of the stratified media. Four kinds of vertically acting axisymmetric loads are prescribed either at the external surface or in the interior of the soil system. Thicknesses and number of the medium strata are not limited. Employing the Hankel integral transform in cylindrical coordinate, the axisymmetric governing equations in terms of displacements of the multi-layered media are uncoupled. Applying mixed variable formulations, more concise first-order ordinary differential matrix equations from the uncoupled motion equations can be obtained. Solutions of the ordinary differential matrix equations in the transformed domain are acquired by utilizing the approach of PIM. Since PIM is highly accurate to solve the sets of first-order ordinary differential equations, any desired accuracy of the solutions can be achieved. All calculations are based on the corresponding algebraic operations and computational efforts can be reduced to a great extent. Comparisons with the existing numerical solutions are made to confirm the accuracy of the present solutions proposed by this procedure. Several examples are illustrated to explore the influences of the type and degree of material anisotropy, the frequency of excitation and loading positions on the dynamic response of the stratified medium. 相似文献