首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matched-fieId inversion (MFI) undertakes to estimate the geometric and geoacoustic parameters in an ocean acoustic scenario by matching acoustic field data recorded at hydrophone array with numerical calculations of the field. The model which provides the best fit to the data is the estimate of the actual experimental scenario. MFI provides a comparatively inexpensive method for estimating ocean bottom parameters over an extensive area. The basic components of the inversion process are a sound propagation model and matching (minimization) algorithm. Since a typical MFI problem requires a large number of computationally intensive sound propagation calculations, both of these components have to be efficient. In this study, a hybrid inversion algorithm which uses a parabolic equation propagation model and combines the downhill simplex algorithm with genetic algorithms is introduced. The algorithm is demonstrated on synthetic range-dependent shallow-water data generated using the parabolic equation propagation model. The performance for estimating the model parameters is compared for realistic signal-to-noise ratios in the synthetic data  相似文献   

2.
The spatial and temporal variability of the acoustic field in the region of a strong coastal shelfbreak front are examined, using the high-resolution environmental data from the 1996-1997 New England shelfbreak PRIMER experiment to provide input to acoustic propagation models. Specifically, the "SeaSoar" undulating conductivity-temperature-depth (CTD) probe across-shelf transects provide 1-km along-track resolution, including the front, during the spring, summer, and winter seasons. These data allow one to study the diurnal and seasonal temporal variation of the acoustic field, as well as the varying spatial structure of the field. Using the RAM parabolic equation code, across-shelf acoustic field structure at 200, 400, and 1000 Hz is studied for various source depths. A number of interesting propagation effects are noted, the most interesting of which are the inhibition of strong acoustic-bottom interaction by the warm shelf water beneath the shelfbreak front and the existence of small-scale ducts near the front, due to offshore transport. Data from the vertical line arrays deployed as part of PRIMER offer partial validation of the predictions made. Specifically, it is seen that the mean received levels are in reasonable accord with propagation calculations made using locally measured bottom properties and the SeaSoar water-column measurements.  相似文献   

3.
海洋中声速起伏导致水声信道发生变化,进而引起声线到达结构的变化,对水声传播及定位精度产生一定影响。为讨论这一效应,基于TDOA体制建立了考虑声线弯曲的水下目标无源定位模型,分析了声速起伏对水下声传播路径及传播时间的影响,进而研究了声速起伏对水下无源定位测量精度影响程度。结果表明:当水平传播距离较大时,声速剖面起伏对声传播路径及传播时间的影响更为显著;以典型四元阵为例,若基线长度为20 km,接收阵位于水下5 km处,在不考虑其它随机误差影响下,海洋声速起伏造成的声源定位误差量级在0.5 m以内。分析结果有助于更好地利用环境特征优化无源定位测量方案,可为高精度水下无源定位系统设计及精度评估提供依据。  相似文献   

4.
The propagation of bottom and oceanographic variability through to the variability of acoustic transmissions and reverberation is evaluated with a simple adiabatic model interacting with Gaussian distributed uncertainty in a narrow frequency band. Results show that there is significant sensitivity of time series and reverberation uncertainty to different types of environmental uncertainty. For propagation over uncertain bottoms, it is shown that it is that later part of the time series, corresponding to the highest angle energy reflecting most often off the surface and bottom, that is most sensitive to bottom uncertainty. This implies that the larger reverberation contributions from the highest grazing angles with the largest scattering strength is also the most uncertain. Conversely, it is the lowest angle arrivals which are most sensitive to uncertainty in the sound-speed profile. These behaviors are predicted analytically by the theory [K.D. LePage, in “Impact of Littoral Environmental Variability on Acoustic Predictions and Sonar Performance,” Kluwer, 2002, pp. 353-360].  相似文献   

5.
针对射线、简正波、PE、FFP等传播模型的算法原理及其适用的海洋环境,建立了以Kraken声学模型计算软件为基础的海洋声场数值预报系统.应用该预报系统对4组典型的海洋声场进行了数值试验,结果表明:在相同的海面和海底边界条件下,声场分布是由声速剖面和声源位置决定的.在负梯度声场中,所有声线都折向海底,在极限声线外产生阴影区.声源位于声道轴附近的温跃层中会产生波导传播.用射线理论解释了上述现象的成因,指出了其实际应用价值.  相似文献   

6.
The paper discusses an inversion method that allows the rapid determination of in situ geoacoustic properties of the ocean bottom without resorting to large acoustic receiving apertures, synthetic or real. The method is based on broad-band waterborne measurements and modeling of the waveguide impulse response between a controlled source and a single hydrophone. Results from Yellow Shark '94 experiments in Mediterranean shallow waters using single elements of a vertical array are reviewed, inversion of the bottom parameters is performed with an objective function that includes the processing gain of a model-based matched filter (MBMF) receiver relative to the conventional matched filter. The MBMF reference signals incorporate waveguide Green's functions for known geometry and water column acoustic model and hypothesized bottom geoacoustic models. The experimental inversion results demonstrated that, even for complex environmental conditions, a single transmission of a broad-band (200-800 Hz) coded signal received at a single depth and a few hundred forward modeling runs were sufficient to correctly resolve the bottom features. These included the sound speed profile, attenuation, density, and thickness of the top clay sediment layer, and sound speed and attenuation of the silty clay bottom. Exhaustive parameter search proved unequivocally the low-ambiguity and high-resolution properties of the MBMF-derived objective. The single-hydrophone results compare well with those obtained under identical conditions from matched-field processing of multitone pressure fields sampled on the vertical array. Both of these results agree with expectations from geophysical ground truth. The MBMF has been applied successfully to a field of advanced drifting acoustic buoys on the Western Sicilian shelf, demonstrating the general applicability of the inversion method presented  相似文献   

7.
北极冰下声传播特性实验研究   总被引:1,自引:0,他引:1  
通过2017年8月6日在北极海域开展的一次声传播实验,开展了冰下声传播特性实验研究。结合Burke-Twersky (BT)散射模型与射线模型,分析了冰下声传播的多途到达结构,研究了接收声强变化规律,解释了接收声强在30 min内衰减20 dB的现象,分析了接收信号的时间相关性,探讨了接收信号相关性较低的原因。实验结果表明,表面接收信号主要由小角度多次反转反射声线、一次海底反射声线和二次海底反射声线依次构成,表面声道到达信号显著强于海底反射信号。试验冰站在试验期间的运动导致了声传播信号强度和相关性的迅速衰减,并通过仿真得到了验证。  相似文献   

8.
In this paper, we address the problem of detecting an inhomogeneity in shallow water by observing changes in the acoustic field as the inhomogeneity passes between an acoustic source and vertical line array of receivers. A signal processing scheme is developed to detect the perturbed field in the presence of the much stronger primary source signal, and to estimate such parameters as the time when the inhomogeneity crosses the source-receiver path, its velocity, and its size. The effectiveness of incoherent, coherent, and partially coherent spatial processing of the array signals is evaluated using models and data obtained from experiments in a lake. The effect of different bottom types is also considered, and it is shown that partially coherent processing can have a significant advantage depending on the bottom type. Estimates of the minimum input signal-to-noise ratios (SNRs) for which the diffracted signal can be observed are presented.  相似文献   

9.
During July and August of 1996, the summer component of the New England shelfbreak front PRIMER experiment was fielded in the Mid-Atlantic Bight, at a site due south of Martha's Vineyard, MA. This study produced acoustic transmission data from a network of moored sources and receivers in conjunction with very-high-resolution oceanography measurements. This paper analyzes receptions at the northeast array receiver from two 400 Hz acoustic tomography sources, with the transmission paths going from the continental slope onto the continental shelf. These data, along with forward acoustic-propagation modeling based on moored oceanographic data, SeaSoar hydrography measurements, and bottom measurements, reveal many new and interesting aspects of acoustic propagation in a complicated slope-shelf environment. For example, one sees that both the shelfbreak front and tidally generated soliton internal wave packets produce stronger mode coupling than previously expected, leading to an interesting time-and-range-variable population of the acoustic normal modes. Additionally, the arrival time wander and the signal spread of acoustic pulses show variability that can be attributed to the presence of a frontal meander and variability in the soliton field. These and other effects are discussed in this paper, with an emphasis on creating a strong connection between the environmental measurements and the acoustic field characteristics.  相似文献   

10.
A computational case study of coupled-mode 400-Hz acoustic propagation over the distance 27 km on the continental shelf is presented. The mode coupling reported here is caused by lateral gradients of sound-speed within packets of nonlinear internal waves, often referred to as solitary wave packets. In a waveguide having unequal attenuation of modes, directional exchange of energy between low- and high-loss modes, via mode coupling, can become time dependent by the movement of waves and can cause temporally variable loss of acoustic energy into the bottom. Here, that bottom interaction effect is shown to be sensitive to stratification conditions, which determine waveguide properties and, in turn, determine modal attenuation coefficients. In particular, time-dependent energy loss due to the presence of moving internal wave packets is compared for waveguides with and without a frontal feature similar to that found at the shelfbreak south of New England. The mean and variability of acoustic energy level 27 km distant from a source are shown to be altered in a first order way by the presence of the frontal feature. The effects of the front are also shown to be functions of source depth.  相似文献   

11.
The shallow refracted path through sea floor sediments plays a significant role in the transmission of acoustic energy at low frequencies. For bottom grazing angles of 90/spl deg/ to 25/spl deg/, low-frequency acoustic energy was observed to come from reflected paths. For bottom grazing angles of 25/spl deg/ to 10/spl deg/ the dominant source of low-frequency acoustic energy is from shallow refracted paths through the sediments. At angles less than 10/spl deg/, low-frequency acoustic energy is received from both the refracted and the reflected paths. The refracted path is possible because of the positive gradient within the sediment. The sudden emergence of the refracted arrival is related to the overall sound path length in the sediment and sediment absorption of sound. Since sediment absorption is directly proportional to frequency, only low-frequency energy is transmitted via this path. The refracted path may well exist where unconsolidated sediments of at least a few hundred feet are present.  相似文献   

12.
In September 1988, a series of acoustic propagation experiments were conducted in the Hudson Canyon area. These included synthetic aperture experiments in which a source transmitting a set of four pure tones was towed toward/away from a vertical array of 24 receivers. Data obtained at 50 Hz during one of the synthetic aperture experiments are used to obtain a model for the compressional wave speed profile in the bottom using a modal inverse method. This model is further refined using 175 Hz data. The ability of the inferred model to predict the field at 50 Hz and higher frequencies is examined  相似文献   

13.
This paper describes a simple approach for inferring the depth and track of a sound source at short ranges by inversion of acoustic field data at a set of sea bottom hydrophones. At short ranges, the acoustic field consists of a dominant Lloyd mirror (LM) signal from the direct and surface-reflected ray paths and a series of bottom-reflected paths that modulate the LM signal. A computationally efficient propagation model based on the method of images is developed to calculate replica fields for the inversion. The matched field inversion method for inferring the source depth and track is demonstrated using data from an experiment carried out in shallow water off the east coast of Canada. The estimated values were in very good agreement with independent measurements taken during the experiment.  相似文献   

14.
Distinctive packets of periodic internal waves were observed during an experiment in the Gulf of Mexico. There was a 65-m-deep mixed layer overlying a thin strong density interface. A layer of weaker density stratification extended below the interface to the bottom, at a depth of 185 m. The waves had 2-10-m amplitudes, narrow frequency bandwidths with central frequencies of 8.5 cph, and they propagated in the upslope direction. The wave packets were observed on three consecutive days. They lasted about 3 h and were always observed at the same time of day, clearly in response to tidal forcing. A model of the time/space structure of the waves was tuned to match that of the observations, showing that the data are consistent with a cnoidal wave hypothesis. Observations of low-frequency acoustic propagation along two baselines show fluctuations that we hypothesize are due to interactions with the cnoidal waves. The fluctuations have spatial correlation scales (in the slantwise direction) on the order of 76 m. We simulate these effects using a time-step PE approach. We find that a mode-coupling resonance with the internal wave field results in elevated acoustic variability along a set of discrete spokes, emanating from the acoustic source. While acoustic variability tends to increase with range and with internal wave amplitude, tangential and radial correlation scales do not show a systematic dependence. The patterns in tangential and radial correlation scales show strong anisotropic patterns in azimuth, but little systematic trend in range  相似文献   

15.
Conventional bearing estimation procedures employ planewave steering vectors as replicas of the true field and seek to resolve in angle by maximizing a power function representing the agreement between actual and replica fields. For vertical arrays in oceanic waveguides the received field depends on range and depth, and it is natural to replace the "look-direction" (theta) by a "look-position" (r, z). Thus an environmental model is constructed by specifying ocean depth, sound speed profile, bottom properties, etc., and a propagation model is employed to construct a replica of the field that would be received on the array for a particular source position. The usual estimators (e.g., Bartlett or maximum likelihood) are then used to gauge the agreement between actual and replica fields and the true source position is identified as that position where the agreement is best. The performance of this kind of matched-field processing is strongly affected by the environment. In particular, we demonstrate through simulations that for a deep-water Pacific environment dominated by waterborne paths, ambiguities or sidelobes are associated with convergence zones. In the absence of mismatch between replica and actual fields we find that a 16-element array performs extremely well in low-frequency regimes. Mismatch caused by uncertainties in phone positions, bottom parameters, ocean sound speed, surface and bottom roughness, etc., causes degradation in localization performance. The impact of some of these effects on conventional and maximum likelihood estimators is examined through simulation.  相似文献   

16.
In the context of the recent Maritime Rapid Environmental Assessment/Blue Planet 2007 sea trial (MREA/BP07), this paper presents a range-resolving tomography method based on ensemble Kalman filtering of full-field acoustic measurements, dedicated to the monitoring of environmental parameters in coastal waters. The inverse problem is formulated in a state–space form wherein the time-varying sound-speed field (SSF) is assumed to follow a random walk with known statistics and the acoustic measurements are a nonlinear function of the SSF and the bottom properties. The state–space form enables a straightforward implementation of a nonlinear Kalman filter, leading to a data assimilation problem. Surface measurements augment the measurement vector to constrain the range-dependent structure of the SSF. Realistic scenarios of vertical slice shallow-water tomography experiments are simulated with an oceanic model, based on the MREA/BP07 experiment. Prior geoacoustic inversion on the same location gives the bottom acoustic properties that are input to the propagation model. Simulation results show that the proposed scheme enables the continuous tracking of the range-dependent SSF parameters and their associated uncertainties assimilating new measurements each hour. It is shown that ensemble methods are required to properly manage the nonlinearity of the model. The problem of the sensitivity to the vertical array (VA) configuration is also addressed.   相似文献   

17.
Ship noise received on a horizontal array towed behind the ship is shown to be useful as a potentially diagnostic tool for estimating local acoustic bottom properties. In numerical simulations, tow-ship noise which bounces off the bottom is processed on a beamformer that shows the arrival angles; the beamformer output is readily interpreted by relating it to the Green's function of the acoustic wave equation. Simple signal processing is shown to be sufficient to extract the propagation angles of the "trapped" (i.e., propagating) modes of the acoustic waveguide. By relating the trapped modes to a basic geophysical model of the bottom, one can predict acoustic-propagation conditions for a particular bottom-interacting ocean acoustic environment.  相似文献   

18.
The feasibility of generating additional acoustic harmonics in the geomagnetic field during the propagation of an acoustic wave in a conducting medium through a region with a variable electromagnetic field is considered. Two possible mechanisms of such generation are analyzed: a parametric mechanism and a mechanism associated with ponderomotive forces (dynamic). Expressions are derived for three acoustic harmonics generated by a magnetic dipole with a variable magnetic moment.  相似文献   

19.
This paper applies a full-field technique to invert bottom sound profile and bottom reflectivity from simulated acoustic data in a shallow water environment. Bottom sound-speed profile and bottom reflectivity have been traditionally estimated using seismic reflection/refraction techniques when acoustic ray paths and travel time can be identified and measured from the data. However, in shallow water, the many multipaths due to bottom reflection/refraction make such identification and measurement rather difficult. A full-field inversion technique is presented here that uses a broad-band source and a vertical array for bottom sound-speed and reflectivity inversion. The technique is a modified matched field inversion technique referred to as matched beam processing. Matched beam processing uses conventional beamforming processing to transform the field data into the beam domain and correlate that with the replica field also in the beam domain. This allows the analysis to track the acoustic field as a function of incident/reflected angle and minimize contamination or mismatch due to sidelobe leakage  相似文献   

20.
The computer model for near shore wave propagation,SWAN,was used to study wave climates in Liverpool Bay,northwest England with various input parameters,including bottom friction factor,white capping,wind drag formulation and effects of tidal modulations.Results were compared with in-situ measurements and reveal the impacts from these inputs on the predictions of wave height and propagation distributions.In particular,the model results were found very sensitive to different input formulations,and tend to underestimate the wave parameters under storm conditions in comparison with the observations.It is therefore important to further validate the model against detailed field measurements,particularly under large storms that are often of the primary concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号