首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global Navigation Satellite Systems (GNSS) require mitigation of ionospheric propagation errors because the ionospheric range errors might be larger than tens of meters at the zenith direction. Taking advantage of the frequency-dispersive property of ionospheric refractivity, the ionospheric range errors can be mitigated in dual-frequency applications to a great extent by a linear combination of carrier phases or pseudoranges. However, single-frequency GNSS operations require additional ionospheric information to apply signal delay or range error corrections. To aid single-frequency operations, the global positioning system (GPS) broadcasts 8 coefficients as part of the navigation message to drive the ionospheric correction algorithm (ICA) also known as Klobuchar model. We presented here an ionospheric correction algorithm called Neustrelitz TEC model (NTCM) which can be used as complementary to the GPS ICA. Our investigation shows that the NTCM can be driven by Klobuchar model parameters to achieve a significantly better performance than obtained by the mother ICA algorithm. Our research, using post-processed reference total electron content (TEC) data from more than one solar cycle, shows that on average the RMS modeled TEC errors are up to 40% less for the proposed NTCM model compared to the Klobuchar model during high solar activity period, and about 10% less during low solar activity period. Such an approach does not require major technology changes for GPS users rather requires only introducing the NTCM approach a complement to the existing ICA algorithm while maintaining the simplicity of ionospheric range error mitigation with an improved model performance.  相似文献   

2.
Ionospheric delay is a dominant error source in Global Navigation Satellite System (GNSS). Single-frequency GNSS applications require ionospheric correction of signal delay caused by the charged particles in the earth’s ionosphere. The Chinese Beidou system is developing its own ionospheric model for single-frequency users. The number of single-frequency GNSS users and applications is expected to grow fast in the next years in China. Thus, developing an appropriate ionospheric model is crucially important for the Chinese Beidou system and worldwide single-frequency Beidou users. We study the performance of five globally accessible ionospheric models Global Ionospheric Map (GIM), International Reference Ionosphere (IRI), Parameterized Ionospheric Model (PIM), Klobuchar and NeQuick in low- and mid-latitude regions of China under mid-solar activity condition. Generally, all ionospheric models can reproduce the trend of diurnal ionosphere variations. It is found that all the models have better performances in mid-latitude than in low-latitude regions. When all the models are compared to the observed total electron content (TEC) data derived from GIM model, the IRI model (2012 version) has the best agreement with GIM model and the NeQuick has the poorest agreement. The RMS errors of the IRI model using the GIM TEC as reference truth are about 3.0–10.0 TECU in low-latitude regions and 3.0–8.0 TECU in mid-latitude regions, as observed during a period of 1 year with medium level of solar activity. When all the ionospheric models are ingested into single-frequency precise point positioning (PPP) to correct the ionospheric delays in GPS observations, the PIM model performs the best in both low and mid-latitudes in China. In mid-latitude, the daily single-frequency PPP accuracy using PIM model is ~10 cm in horizontal and ~20 cm in up direction. At low-latitude regions, the PPP error using PIM model is 10–20 cm in north, 30–40 cm in east and ~60 cm in up component. The single-frequency PPP solutions indicate that NeQuick model has the lowest accuracy among all the models in both low- and mid-latitude regions of China. This study suggests that the PIM model may be considered for single-frequency GNSS users in China to achieve a good positioning accuracy in both low- and mid-latitude regions.  相似文献   

3.
In Global Navigation Satellite Systems (GNSS) using L-band frequencies, the ionosphere causes signal delays that correspond with link related range errors of up to 100 m. In a first order approximation the range error is proportional to the total electron content (TEC) of the ionosphere. Whereas this first order range error can be corrected in dual-frequency measurements by a linear combination of carrier phase- or code-ranges of both frequencies, single-frequency users need additional information to mitigate the ionospheric error. This information can be provided by TEC maps deduced from corresponding GNSS measurements or by ionospheric models. In this paper we discuss and compare different ionospheric correction methods for single-frequency users. The focus is on the comparison of the positioning quality using dual-frequency measurements, the Klobuchar model, the NeQuick model, the IGS TEC maps, the Neustrelitz TEC Model (NTCM-GL) and the reconstructed NTCM-GL TEC maps both provided via the ionosphere data service SWACI (http://swaciweb.dlr.de) in near real-time. For that purpose, data from different locations covering several days in 2011 and 2012 are investigated, including periods of quiet and disturbed ionospheric conditions. In applying the NTCM-GL based corrections instead of the Klobuchar model, positioning accuracy improvements up to several meters have been found for the European region in dependence on the ionospheric conditions. Further in mid- and low-latitudes the NTCM-GL model provides results comparable to NeQuick during the considered time periods. Moreover, in regions with a dense GNSS ground station network the reconstructed NTCM-GL TEC maps are partly at the same level as the final IGS TEC maps.  相似文献   

4.
不同NeQuick电离层模型参数的应用精度分析   总被引:3,自引:2,他引:1  
Galileo采用NeQuick作为全球广播电离层模型,其实际应用中以有效电离水平因子Az代替太阳活动指数作为NeQuick的输入参数,并利用二次多项式拟合得到广播星历中播发的3个电离层参数。本文在总结和讨论NeQuick模型参数估计方法及其变化特征的基础上,分别以全球电离层格网、GPS基准站及JASON-2测高卫星提供的电离层TEC为参考,分析不同NeQuick模型参数(包括以太阳活动参数F10.7为输入的NeQuick2、以本文解算参数为输入的NeQuickC和以Galileo广播电离层参数为输入的NeQuickG)在全球大陆及海洋地区的应用精度,并与GPS广播的Klobuchar模型对比。结果表明,NeQuickG在全球范围内的修正精度为54.2%~65.8%,NeQuickC的修正精度为71.1%~74.2%,NeQuick2的修正精度与NeQuickG相当,略优于GPS广播星历中播发的Klobuchar模型。  相似文献   

5.
NeQuick电离层模型在中国地区的应用   总被引:4,自引:0,他引:4  
电离层延迟是影响GPS绝对定位精度的主要因素,对单频接收机尤为明显,Galileo系统广播星历拟采用NeQuick模型作为其电离层模型。本文介绍了NeQuick模型及其模型最优化,给出了利用NeQuick模型计算电离层总电子含量(TEC)的方法,利用国内部分观测台链提供的北京和武汉的TEC,并与NeQuick模型所给出的结果进行对比分析,最后给出NeQuick模型在中国地区使用的初步结论。  相似文献   

6.
High-frequency variability of the ionosphere, or irregularities, constitutes the main threat for real-time precise positioning techniques based on Global Navigation Satellite Systems (GNSS) measurements. Indeed, during periods of enhanced ionospheric variability, GNSS users in the field—who cannot verify the integrity of their measurements—will experience positioning errors that can reach several decimeters, while the nominal accuracy of the technique is cm-level. In the frame of this paper, a climatological analysis of irregularities over the European mid-latitude region is presented. Based on a 10 years GPS dataset over Belgium, the work analyzes the occurrence rate (as a function of the solar cycle, season and local time) as well as the amplitude of ionospheric irregularities observed at a single GPS station. The study covers irregularities either due to space weather events (solar origin) or of terrestrial origin. If space weather irregularities are responsible for the largest effects in terms of ionospheric error, their occurrence rate highly depends on solar activity. Indeed, the occurrence rate of ionospheric irregularities is about 9 % during solar maximum, whereas it drops to about 0 % during medium or low solar activity periods. Medium-scale ionospheric disturbances (MSTIDs) occurring during daytime in autumn/winter are the most recurrent pattern of the time series, with yearly proportions slightly varying with the solar cycle and an amplitude of about 10 % of the TEC background. Another recurrent irregularity type, though less frequent than MSTIDs, is the noise-like variability in TEC observed during summer nighttime, under quiet geomagnetic conditions. These summer nighttime irregularities exhibit amplitudes ranging between 8 and 15 % of the TEC background.  相似文献   

7.
针对现有全球卫星导航系统性能评估无规范的评估标准问题,该文提出了以统一模型和算法为评估体系的方法,较详细的评估了全球卫星导航系统公开服务信号的基本性能,主要评估了空间信号误差、广播电离层模型改正效率及伪距单点定位精度等。结果表明:空间信号误差方面,伽利略最优、GPS和北斗三号相当;广播电离层模型方面,北斗全球广播电离层模型改正效果最优,GPSK8与NeQuick模型在低中纬度改正效果相当,北斗区域电离层模型在其服务区内具有较高改正效果;定位方面,北斗、GPS和伽利略静态伪距单点定位的三维位置均方根误差优于5m,格洛纳斯优于10 m;动态伪距单点定位方面,北斗在中国境内定位精度最高;基于统一评估体系下,可以直观对比得到目前各卫星导航系统的性能差异,同时也为后续的建设提供相应的参考。  相似文献   

8.
探讨了几种新的电离层延迟改正算法,通过算例检验了新方案的效率和可行性,对不同精度用户选取电离层延迟改正方案给出了建议。  相似文献   

9.
介绍了Galileo单点定位数学模型,在对各项误差进行改正的基础上,利用MGEX跟踪站连续7d的IOV卫星观测数据进行Galileo伪距单点定位试算。结果表明,基于4颗IOV卫星的Galileo单点定位的性能低于全星座的GPS单点定位,其中Galileo单点定位的水平方向精度优于4.5m,高程方向精度优于9.0m。相比于GPS单系统,增加Galileo卫星后的GPS/Galileo组合单点定位在3个坐标分量上的定位精度均有不同程度的提高。  相似文献   

10.
适用于不同尺度区域的Klobuchar-like电离层模型   总被引:1,自引:0,他引:1  
刘宸  刘长建  冯绪  许岭峰  杜莹 《测绘学报》2016,45(Z2):54-63
导航定位中运用最广泛的电离层修正模型是Klobuchar模型,但经典的Klobuchar模型不能满足日益增长的导航定位精度的需求,因此不同的精化模型被提出。本文利用GIMs分析了夜间电离层随地方时的变化和电离层电子总含量随纬度的变化情况,在对各种适用范围较广的模型精化方案进行归纳总结的基础上,提出了一种适用于不同尺度区域的Klobuchar-like模型,并利用不同太阳活动时期不同季节的GIMs建立了适用于单站、大区域和全球的Klobuchar-like模型、14参数Klobuchar模型和8参数Klobuchar模型。Klobuchar-like模型单站、区域、全球的修正率分别达到了92.96%、91.55%、72.67%,均高于14参数、8参数Klobuchar模型和GPS Klobuchar模型,表明了该模型的有效性与实用性。  相似文献   

11.
The use of observations from the Global Positioning System (GPS) has significantly impacted the study of the ionosphere. As it is widely known, dual-frequency GPS observations can provide very precise estimation of the slant Total Electron Content (sTEC—the linear integral of the electron density along a ray-path) and that the precision level is bounded by the carrier-phase noise and multi-path effects on both frequencies. Despite its precision, GPS sTEC estimations can be systematically affected by errors in the estimation of the satellites and receivers by Inter-Frequency Biases (IFB) that are simultaneously determined with the sTEC. Thus, the ultimate accuracy of the GPS sTEC estimation is determined by the errors with which the IFBs are estimated. This contribution attempts to assess the accuracy of IFBs estimation techniques based on the single layer model for different ionospheric regions (low, mid and high magnetic latitude); different seasons (summer and winter solstices and spring and autumn equinoxes); different solar activity levels (high and low); and different geomagnetic conditions (quiet and very disturbed). The followed strategy relies upon the generation of a synthetic data set free of IFB, multi-path, measurement noise and of any other error source. Therefore, when a data set with such properties is used as the input of the IFB estimation algorithms, any deviation from zero on the estimated IFBs should be taken as indications of the errors introduced by the estimation technique. The truthfulness of this assessment work is warranted by the fact that the synthetic data sets resemble, as realistically as possible, the different conditions that may happen in the real ionosphere. The results of this work show that during the high solar activity period the accuracy for the estimated sTEC is approximately of ±10 TECu for the low geomagnetic region and of ±2.2 TECu for the mid-latitude. During low solar activity the accuracy can be assumed to be in the order of ±2 TECu. For the geomagnetic high-disturbed period, the results show that the accuracy is degraded for those stations located over the region where the storm has the strongest impact, but for those stations over regions where the storm has a moderate effect, the accuracy is comparable to that obtained in the quiet period.  相似文献   

12.
Ionospheric TEC predictions over a local area GPS reference network   总被引:4,自引:0,他引:4  
Single layer ionosphere models are frequently used for ionospheric modeling and estimation using GPS measurements from a network of GPS reference stations. However, the accuracies of single layer models are inherently constrained by the assumption that the ionospheric electrons are concentrated in a thin shell located at an altitude of about 350 km above Earths surface. This assumption is only an approximation to the physical truth because the electrons are distributed in the entire ionosphere region approximately from 50 to 1,000 km. To provide instantaneous ionospheric corrections for the real-time GPS positioning applications, the ionospheric corrections need to be predicted in advance to eliminate the latency caused by the correction computation. This paper will investigate ionospheric total electron content (TEC) predictions using a multiple-layer tomographic method for ionospheric modeling over a local area GPS reference network. The data analysis focuses on the accuracy evaluation of short-term (5 min in this study) TEC predictions. The results have indicated that the obtainable TEC prediction accuracy is at a level of about 2.8 TECU in the zenith direction and 95% of the total electron content can be recovered using the proposed tomography-based ionosphere model.  相似文献   

13.
电离层延迟是影响导航定位精度的最主要因素。北斗卫星导航系统采用Klobuchar模型修正单频接收机用户的电离层延迟误差,对于双频接收机,可以利用不同频率信号的伪距观测数据解算得到电离层延迟值。为比较两种方法在天津地区的电离层延迟修正效果,利用NovAtel GPStation6接收机(GNSS电离层闪烁和TEC监测接收机)采集到的卫星实测数据进行计算。以国际全球导航卫星系统服务组织(IGS)发布的全球电离层格网数据为参考,对两种方法的修正效果进行比较分析。结果表明,在天津地区,利用双频观测值解算电离层延迟比Klobuchar模型计算结果更加精确,且平均每天的修正值达到IGS发布数据的82.11%,比Klobuchar模型计算值高948%   相似文献   

14.
Patricia Doherty joins the regular contributors of this column to discuss the correlation between measurements of solar 10.7 cm radio flux and ionospheric range delay effects on GPS. Mrs. Doherty has extensive experience in the analysis of ionospheric range delays from worldwide systems and in the utilization and development of analytical and theoretical models of the Earth's ionosphere. Ionospheric range delay effects on GPS and other satellite ranging systems are directly proportional to the Total Electron Content (TEC) encountered along slant paths from a satellite to a ground location. TEC is a highly variable and complex parameer that is a function of geographic location, local time, season, geomagnetic activity, and solar activity. When insufficiently accounted for, ionospheric TEC can seriously limit the performance of satellite ranging applications. Since the ionosphere is a dispersive medium, dual-frequency Global Positoning System (GPS) users can make automatic corrections for ionospheric range delay by computing the apparent difference in the time delays between the two signals. Single-frequency GPS users must depend on alternate methods to account for the ionospheric range delay. Various models of the ionosphere have been used to provide estimates of ionospheric range delay. These models range from the GPS system's simple eight-coefficient algorithm designed to correct for approximately 50% rms of the TEC, to state-of-the-art models derived from physical first principles, which can correct for up to 70 to 80% rms of the TEC but at a much greater computational cost. In an effort to improve corrections for the day-to-day variability of the ionosphere, some attempts have been made to predict the TEC by using the daily values of solar 10.7 cm radio flux (F10,7). The purpose of this article is to show that this type of prediction is not useful due to irregular, and sometimes very poor, correlation between daily values of TEC and F10.7. Long-term measurements of solar radio flux, however, have been shown to be well correlated with monthly mean TEC, as well as with the critical frequency of the inonospheric F2 region (foF2), which is proportional to the electron density at the peak of the ionospheric F2 region. ? 2000 John Wiley & Sons, Inc.  相似文献   

15.
Evaluation of COMPASS ionospheric grid   总被引:1,自引:0,他引:1  
As an important component of the augmentation service, the ionospheric grid contributes to improving single-frequency positioning accuracy. The ionospheric delay corrections are broadcast as vertical delay estimates at specified ionospheric grid points (IGPs) for most satellite-based augmentation system, where the IGPs are predefined with a resolution of 5° and 5° in latitude and longitude. Different from the general strategy, the COMPASS IGPs are predefined with a resolution of 2.5° and 5° in latitude and longitude. The need for this special IGPs distribution is investigated with experiments using real data. The performance of the COMPASS ionospheric grid is analyzed in terms of accuracy and availability. Comparing the performance of the special IGPs distribution with that of 5° × 5° IGPs, the results show that the ionospheric correction improves by 0.2 m and the 3D positioning accuracy improves by 1 m in middle-low latitude regions. The RMS of the COMPASS grid ionospheric correction accuracy is better than 0.5 m in most regions of the China mainland, and the availability is better than 95 % except in the northeast, northwest and outside China. In addition, we investigated the performance of the method that combined the inverse distance weighted and spherical harmonics grid modeling algorithm. Simulations show that the new method clearly improves grid availability. The mean availability in the mainland is better than 99 %.  相似文献   

16.
星基增强系统(satellite based augmentation system,SBAS)通过地球同步轨道卫星实时播发导航卫星星历改正数和完好性参数,以提升用户定位精度和完好性.采用最小方差法解算GPS星历改正数,利用卡方统计进行改正数完好性检核,并依据星历改正数方差-协方差信息计算SBAS用户差分距离误差(us...  相似文献   

17.
电离层误差是影响单频用户机定位精度的主要误差源。卫星导航系统播发电离层模型改正参数供用户使用,模型改正精度会对定位结果产生直接影响。北斗卫星导航系统根据连续监测站实测数据,计算并发播地理坐标系下8参数Klobuchar电离层模型参数,且每2 h更新一次。为了科学评估北斗电离层模型改正效果,文中基于北斗最新观测数据,首先,以CODE提供的GIM模型作为比对基准,详细分析了不同纬度地区、不同时间段内的电离层模型改正精度;其次,分别按照以下定位模式进行计算:1)北斗单频不加电离层改正,2)北斗单频+北斗K8模型,3)北斗单频+GPS K8模型,并分析了电离层改正残差对定位结果影响大小。结果表明,北斗电离层模型改正精度在北半球优于南半球,中纬度地区改正效果最好,其改正残差RMS均值在0.6 m左右,往低纬和高纬度地区呈递减趋势;北京地区北斗单频+北斗K8模型定位精度优于GPS K8模型。  相似文献   

18.
The performance of a three-dimensional ionospheric electron density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model (TWIM), in removing the ionospheric delays in single-frequency pseudorange observations is presented. Positioning results using TWIM have been compared with positioning results using other ionospheric models, such as the Klobuchar (KLOB) and the global ionospheric model (GIM). C/A code pseudoranges have been observed at three International GPS Service reference stations that are representative of mid-latitude (BOR1 and IRKJ) and low-latitude (TWTF) regions of the ionosphere. The observations took place during 27 geomagnetically quiet days from April 2010 to October 2011. We perform separate solutions using the TWIM, KLOB, GIM ionospheric models and carry out a solution applying no ionospheric correction at all. We compute the daily mean horizontal errors (DMEAN) and the daily RMS (DRMS) for these solutions with respect to the published reference station coordinates. It has demonstrated that TEC maps generate using the TWIM exhibit a detailed structure of the ionosphere, particularly at low-latitude region, whereas the Klobuchar and the GIM only provide the basic diurnal and geographic features of the ionosphere. Also, it is shown that even for lower satellite elevations, the TWIM provides better positioning than the Klobuchar and GIM models. Specifically, using TWIM, the difference of the uncorrected solution (no ionospheric correction), and the other solutions, relative to the uncorrected solution, is 45 % for the mean horizontal error (DMEAN) and 42 % for the horizontal root-mean-square error (DRMS). Using Klobuchar and GIM, the percent for DMEAN only reaches to about 12 % and 3 %, while the values for the DRMS are only 12 and 4 %, respectively. In the vertical direction, all models have a percentage of about 99 and 70 % for the mean vertical error (VMEAN) and vertical root-mean-square error (VRMS), respectively. These percentages show the greater impact of TWIM on the ionospheric correction compared to the other models. In at least 40 % of the observed days and across all stations, TWIM has the smallest DMEAN, VMEAN, DRMS, and VRMS daily values. These values reach 100 % at station TWTF. This shows the overall performance of TWIM is better than the Klobuchar and GIM.  相似文献   

19.
非差非组合精密单点定位需要估计电离层延迟参数,采用电离层先验改正模型约束可以辅助电离层参数解算。针对先验电离层改正量与实际观测量之间权比关系难以确定的问题,本文提出一种电离层约束权因子搜索算法,采用权因子对先验电离层改正量的方差进行调整,根据验后残差加权平方和最小原则通过搜索找出较优的权因子,利用验后残差动态调整先验电离层改正量的方差从而达到改善定位结果的目的。采用8个MGEX跟踪站的GPS/BDS观测数据对该算法进行验证。静态结果表明:对比传统约束方法,采用搜索算法后平均三维定位精度由3.96 cm提高到3.40 cm,平均收敛时间由76.3 min缩短为59.9 min。  相似文献   

20.
针对分米级星基增强服务的需求,提出一种满足用户基于相位观测值进行单站定位的分区综合改正模型。该模型利用参考站网的观测数据,实时计算参考站对每颗卫星伪距和相位观测值的综合改正数,并将综合改正数按照分区的方式编排到广播电文并广播给用户使用。本文介绍了模型的原理,并分析了参数播发频度、用户站与分区中心距离等因素对用户定位的影响。建立基于分区综合改正数的星基增强数据处理系统,采用分布于中国不同区域的北斗观测站数据对系统性能进行评估。结果表明,双频用户动态定位平均10 min内收敛至误差小于1 m,平均平面精度能达到15 cm,高程精度达到20 cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号