首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Wetlands are ecosystems of important functions in the earth??s climate system. Through relatively high evapotranspiration, they affect surface water and energy exchange with the atmosphere directly influencing the physical climate. Through CH4, CO2 and N2O fluxes, they regulate the biogeochemical cycles, indirectly influencing the physical climate. However, current models do not explicitly include the water table, present under all large and stable wetlands; model wetlands are identified as flat land with wet soil resulting from precipitation events. That is, the wetlands are only ??wetted?? from above but not from below by the high water table. Furthermore, without the knowledge of the water table position, estimates of CH4 and other gases (e.g., CO2 and N2O) are poorly constrained. We present a simple hydrologic framework for simulating wetlands based on water table depth. A synthesis of hydrologic controls on wetlands highlights the key role that groundwater plays. It directly feeds wetlands, supports surface-water fed wetlands by maintaining a saturated substrate, and links land drainage to sea level by impeding drainage in lowlands. Forced by routine climate model output (precipitation?Cevapotranspiration-surface runoff), land topography, and sea level, we simulate the present-day water table in North America at the 1?km scale. We validate the simulation with water table observations and compare regions of shallow water table to mapped wetlands. Our results show that the framework captures the salient features of wetland distribution and extent at regional and continental scales, a direct result of large-scale groundwater convergence that nourishes the lowlands even in arid climates. The low requirement of forcing and computation make the framework easy to adopt in climate and earth system models for simulating wetland responses to climate and sea level change for the present, paleo reconstructions, and future projections.  相似文献   

2.
 Wetland regions are important components of the local climate, with their own characteristic surface energy and moisture budgets. Realistic representation of wetlands, including the important vegetation component, may therefore be necessary for more accurate simulations of climate and climate change. However, many land-atmosphere coupled models either ignore wetlands or treat wetlands as bare, water-saturated soil, neglecting the vegetation present within wetland environments. This study investigates the possible response of the mid-Holocene climate of North Africa to changes in orbital forcing, both with and without the presence of wetlands. The location of these wetlands is guided by analysis of paleovegetation and wetland distribution. In this study, the wetland regime in the land surface component of a climate model was modified to incorporate vegetation. Field measurements have shown that vegetation affects water loss associated with evaporation (including transpiration) within a wetland area. Comparisons between non-vegetated wetland and vegetated wetland revealed an increase in local albedo that produced an associated decrease in net radiation, evaporation and precipitation in the vicinity of the wetlands regions. Based on an analysis of the model surface water balance, the calculated area of mid-Holocene wetland coverage for North Africa closely matches the observed. For the North African region as a whole, the effects of adding vegetation to the wetland produced relatively small changes in climate, but local recycling of water may have served to help maintain paleo wetland communities. Received: 16 March 1999 / Accepted: 17 May 2000  相似文献   

3.
The prairie pothole region (PPR) in the north-central United States and south-central Canada constitutes the most important waterfowl breeding area in North America. Projected long-term changes in precipitation and temperature may alter the drivers of waterfowl abundance: wetland availability and emergent vegetation cover. Previous studies have focused on isolated wetland dynamics, but the implications of changing precipitation on managed, river-fed wetlands have not been addressed. Using a structured decision making (SDM) approach, we derived optimal water management actions for 20 years at four river-fed National Wildlife Refuges (NWRs) in North and South Dakota under contrasting increasing/decreasing (+/?0.4 %/year) inflow scenarios derived from empirical trends. Refuge pool depth is manipulated by control structures. Optimal management involves setting control structure heights that have the highest probability of providing a desired mix of waterfowl habitat, given refuge capacities and inflows. We found optimal seasonal control structure heights for each refuge were essentially the same under increasing and decreasing inflow trends of 0.4 %/year over the next 20 years. Results suggest managed pools in the NWRs receive large inflows relative to their capacities. Hence, water availability does not constrain management; pool bathymetry and management tactics can be greater constraints on attaining management objectives than climate-mediated inflow. We present time-dependent optimal seasonal control structure heights for each refuge, which are resilient to the non-stationary precipitation scenarios we examined. Managers can use this information to provide a desired mixture of wildlife habitats, and to re-assess management objectives in reserves where pool bathymetry prevents attaining the currently stated objectives.  相似文献   

4.
Changing climate could affect the functioning of grassland ecosystems through variation in climate forcings and by altering the interactions of forcings with ecological processes. Both the short and long-term effects of changing forcings and ecosystem interactions are a critical part of future impacts to ecosystem ecology and hydrology. To explore these interactions and identify possible characteristics of climate change impacts to mesic grasslands, we employ a low-dimensional modeling framework to assess the IPCC A1B scenario projections for the Central Plains of the United States; forcings include increased precipitation variability, increased potential evaporation, and earlier growing season onset. These forcings are also evaluated by simulations of vegetation photosynthetic capacity to explore the seasonal characteristics of the vegetation carbon assimilation response for species at the Konza Prairie in North Central Kansas, USA. The climate change simulations show decreases in mean annual soil moisture and and carbon assimilation and increased variation in water and carbon fluxes during the growing season. Simulations of the vegetation response show increased variation at the species-level instead of at a larger class scale, with important heterogeneity in how individual species respond to climate forcings. Understanding the drivers and relationships behind these ecosystem responses is important for understanding the likely scale of climate change impacts and for exploring the mechanisms shaping growing season dynamics in grassland ecosystems.  相似文献   

5.
Based on the remote sensing and meteorological data collected from the 1981–2004 period, we calculated the alpine grassland Net Primary Productivity (NPP) in Northern Tibet using the Carnegie–Ames–Stanford Approach (CASA), and subsequently analyzed the trend of grassland NPP changes and its response to climate change from 1981 to 2004. The results show that alpine grassland NPP in Northern Tibet was very low in the last 24 years with a relatively large yearly variation. Most of the grassland area (88.61%) in Northern Tibet did not show a significant annual NPP change. The area with a significant decrease of annual NPP variation accounted for only 11.30% of the total grasslands surface, whereas that with a significant increase accounted for 0.09%. In recent years, the precipitation variation in Northern Tibet resulted in an increase of grassland NPP, though solar radiation resulted in decreased grassland NPP. During the 1981–2004 period, total solar radiation, precipitation and temperature, with a decreasing impact magnitude factor, have impacted the grassland NPP in Northern Tibet. The impact of regional climate change on grassland NPP was overall more detrimental than positive.  相似文献   

6.
The natural Australian landscape sustains a mosaic of wetlands that range from permanently wet to temporary. This diversity of wetland types and habitats provides for diverse biotic communities, many of which are specific to individual wetlands. This paper explores the prospects for southern Australian wetlands under modified water regime and salinity induced by climatic changes. Extended droughts predicted as a consequence of climate change (lower rainfall and higher temperatures) combined with human-induced changes to the natural hydrological regime will lead to reductions in the amount of water available for environmental and anthropogenic uses. Reduced runoff and river flows may cause the loss of some temporary wetland types that will no longer hold water long enough to support hydric communities. Species distributions will shift and species extinctions may result particularly across fragmented or vulnerable landscapes. Accumulation of salts in wetlands shift species-rich freshwater communities to species-poor salt tolerant communities. Wetlands will differ in ecological response to these changes as the salinity and drying history of each wetland will determine its resilience: in the short term some freshwater communities may recover but they are unlikely to survive and reproduce under long term increased salinity and altered hydrology. In the long term such salinized wetlands with altered hydrology will need to be colonized by salt tolerant species adapted for the new hydrological conditions if they are to persist as functional wetlands. As the landscape becomes more developed, to accommodate the need for water in a warmer drying climate, increasing human intervention will result in a net loss of wetlands and wetland diversity.  相似文献   

7.
呼伦湖湿地消长对气象水文因子变化的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1961—2005年呼伦湖湿地的气象及水文资料,基于灰色关联度分析、Mann-Kendall检验及小波分析、回归统计等方法,分析了湿地消长对气象水文因子变化的响应特征。结果表明:年与夏季气候在湿地消长中起主导作用。区域年降水量每增加10 mm,年降水量的直接作用是使湿地水域面积和水位深度分别增加2.6 km2和1.6 cm;年径流量每增加1×108 m3,湿地水域面积和水位深度分别增加4.8 km2和3.0 cm。45年来,湿地消长对影响因子连续变化过程的响应特征具有一致性,特别在20世纪90年代后响应更显著,湿地萎缩加快;气温与降水量变化在湿地水域面积、水位深度消长中的贡献率分别为33.1%与66.9%,22.5%与77.5%,降水量变化起主导作用。湿地消长对影响因子的多时间尺度周期性具有很好的响应。在27年的年代际尺度主周期与11~16年次周期、2~10年年际尺度准周期的叠加作用下,45年来,湿地消长出现了2次减少、1次增加的周期过程,并呈现短周期波动特征。  相似文献   

8.
Extreme climate events have been increasing over much of the world, and dynamical models predict further increases in response to enhanced greenhouse forcing. We examine the ability of a high-resolution nested climate model, RegCM3, to capture the statistics of daily-scale temperature and precipitation events over the conterminous United States, using observational and reanalysis data for comparison. Our analyses reveal that RegCM3 captures the pattern of mean, interannual variability, and trend in the tails of the daily temperature and precipitation distributions. However, consistent biases do exist, including wet biases in the topographically-complex regions of the western United States and hot biases in the southern and central United States. The biases in heavy precipitation in the western United States are associated with excessively strong surface and low-level winds. The biases in daily-scale temperature and precipitation in the southcentral United States are at least partially driven by biases in circulation and moisture fields. Further, the areas of agreement and disagreement with the observational data are not intuitive from analyzing the simulated mean seasonal temperature and precipitation fields alone. Our evaluation should enable more informed application and improvement of high-resolution climate models for the study of future changes in socially- and economically-relevant temperature and precipitation events.  相似文献   

9.
Summary  The Regional Atmospheric Modeling System (RAMS) has been widely used to simulate relatively short-term atmospheric processes. To perform full-year to multi-year model integrations, a climate version of RAMS (ClimRAMS) has been developed, and is used to simulate diurnal, seasonal, and annual cycles of atmospheric and hydrologic variables and interactions within the central United States during 1989. The model simulation uses a 200-km grid covering the conterminous United States, and a nested, 50-km grid covering the Great Plains and Rocky Mountain states of Kansas, Nebraska, South Dakota, Wyoming, and Colorado. The model’s lateral boundary conditions are forced by six-hourly NCEP reanalysis products. ClimRAMS includes simplified precipitation and radiation sub-models, and representations that describe the seasonal evolution of vegetation-related parameters. In addition, ClimRAMS can use all of the general RAMS capabilities, like its more complex radiation sub-models, and explicit cloud and precipitation microphysics schemes. Thus, together with its nonhydrostatic and fully-interactive telescoping-grid capabilities, ClimRAMS can be applied to a wide variety of problems. Because of non-linear interactions between the land surface and atmosphere, simulating the observed climate requires simulating the observed diurnal, synoptic, and seasonal cycles. While previous regional climate modeling studies have demonstrated their ability to simulate the seasonal cycles through comparison with observed monthly-mean temperature and precipitation data sets, this study demonstrates that a regional climate model can also capture observed diurnal and synoptic variability. Observed values of daily precipitation and maximum and minimum screen-height air temperature are used to demonstrate this ability. Received September 27, 1999 Revised December 11, 1999  相似文献   

10.
内蒙古典型草原区近40年气候变化及其对土壤水分的影响   总被引:18,自引:0,他引:18  
分析气候变化对草原区土壤水分的影响对了解草原退化原因、恢复草原生态环境有重要的指导意义。根据近40年气象资料和近20年的土壤水分观测资料,利用线性趋势等数理统计方法,分析了内蒙古典型草原区气候变化趋势和对土壤水分变化的影响,得出内蒙古典型草原区近40年气候变化趋势与全球气候变化规律相似;影响土壤湿度的气象因子主要是降水和蒸发,温度通过影响蒸发而间接影响土壤湿度,蒸降差是分析气候变化对土壤水分影响的直观指标。气候变暖导致蒸发加剧,在降水增加不明显的条件下,加速了土壤干旱化程度。  相似文献   

11.
A Climate Version of the Regional Atmospheric Modeling System   总被引:1,自引:1,他引:0  
Summary The Regional Atmospheric Modeling System (RAMS) has been widely used to simulate relatively short-term atmospheric processes. To perform full-year to multi-year model integrations, a climate version of RAMS (ClimRAMS) has been developed, and is used to simulate diurnal, seasonal, and annual cycles of atmospheric and hydrologic variables and interactions within the central United States during 1989. The model simulation uses a 200-km grid covering the conterminous United States, and a nested, 50-km grid covering the Great Plains and Rocky Mountain states of Kansas, Nebraska, South Dakota, Wyoming, and Colorado. The model’s lateral boundary conditions are forced by six-hourly NCEP reanalysis products. ClimRAMS includes simplified precipitation and radiation sub-models, and representations that describe the seasonal evolution of vegetation-related parameters. In addition, ClimRAMS can use all of the general RAMS capabilities, like its more complex radiation sub-models, and explicit cloud and precipitation microphysics schemes. Thus, together with its nonhydrostatic and fully-interactive telescoping-grid capabilities, ClimRAMS can be applied to a wide variety of problems. Because of non-linear interactions between the land surface and atmosphere, simulating the observed climate requires simulating the observed diurnal, synoptic, and seasonal cycles. While previous regional climate modeling studies have demonstrated their ability to simulate the seasonal cycles through comparison with observed monthly-mean temperature and precipitation data sets, this study demonstrates that a regional climate model can also capture observed diurnal and synoptic variability. Observed values of daily precipitation and maximum and minimum screen-height air temperature are used to demonstrate this ability. Received September 27, 1999 Revised December 11, 1999  相似文献   

12.
A Ricardian analysis of US and Canadian farmland   总被引:1,自引:0,他引:1  
In this analysis, we undertake a comparative Ricardian analysis of agriculture between Canada and the United States. We find that the climate responses of the two countries are similar but statistically different despite the fact that the two countries are neighbors. Comparing the marginal impacts of climate change, we find that Canadian agriculture is unaffected by warmer temperatures but would benefit from more precipitation. US farms are much more sensitive to higher temperatures and benefit relatively less from increased precipitation. These marginal results were anticipated given that Canadian farms are generally cooler and drier than American farms.  相似文献   

13.
The nature of climate variability is such that decadal fluctuations in average temperature (up to 1 °C annually or 2 °C seasonally) and precipitation (approximately 10% annually), have occurred in most areas of the United States during the modern climate record (the last 60 years). The impact of these fluctuations on runoff was investigated, using data from 82 streams across the United States that had minimal human interference in natural flows. The effects of recent temperature fluctuations on streamflow are minimal, but the impact of relatively small fluctuations in precipitation (about 10%) are often amplified by a factor of two or more, depending on basin and climate characteristics. This result is particularly significant with respect to predicted changes in temperature due to the greenhouse effect. It appears that without reliable predictions of precipitation changes across drainage basins, little confidence can be placed in hypothesized effects of the warming on annual runoff.  相似文献   

14.
Effects of Land Use on the Climate of the United States   总被引:14,自引:0,他引:14  
Land use practices have replaced much of the natural needleleaf evergreen, broadleaf deciduous, and mixed forests of the Eastern United States with crops. To a lesser extent, the natural grasslands in the Central United States have also been replaced with crops. Simulations with a land surface process model coupled to an atmospheric general circulation model show that the climate of the United States with modern vegetation is significantly different from that with natural vegetation. Three important climate signals caused by modern vegetation are: (1) 1 °C cooling over the Eastern United States and 1 °C warming over the Western United States in spring; (2) summer cooling of up to 2 °C over a wide region of the Central United States; and (3) moistening of the near-surface atmosphere by 0.5 to 1.5 g kg-1over much of the United States in spring and summer. Although individual months show large, statistically significant differences in precipitation due to land-use practices, these differences average out over the course of the 3-month seasons. These changes in surface temperature and moisture extend well into the atmosphere, up to 500 mb, and affect the boundary layer and atmospheric circulation. The altered climate is due to reduced surface roughness, reduced leaf and stem area index, reduced stomatal resistance, and increased surface albedo with modern vegetation compared to natural vegetation. The climate change caused by land use practices is comparable to other well known anthropogenic climate forcings. For example, it would take 100 to 175 years at the current, observed rate of summer warming over the United States to offset the cooling from deforestation. The summer sulfate aerosol forcing completely offsets the greenhouse forcing over the Eastern United States. Similarly, the climatic effect of North American deforestation, with extensive summer cooling, further offsets the greenhouse forcing.  相似文献   

15.
Naturally-occurring wetlands perform such functions as flood control, pollution filtration, nutrient recycling, sediment accretion, groundwater recharge and water supply, erosion control, and plant and wildlife preservation. A large concentration of wetlands is located in Eastern Europe. A significant amount of Eastern European wetlands has been converted to agricultural use in the past, and remaining wetlands are subject to agricultural drainage. Drained wetlands are used as prime agriculture lands for a variety of food crops. Other agricultural uses of wetlands range from growing Phragmites australis (common reed) for thatch and livestock feed, to collecting peat for heating and cooking fuel. Altered hydrologic regimes due to global climate change could further exacerbate encroachment of agricultural land use into wetlands. The vulnerability and adaptation studies of the U.S. Country Studies Program are used to analyze where climate change impacts to agriculture may likewise impact wetland areas. Scenarios indicate higher temperatures and greater evapotranspiration altering the hydrologic regime such that freshwater wetlands are potentially vulnerable in Bulgaria, Czech Republic, and Russia, and that coastal wetlands are at risk in Estonia. Runoff is identified as a key hydrological parameter affecting wetland function. Since wetland losses may increase as a result of climate-change-induced impacts to agriculture, precautionary management options are reviewed, such as establishing buffer areas, promoting sustainable uses of wetlands, and restoration of farmed or mined wetland areas. These options may reduce the extent of negative agricultural impacts on wetlands due to global climate change.  相似文献   

16.
Jinwon Kim 《Climatic change》2005,68(1-2):153-168
The effects of increased atmospheric CO2 on the frequency of extreme hydrologic events in the Western United States (WUS) for the 10-yr period of 2040–2049 are examined using dynamically downscaled regional climate change signals. For assessing the changes in the occurrence of hydrologic extremes, downscaled climate change signals in daily precipitation and runoff that are likely to indicate the occurrence of extreme events are examined. Downscaled climate change signals in the selected indicators suggest that the global warming induced by increased CO2 is likely to increase extreme hydrologic events in the WUS. The indicators for heavy precipitation events show largest increases in the mountainous regions of the northern California Coastal Range and the Sierra Nevada. Increased cold season precipitation and increased rainfall-portion of precipitation at the expense of snowfall in the projected warmer climate result in large increases in high runoff events in the Sierra Nevada river basins that are already prone to cold season flooding in todays climate. The projected changes in the hydrologic characteristics in the WUS are mainly associated with higher freezing levels in the warmer climate and increases in the cold season water vapor influx from the Pacific Ocean.  相似文献   

17.
Detection of effects of changing climate on the hydrologic responses of rivers can be further complicated by changes in land use, drainage, and water use. To discern effects of human-caused changes in a basin and those due to precipitation over time, a comparison was made of annual mean flows and peakflows in Midwestern basins that experienced increases in annual precipitation and heavy rain events during 1940–1990. Two pairs of basins, one pair in a rural area and one pair in an urbanized area, were selected for in-pair comparisons, with one basin in each pair experiencing more land use and drainage changes during 1940–1990 than the other basin. All basins experienced significant upward trends in annual precipitation and annual mean flows. Human-produced changes affecting runoff in both rural basins accounted for about two-thirds of the fluctuations in the mean flows, and precipitation changes accounted for the other third. However, much of the change in peakflows in the rural basin undergoing sizable changes in drainage was due to these changes (85%) versus 75% in the rural basin without comparable shifts in drainage. The mean and peak flows of the two urban basins showed considerably more response to precipitation shifts than those of the two rural basins. The urbanized area doubled within one urban basin during 1940–1990, and these land use changes explained much more of the increase in mean flows and peakflows there than in the urban basin with less change in land use. By 1990 precipitation accounted for 69% of the upward trend in mean flows since 1941 in the heavily developed urban basin, as compared to 37% of the trend in the less settled urban basin. For purposes of assessing climate change, the precipitation changes over fifty years in all basins produced marked uptrends in basin streamflow, but the magnitude of the precipitation effect was masked by the land use and drainage changes. The results illustrate the need for careful analysis of natural basin characteristics (soils and basin shape), land use and drainage changes, and of various precipitation conditions if the influence of shifting precipitation on hydrologic conditions is to be detected, accurately measured, and correctly interpreted. For such studies the paired basin comparison techniques appears to be a valuable approach.  相似文献   

18.
Assessing the Impact of Climate Change on the Great Lakes Shoreline Wetlands   总被引:12,自引:1,他引:11  
Great Lakes shoreline wetlands are adapted to a variable water supply. They require the disturbance of water level fluctuations to maintain their productivity. However, the magnitude and rate of climate change could alter the hydrology of the Great Lakes and affect wetland ecosystems. Wetlands would have to adjust to a new pattern of water level fluctuations; the timing, duration, and range of these fluctuations are critical to the wetland ecosystem response. Two "what if" scenarios: (1) an increased frequency and duration of low water levels and (2) a changed temporal distribution and amplitude of seasonal water levels were developed to assess the sensitivity of shoreline wetlands to climate change. Wetland functions and values such as wildlife, waterfowl and fish habitat, water quality, areal extent, and vegetation diversity are affected by these scenarios. Key wetlands are at risk, particularly those that are impeded from adapting to the new water level conditions by man-made structures or geomorphic conditions. Wetland remediation, protection and enhancement policies and programs must consider climate change as an additional stressor of wetlands.  相似文献   

19.
In a context of increased demand for food and of climate change, the water consumptions associated with the agricultural practice of irrigation focuses attention. In order to analyze the global influence of irrigation on the water cycle, the land surface model ORCHIDEE is coupled to the GCM LMDZ to simulate the impact of irrigation on climate. A 30-year simulation which takes into account irrigation is compared with a simulation which does not. Differences are usually not significant on average over all land surfaces but hydrological variables are significantly affected by irrigation over some of the main irrigated river basins. Significant impacts over the Mississippi river basin are shown to be contrasted between eastern and western regions. An increase in summer precipitation is simulated over the arid western region in association with enhanced evapotranspiration whereas a decrease in precipitation occurs over the wet eastern part of the basin. Over the Indian peninsula where irrigation is high during winter and spring, a delay of 6?days is found for the mean monsoon onset date when irrigation is activated, leading to a significant decrease in precipitation during May to July. Moreover, the higher decrease occurs in June when the water requirements by crops are maximum, exacerbating water scarcity in this region. A significant cooling of the land surfaces occurs during the period of high irrigation leading to a decrease of the land-sea heat contrast in June, which delays the monsoon onset.  相似文献   

20.
Prediction of the effects of external influences such as climate change on wetland systems requires the prediction of hydrologic effects. Because wetland soils are typically heterogeneous, it is particularly important to understand the extent and connectedness of hydraulically conductive soil units, since water flow may be concentrated in such units while bypassing others of lower conductivity. However, subsurface hydrologic models typically do not represent heterogeneity adequately, being limited by sparse parameterization of soil properties. Conventional techniques for mapping units of soil within wetlands are highly laborious, requiring soil coring and laboratory testing. As an alternative, we developed a portable piezocone driver and highly sensitive piezocone designed to map wetland soil units with centimeter-scale resolution in the vertical and meter-scale resolution in the horizontal dimension. This system successfully delineated several different layers of peat, sand, and limnetic sediments, and their degree of interconnectedness in an eight-meter-thick peat deposit. Monitoring of wetland response to precipitation, changes in stream stage, and overbank flooding was then used in conjunction with the piezocone data and a two-dimensional flow model to constrain the hydraulic properties of the soil units. Thus parameterized, a standard subsurface flow model was able to realistically simulate a variety of hydrologic processes relevant to climate change, including wetland-stream water exchange, the movement of wetland porewaters to the root zone of plants, and wetland desaturation under dry conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号