首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Upper-mantle flow beneath French Polynesia from shear wave splitting   总被引:1,自引:0,他引:1  
Upper-mantle flow beneath the South Pacific is investigated by analysing shear wave splitting parameters at eight permanent long-period and broad-band seismic stations and 10 broad-band stations deployed in French Polynesia from 2001 to 2005 in the framework of the Polynesian Lithosphere and Upper Mantle Experiment (PLUME). Despite the small number of events and the rather poor backazimuthal coverage due to the geographical distribution of the natural seismicity, upper-mantle seismic anisotropy has been detected at all stations except at Tahiti where two permanent stations with 15 yr of data show an apparent isotropy. The median value of fast polarization azimuths (N67.5°W) is parallel to the present Pacific absolute plate motion direction in French Polynesia (APM: N67°W). This suggests that the observed SKS fast polarization directions result mainly from olivine crystal preferred orientations produced by deformation in the sublithospheric mantle due to viscous entrainment by the moving Pacific Plate and preserved in the lithosphere as the plate cools. However, analysis of individual measurements highlights variations of splitting parameters with event backazimuth that imply an actual upper-mantle structure more complex than a single anisotropic layer with horizontal fast axis. A forward approach shows that a two-layer structure of anisotropy beneath French Polynesia better explains the splitting observations than a single anisotropic layer. Second-order variations in the measurements may also indicate the presence of small-scale lateral heterogeneities. The influence of plumes or fracture zones within the studied area does not appear to dominate the large-scale anisotropy pattern but may explain these second-order splitting variations across the network.  相似文献   

7.
8.
Basement depth in the Arabian plate beneath eastern Syria is found to be much deeper than previously supposed. Deep-seated faulting in the Euphrates fault system is also documented. Data from a detailed 300 km long reversed refraction profile, with offsets up to 54 km, are analysed and interpreted, yielding a velocity model for the upper 9 km of continental crust. The interpretation integrates the refraction data with seismic-reflection profiles, well logs and potential field data, such that the results are consistent with all available information. A model of sedimentary thicknesses and seismic velocities throughout the region is established. Basement depth on the north side of the Euphrates is interpreted to be around 6 km, whilst south of the Euphrates basement depth is at least 8.5 km. Consequently, the potentially hydrocarbon-rich pre-Mesozoic section is shown, in places, to be at least 7 km thick. The dramatic difference in basement depth on adjacent sides of the Euphrates graben system may suggest that the Euphrates system is a suture/shear zone, possibly inherited from Late Proterozoic accretion of the Arabian plate. Gravity modelling across the southeast Euphrates system tends to support this hypothesis. Incorporation of previous results allows us to establish the first-order trends in basement depth throughout Syria  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
Broad-band P - and S -waves from earthquakes in South America recorded at Californian network stations are analysed to image lateral variations of the D"-discontinuity beneath the Cocos plate. We apply two array processing methods to the data set: a simplified migration method to the P -wave data set and a double-array method to both the P - and S -wave data sets, allowing us to compare results from the two methods. The double-array method images a dipping reflector at a depth range from 2650 to 2700 km in the southern part of the study area. We observe a step-like topography of 100 km to a shallower reflector at about 2600 km depth to the north, as well as evidence for a second (deeper) reflector at a depth range from 2700 to 2750 km in the north. Results from the simplified migration agree well with those from the double-array method, similarly locating a large step in reflector depth in a similar location (about 2650 km depth in the south and about 2550 km in the north) as well as the additional deeper reflector at the depth of about 2750 km in the north. Waveform modelling of the reflected waves from both methods suggests a positive velocity contrast for S waves, but a negative velocity contrast for P waves for the upper reflector in agreement with predictions from mineral physical calculations for a post-perovskite phase transition. The data also show some evidence for the existence of another deeper reflector that could indicate a double intersection of the geotherm with the post-perovskite stability field, that is, the back-transformation of post-perovskite to perovskite close to the core–mantle boundary.  相似文献   

18.
19.
A whole mantle SH velocity model is obtained by using a unique data set and techniques. Body and surface waveforms including major and multi-orbit phases are used as a data set and are inverted by using 3-D Born kernels. The resultant model, SH18CE, reveals the different natures of the two major upwelling systems: the strong low velocity anomalies beneath Africa extend for more than 1000 km from the core–mantle boundary (CMB), whereas those beneath the Pacific are restricted to 300–400 km from the CMB. The results also show the variable natures of stagnant slabs on the 670 discontinuity around Japan: the depths of the strongest high velocity anomalies within the stagnant slabs are different region by region, which is consistent with the detailed delay time tomography model in this area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号