首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of sulfur on phosphorus solubility in rhyolitic melt and the sulfur distribution between apatite, ±anhydrite, melt and fluid have been determined at 200 MPa and 800–1,100 °C via apatite crystallization and dissolution experiments. The presence of a small amount of sulfur in the system (0.5 wt.% S) under oxidizing conditions increases the solubility of phosphorus in the melt, probably due to changing calcium activity in the melt as a result of the formation of Ca-S complexing cations. Apatite solubility geothermometers tend to overestimate temperature in Ca-poor, S-bearing system at oxidizing conditions. In crystallization experiments, the sulfur content in apatite decreases with decreasing temperature and also with decreasing sulfur content of the melt. The sulfur partition coefficient between apatite and rhyolitic melt increases with decreasing temperature (KdSapatite/melt=4.5–14.2 at T=1,100–900 °C) under sulfur-undersaturated conditions (no anhydrite). The sulfur partition coefficient is lower in anhydrite-saturated melt (~8 at 800 °C) than in anhydrite-undersaturated melt, suggesting that KdSapatite/melt depends not only on the temperature but also on the sulfur content of the melt. These first results indicate that the sulfur content in apatite can be used to track the evolution of sulfur content in a magmatic system at oxidizing conditions.Editorial responsibility: J. Hoefs  相似文献   

2.
In an external vacuum and at temperatures between 900° C and 1650° C internal graphitisation takes place on or around mineral inclusions in diamond, and appears to be responsible for similar features previously reported in diamond from several localities. Several mechanisms are proposed and discussed for internal graphitisation at temperatures as low as 900° C: it is proposed that at low external pressures CO2 exsolves from inclusions and causes internal graphitisation. The results also indicate that immediately after pressure release arising from volcanic breakthrough of kimberlites of different geological ages at several localities in West and South Africa, the temperature was not in excess of 800° C to 900° C in certain regions of the diatremes.  相似文献   

3.
We have used a new thermodynamic model of barium and calcium sulfate solubilities in multicomponent electrolyte solutions (Monnin, 1999) to investigate the stabilities of barite and anhydrite in seawater or in marine sediment porewaters at high temperature and pressure. As a further test supplementing those previously carried out during model development, we have calculated the temperature at which standard seawater becomes saturated with respect to anhydrite. The model predicts that, upon heating at 500 bars, standard seawater becomes saturated with respect to anhydrite at 147 ± 5°C, which compares well with the literature value of 150°C (Bishoff and Seyfried, 1978). At 20 bars the calculated saturation temperature is 117 ± 3°C. This points to a non negligible pressure effect even at moderate pressures.We have calculated the barite and anhydrite saturation indices for the in situ temperatures and pressures, from the composition of porewaters collected at ODP Sites 855, 856, 857, 858, 1035 and 1036 during ODP Legs 139 and 169 (Juan de Fuca and Gorda ridges, NE Pacific). Calculated saturation indices for porewater samples collected at depths corresponding to temperatures between 70° and 110-120°C at an in situ pressure of about 260 bars yield equilibrium values for anhydrite and barite. Saturation indices of samples collected at depths where the temperature exceeds 110-120°C, however, yield values indicating supersaturation with respect to anhydrite and undersaturation with respect to barite. This result is consistent with the redissolution of anhydrite during cooling, leading to the well documented sampling artifact affecting porewater compositions in high temperature marine sediments: anhydrite dissolution increases the porewater sulfate content, which in turn induces a loss of barium from solution through barite precipitation (the common ion effect). We postulate that this redissolution occurs in sediment samples for which the in situ temperature exceeds 110-120°C: below this limit anhydrite remains at equilibrium or does not have time to significantly dissolve before porewaters are sampled.  相似文献   

4.
Mineralogical and colour changes of quartz sandstones by heat   总被引:1,自引:0,他引:1  
Seven German and three Hungarian monumental sandstones have been tested in laboratory conditions to analyse the effect of heat. The studied quartz sandstones have a wide-range of cements and grain-sizes including silica-, carbonate-, clay- and ferrous mineral—cemented varieties of fine-, medium- to coarse-grained types. Cylindrical specimens were heated up to 150, 300, 450, 600, 750 and 900°C in an oven. The mineralogical and textural changes were recorded and compared by using microscopy, XRD, DTA-DTG and SEM. Colours and colour differences (a*, b*, L* values) were also measured and evaluated. Colour changes are related to mineral transformations. The most intense colour change is caused by the oxidation of iron-bearing minerals to hematite that takes place up to 900°C. When temperature increases the green glauconite becomes brownish while the chlorite changes to yellowish at first. The colour of burnt sandstone is not a direct indicator of burning temperature, since there are sandstones in which the burnt specimens are lighter and less reddish than the natural ones. Porosity increase is related to micro-cracking at grain boundaries (above 600°C) and within the grains (at and above 750°C) and mineral transformations. The clay mineral structure collapses at different temperatures (kaolinite up to 600°C, chlorite above 600°C) and leads to a slight increase in porosity. The most drastic change is observed in calcite cemented sandstones where the carbonate structure collapses at 750°C and CaO appears at 900°C. Subsequently it is transformed to portlandite due to absorption of water vapour from the air. This leads to the disintegration of sandstone at room temperature a few days after the heat shock.Special issue: Stone decay hazards  相似文献   

5.
Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica (Ellis et al. 1980) were metamorphosed at 8–10 kb pressure, 900°-980° C under very low conditions. Retrograde mineral coronas in these rocks record subsequent cooling from the peak of metamorphism at approximately constant pressure. The inferredP-T cooling-uplift path differs markedly from that evident in many other granulite terrains.Present garnet-cordierite geothermometers imply equilibration at temperatures of 500°–600° C, well within the kyanite stability field. These temperatures are inconsistent with the presence of sillimanite and the high temperature stability fields of the actual mineral assemblages. Examination of available garnetcordierite experimental data suggests a possible large increase in the Gt-Cd Fe-MgK D with increasingX Mg of the cordierite (and pressure). New experiments designed to test this possibility were inconclusive because of the failure to attain satisfactory equilibrium, even at 1,000° C.Possible reasons for the exposure of these unusual granulites in Enderby Land are considered. Although they formed at much higher temperatures than other granulites exposed on a regional scale, suchP-T conditions are not exceptional for the base of the crust. Instead, the unusual isobaric cooling to low temperatures followed by uplift to the surface which these granulites are inferred to have undergone is considered of importance. The unusual tectonic conditions are reflected in the disctinctive type of mineral reaction coronas found in these rocks. The common occurrence elsewhere of mineral reaction during uplift, and the role of anatexis during uplift in obliterating such high temperature assemblages elsewhere in the world are considered.  相似文献   

6.
Abstract, Results of a study of fluid inclusions in anhydrite from drill hole Y-6 in the Chicxulub crater, of northwestern Yucatan, Mexico, are reported in this work. The Chicxulub crater was formed at the Cretaceous-Tertiary boundary by a meteorite impact. The resulting ejection breccias are composed mostly of hydrothermally altered crystalline basement material. The mineral assemblage pyroxene + anhydrite + quartz is associated with the hydrothermal alteration. The analyzed fluid inclusions in the anhydrite show highly heterogeneous phase assemblages within the same crystal plane. Fluid inclusion types include liquid plus vapor inclusions (L+V), vapor-rich inclusions (V), and inclusions containing daughter crystals (L+V+S). The eutectic temperatures indicate a brine composition dominated by CaCl2-NaCl. Both the salinity and the homogenization temperatures show a wide range (from 3.6 to 23 wt% NaCl equivalent for the L+V inclusions, and 36 to 42 wt% NaCl equivalent for the L+V+S inclusions). The homogenization temperatures range from 100° to 500°C. These data represent cooling and boiling trends. We assume that the impact breccias were ejected at high temperature in an aqueous environment (above 500°C). This caused boiling of sea water and precipitation of anhydrite with its inclusions.  相似文献   

7.
Agua Rica (27°26′S–66°16′O) is a world class Cu–Au–Mo deposit located in Catamarca, Argentina. In the E–W 6969400 section examined, the Seca Norte and the Trampeadero porphyries that have intruded the metasedimentary rock are cut by interfingered igneous and hydrothermal heterolithic and monolithic breccias, and sandy dikes. Relic biotite and K-feldspar of the early potassic alteration (370° to > 550 °C) with Cu (Mo–Au) mineralization are locally preserved and encapsulated in a widespread, white mica + quartz + rutile or anatase halo (phyllic alteration) with pyrite + covellite that suggests fluids with temperatures ≤ 360 °C and high f(S2). The Trampeadero porphyry and the surrounding metasedimentary rock with phyllic alteration have molybdenite in stringers and B-type quartz veinlets and the highest Mo grades (> 1000 ppm).Multistage advanced argillic alteration overprinted the earlier stages. Early andalusite ± pyrite ± quartz is preserved in the roots of the argillic halo rimmed by an alumina–silica material and white micas. This alteration assemblage is considered to have been formed at temperatures ≥ 375 °C from condensed magmatic vapor. At higher levels, pyrophyllite replaces muscovite and illite in clasts of hydrothermal breccias in the center and east sector of the study section, suggesting temperatures of 280 to 360 °C. Clasts of vuggy silica in the uppermost levels of the central breccia, indicates that at lower temperatures (< 250 °C), fluids reached very low pH (pH < 2). In this early stage of the advanced argillic alteration, hydrothermal fluids seem to have not precipitated sulfides or sulfosalts.Hydrothermal brecciation was concurrent with fluid exsolution (↑? V), which precipitated intermediate-temperature advanced argillic alunite (svanbergite + woodhouseite) ± diaspore ± zunyite as breccia cement along with abundant covellite + pyrite + enargite ± native sulfur ± kuramite at intermediate depths and in lateral transitional zones to unbrecciated rocks. This mineral assemblage indicates temperatures near 300 °C, oxidized and silica-undersaturated hydrothermal fluids with high sulfur fugacity to prevent gold precipitation. Multiple generations of pyrite, emplectite, colusite, Pb- and Bi-bearing sulfosalts, and native sulfur with Au and Ag, accompanied by alunite introduction in the upper level breccias, probably occurred at lower temperatures, but still high sulfur and oxygen activity. An independent Zn and Pb (as galena) mineralization stage locally coincides with Au–Ag and sulfosalts, and advanced at depth, controlled by fractures and overprinting much of the previous mineralization. A later paragenesis of veinlets of alunite + woodhouseite + svanvergite + pyrite ± enargite that cut the phyllic halo suggests temperatures ~ 250 °C and without woodhouseite + svanvergite, temperatures ~ 200 °C. Kaolinite occurs in the phyllic halo as a late mineral in clots and in veinlets thus, in this zone, the fluid had cooled enough for its formation.  相似文献   

8.
The interaction of granitic rock with meteoric fluid is instrumental in determining the chemistry of pore fluids and alteration mineralogy in downflow portions of convective groundwater circulation cells associated with many hydrothermal systems in the continental crust. Hydrothermal experiments and a detailed mineralogical study have been carried out to investigate the hydrothermal alteration of the Carnmenellis Granite, Cornwall, UK. Samples of drill chippings from a borehole 2 km deep in the Carnmenellis Granite have been reacted with a dilute Na-HCO3-Cl fluid in hydrothermal solution equipment at temperatures of 80°, 150° and 250° C and a pressure of 50 MPa, with a water/rock mass ratio of 10, for experiment durations up to 200 days. Fluid samples were analysed for seventeen different chemical components, and solids were examined prior to, and after reaction using SEM, electron microprobe and conventional light optic techniques. Experimental fluids were mildly alkaline (pH 7–8.5) and of low salinity (TDS <800 mgl–1). Mineral-fluid reaction was dominated by the dissolution of plagioclase and the growth of smectite, calcite (at all temperatures), laumontite (at 150° C), wairakite and anhydrite (at 250° C). Final fluids were saturated with respect to quartz and fluorite. Certain trace elements (Li, B, Sr) were either incorporated into solids precipitated during the experiments or sorbed onto mineral surfaces and cannot be considered as conservative (partitioned into the fluid phase) elements. Concentrations of all analysed chemical components showed net increases during the experiments except for Ca (at 250° C) and Mg (at all temperatures). A comparison of the alteration mineralogy observed in the experiments with that present as natural fracture infills in drillcore from the Carnmenellis Granite reveals that the solid products from the experiments correspond closely to mineral assemblages identified as occurring during the later stages of hydrothermal circulation associated with the emplacement of the granite.  相似文献   

9.
Silicate inclusions in IAB irons and related winonaite meteorites have textures, mineralogies and mineral chemistries that indicate a complex formation history of heating, followed by brecciation and metamorphism. Using olivine-orthopyroxene-chromite assemblages in five IAB iron silicate inclusions (Caddo County, Campo del Cielo, Copiapo, Lueders, and Udei Station) and one winonaite (Winona), we calculated closure temperatures and oxygen fugacities for these meteorites. Calculated olivine-chromite Fe-Mg exchange temperatures are compared to two-pyroxene temperatures. Olivine-chromite closure temperatures range from ∼590°C to ∼700°C, while two-pyroxene temperatures range from ∼900°C to ∼1200°C. Oxygen fugacities of these meteorites, determined for the first time in this study, range from 2.3 to 3.2 log units below the Fe-FeO buffer and define a line between the Fe-FeO and Cr-Cr2O3 buffers. Highly variable temperatures were experienced by these rocks on the hand sample, and sometimes even the thin section, scale consistent with the idea that the winonaite-IAB iron parent body experienced collisional fragmentation and reassembly after peak temperatures were reached. Although modest reduction likely occurred during cooling, the oxygen fugacities and mineral compositions recorded at peak metamorphic temperatures suggest that the chondritic precursor for this parent body was initially more reduced than ordinary chondrites.  相似文献   

10.
Experiments were conducted at 6–30 kb and 875–1200°C on two garnet pyroxenite xenoliths from the Bullenmerri and Gnotuk Maars of western Victoria, Australia. The (garnet + clinopyroxene + plagioclase + spinel) assemblage of DR9734 was stable between 10 and 12.5 kb, and 950 and 1,050°C. The compositions of its natural mineral phases were most closely approximated in experiments at 12.5 kb and 1,000–1,050°C. The (garnet + spinel + clinopyroxene + orthopyroxene + amphibole) assemblage of DR10165 was stable at pressures > 8 kb and temperatures > 950°C. However, differences between natural and experimental mineral compositions indicate that the mineral assemblage of this xenolith persisted metastably after cooling below 950°C with chemical exchange continuing down to approximately 850–900°C. When the experimental data for DR9734 and DR10165 are applied to mineralogical data for other mafic and ultramafic xenoliths from the Bullenmerri and Gnotuk Maars, they indicate that previous pressure and temperature estimates for individual xenoliths are 2–3 kb and 50°C too high. These corrections increase average temperatures for the geotherm beneath western Victoria by about 50°C over a depth range of 30–45 km and confirm its perturbed (high-temperature) character.This paper is a contribution to IGCP Project 304 (Lower Crustal Processes)  相似文献   

11.
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated δ34Ssulfide (3.7 to 12.7‰). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high δ34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (∼400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ∼300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5‰) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 × 1012 g seawater S yr−1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.  相似文献   

12.
The present study highlights the hydrogeological and hydrogeochemical characteristics of the CO2-rich thermal–mineral waters in Kayseri, Turkey. These waters of Dokuzpınar cold spring (DPS) (12–13°C), Yeşilhisar mineral spring (YMS) (13–16°C), Acısu mineral spring (ACMS) (20–22.5°C), Tekgöz thermal spring (TGS) (40–41°C), and Bayramhacı thermal-mineral spring (BTMS) (45–46.5°C) have different physical and chemical compositions. The waters are located within the Erciyes basin in the Central Anatolian Crystalline complex consisting of three main rock units. Metamorphic/crystalline rocks occur as the basement, sedimentary rocks of Upper Cretaceous-Quaternary age form the cover, and volcanosedimentary rocks Miocene-Quaternary in age represent the extrusive products of magmatism acting in that period. All these units are covered unconformably by terrace and alluvial deposits, and travertine occurrences have variable permeability. Dokuzpinar cold spring, YMS and ACMS localized mainly along the faults within the region have higher Na+ and Cl contents whereas TGS and BTMS have higher amounts of Ca2+ and HCO 3 . The high concentrations of Ca2+ and HCO 3 are mainly related to the high CO2 contents resulting from interactions with carbonate rocks. Whereas the high Na+ content is derived from the alkaline rocks, such as syenite, tuff and basalts, the Clis generally connected to the dissolution of the evaporitic sequences. These waters are of meteoric-type. BTMS deviates from meteoric water line. The content is related to the increases in the δ18O compositions due to mineral–water interaction (re-equilibrium) process. CO2-dominated YMS and ACMS with low temperatures have higher mineralizations. Yeşilhisar mineral spring, ACMS, TGS and BTMS are oversaturated in terms of calcite, aragonite, dolomite, goethite and hematite, and undersaturated with respect to gypsum, halite and anhydrite. Yeşilhisar mineral spring, ACMS and BTMS are also characterized by recent travertine precipitation. Dokuzpınar cold spring is undersaturated in terms of the above minerals. The higher ratios of Ca/Mg and Cl/HCO3, and lower ratios of SO4/Cl in BTMS than TGS suggest that TGS has shallow circulation compared to BTMS, and/or has much more heat-loss enroute the surface. The sequence of hydrogeochemical and isotopic compositions of the waters is in an order of DPS>YMS>ACMS>TGS>BTMS and this suggests a transition period from a shallow circulation to a deep circulation path.  相似文献   

13.
Sapphirine and spinel can accommodate significant ferric iron and therefore the mineral equilibria involving these phases must be sensitive to a(O2). In this paper we examine the theoretical phase relationships involving sapphirine and spinel in addition to sillimanite, garnet, cordierite, rutile, hematite-ilmenite solid solution (henceforth ilmenite), and magnetite-ulvospinel solid solution (henceforth magnetite), in the presence of quartz and hypersthene in the system FeO-MgO-Al2O3-SiO2-TiO2-O2 (FMASTO), with particular reference to the topological inversion in P-T postulated by Hensen (Hensen 1986). Documented natural associations suggest that the appropriate topology for assemblages involving magnetite and ilmenite is Hensen's higher a(O2) one, while, in contrast, the topology for assemblages involving ilmenite and rutile is the lower a(O2) one. The exact configuration of the inversion between these two topologies remains uncertain because of uncertainties in the ferric/ferrous iron partitioning between sapphirine and spinel-cordierite at high temperatures. By comparison with experimental data and natural occurences, the sillimanite-sapphirine-cordierite-garnet-hypersthene-quartz assemblage is in equilibrium at about 1000°–1020° C and 7–8 kbars, while sapphirine-cordierite-spinel-garnet-hypersthene-quartz occurs at temperatures in excess of those attainable during crustal metamorphism, for ilmenite-rutile buffered assemblages. This implies that sapphirine-rutil-ehypersthene-quartz assemblages, as found in the Napier Complex, Antarctica, can only occur at > 1000° C. Also, spinel-rutile-hypersthene-quartz assemblages should not be found in rocks because temperatures in excess of 1100° C are expected to be involved in their formation. The temperatures of formation of spinel-sillimanite-sapphirine-garnethypersthene-quartz, sapphirine-spinel-cordierite-sillimanite-hypersthene-quartz, and sillimanite-spinel-cordieritegarnet-hypersthene-quartz in assemblages buffered by magnetite and ilmenite are less well constrained, but are likely to be in the range 900°–1000° C. These conclusions apply to rocks with compositions close to FMASTO; the perturbing effects of substantial concentrations of additional components, in particular Ca, mainly in garnet, and Zn and Cr, mainly in spinel, may invalidate these conclusions.  相似文献   

14.
Muscovite-granite was reacted in cold-seal pressure vessels at 2 kbar and in pistoncylinder apparatus between 10 and 35 kbar, with just 0.6 weight per cent water structurally bound in 14 modal per cent muscovite, and with additional water contents varying to 50 weight per cent. Phase relationships are presented through the melting interval with excess water, and with no free water added. Selected reactions above 10 kbars have been successfully reversed. An isobar at 15 kbar shows the effect of varying water contents on the mineral phase boundaries for vapor-present and vapor-absent conditions. For the dry rock, temperatures for the solidus and liquidas (quartz-out) curves, respectively, are 10 kbar-760° C, 1160° C; 15 kbar-810° C, 1220° C; 25 kbar-880° C; 1340° C; 35 kbar-1040° C, 1460° C. The solidus curve corresponds to the melting of muscovite + quartz. With water vapor present, the solidus is considerably lower, 15 kbar-610° C, 25 kbar-665° C. Water solubility in the liquid at 15 kbar is 24±3 weight per cent. Maximum temperatures for quartz and feldspars in the vapor-absent region decrease considerably with increasing water content. Temperatures for the quartz-out curve at 15 kbars are 0.6 % H2O-1230° C; 24 % H2O-760° C. At 15 kbars for low water contents, water-undersaturated liquid coexists with quartz and feldspars through hundreds of degrees. Subducted pelagic sediments which metamorphosed to muscovitebearing quartzo-feldspathic rocks would undergo two episodes of melting, beginning at different depths: (1) the first liquid dissolves all pore fluid, and transports it away when it escapes from the crystalline host, (2) reaction of muscovite yields a second liquid, with less dissolved water. According to two published thermal models for a lithosphere slab dipping at 45°, the depths would be (a) 60 km and 92 km, or (b) 17 km and 21 km. Magmas generated by partial fusion in subducted oceanic crust are cooler than the overlying crustal layers and the mantle above the slab by as much as 200° C to 300° C. This must lead to intrusion of relatively cool magma into hot rock. Consequent heating of the magma increases its prospects of reaching high levels in the upper mantle or crust before it solidifies by crossing the solidus curve.  相似文献   

15.
Summary Experimental investigations on the Cu-Fe-substitution and the formation of a solid solution series in the system CuS2-FeS2 were carried out under hydrothermal conditions up to 350°C and 3 kb and by means of a piston cylinder apparatus at higher temperatures and pressures up to 900°C and 45 kb. Under dry conditions at 440°C and above 17 kb the system was found to be binary with a miscibility gap between an iron-rich phase near the FeS2 end-member and a coexisting copper-rich phase being the solvus composition of a homogeneity region from 75 to 100 mole% CuS2. This solvus of the copper rich phase was found to be almost independent of temperature and pressure up to 45 kb and 700°C. The solubility of CuS2 in FeS2 at 45 kb increases from 0.6 mole% at 700°C to 4.5 mole% at 900°C. Under hydrothermal conditions up to 3 kbars the solvus of metastable (Cu, Fe)S2 is strongly dependent on pressure only in the Cu-rich part of the system.
Zusammenfassung Stabilität der CuS2-FeS2 Mischreihe des Pyrit-Typs Experimentelle Untersuchungen zur Cu-Fe-Substitution und zur Bildung einer festen Lösung im System CuS2-FeS2 wurden mit der Hydrothermalsynthese bis 350°C und 3 kb und mit der Stempelzylindermethode bis 900°C und 45 kb durchgeführt. Unter trockenen Bedingungen bei 440°C und oberhalb 17 kb ist dieses System binär und weist eine Mischungslücke zwischen einer eisenreichen Phase nahe dem FeS2 Endglied und einer koexistierenden kupferreichen Phase mit der Solvuszusammensetzung eines Homogenitätsbereiches zwischen 75 und 100 mol% CuS2 auf. Dieser Solvus der kupferreichen Phase wurde bis 45 kb und 700°C nahezu druck- und temperaturunabhängig gefunden. Demgegenüber nimmt die Löslichkeit von CuS2 in FeS2 bei 45 kb von 0.6 mol% bei 700°C auf 4.5 mol% bei 900°C zu. Der Solvus der metastabilen (Cu, Fe)S2-Phasen, die bislang nur unter hydrothermalen Bedingungen synthetisiert werden können, zeigte bis 3 kbar nur im kupferreichen Teil des Systems eine starke Druckabhängigkeit.


With 4 Figures  相似文献   

16.
The pressure temperature stability of the phase Mn-cordierite hitherto not recorded as a mineral has been determined at temperatures ranging from 400° C up to the melting mainly using standard hydrothermal techniques at the oxygen fugacities provided by the buffering power of the bomb walls. Manganocordierite is a pronounced low-pressure phase with a maximum pressure stability of about 1 kb near 400° C and decreasing pressure limits at higher temperatures. Throughout the temperature range investigated the stable high-pressure breakdown assemblage of Mn-cordierite is spessartine, an Al-silicate, and a SiO2-polymorph. Due to the variable water contents of Mn-cordierite and spessartine there is a pronounced curvature in the negative dP/dT-slope of the requisite upper pressure breakdown curve of Mn-cordierite. Only theoretical deductions were possible concerning the stable hydrous low-temperature breakdown assemblage of Mn-cordierite below about 400° C.The manganocordierites synthesized are orthorhombic low-cordierites with distortion indices increasing with temperature, water pressure, and duration of heating. Their mean refractive indices increase with rising contents of absorbed water in the structural channels. Based on experiments with natural material the upper temperature stability limit of the mineral carpholite must lie at temperatures below about 400° C for water pressures up to 2.5 kb.The absence of Mn-cordierite from natural rocks studied thus far cannot be explained on chemical grounds, but must be due to its narrow pressure temperature stability range. The phase may yet be discovered as a mineral in manganiferous metasediments formed by lowpressure contact metamorphism.  相似文献   

17.
A sulfur isotopic study of the San Cristobal tungsten-base metal mine,Peru   总被引:1,自引:0,他引:1  
The San Cristobal tungsten-base metal deposit differs from other quartz-wolframite vein deposits in that it has a major period of base metal mineralization consisting of pyrite, chalcopyrite, sphalerite, and galena. Homogenization temperatures of primary and pseudosecondary inclusions were measured in augelite (260–400°C), quartz (230–350°C) and sphalerite (180–220°C). The 34S values of H2S in solution in equilibrium with the vein minerals range from 1.6 to 9.0 permil increasing through the paragenesis. The relatively heavy values suggest a nonmagmatic source for the sulfur. Evaporitic sulfates are a likely source of heavy sulfur and sedimentary anhydrite is known to occur near the San Cristobal region. In contrast to San Cristobal are three similar quartz-wolframite vein deposits, Pasto Bueno, Panasqueira, and Tungsten Queen. They each have an average 34S value for sulfides of about 0 permil, suggesting a sulfur of magmatic origin. At San Cristobal an influx of sedimentary sulfur could not only account for the distinctive isotopic signature of the sulfides but also for the presence of the base metal mineralization.  相似文献   

18.
The system Ag-Sb-S was studied between 600°C and 200°C in evacuated silica glass tubes. Results from lower temperature runs require shifts in the stable tie-line configuration found by Barstad at 400°C. It is proposed that the configuration changes near 300°C, and that at 200°C the equilibrium assemblages correspond to those usually reported for minerals in ores. Most of the minerals of the system were synthesized. In addition, the synthetic phase Ag7SbS6 (antimony analogue of the arsenic mineral billingsleyite) is characterized, and the ease of its synthesis in the composition area bounded by argentite-pyrargyrite-sulfur suggests the probable existence of a mineral of this composition. The relatively common mineral stephanite (Ag5SbS4) was not formed as a synthetic product in the temperature range of this study. Combined DTA and X-ray data show that at 197±5°C stephanite decomposes in the absence of sulfur to form pyrargyrite plus argentite, whereas with excess sulfur the products are Sb-billingsleyite plus pyrargyrite. Pyrostilpnite (Ag3SbS3), the low temperature dimorph of pyrargyrite, is unstable above 192±5°C.
Das ternäre System Silber-Antimon-Schwefel wurde zwischen 600° und 200°C untersucht und versucht, die Gleichgewichtszustände aller stabilen Phasen zu analogen natürlichen Mineralien in Beziehung zu setzen. Neben den Elementen wurden an binären Phasen Allargentum, Dyskrasit, Antimonit, Argentit bzw. Akanthit gefunden oder bestätigt. Auf dem pseudo-binären Schnitt Ag2S-Sb2S3 liegen Pyrargyrit und Miargyrit, während eine als Mineral unbekannte ternäre Phase Ag7SbS6 (entsprechend dem natürlichen As-Analogon Billingsleyit) nur bei höherem Schwefelangebot beständig ist. Hier nicht synthetisch dargestellte Silber-Antimon-Sulfosalze liegen vermutlich unterhalb der 200°C-Grenze. So ließ sich mittels Differential-Thermo-Analyse und röntgenographischer Bestimmungsmethoden der inkongruente Zerfall von Stephanit in Argentit und Pyrargyrit bei 197±5°C bestimmen. Pyrostilpnit (Ag3SbS3) ist nur unterhalb 192±5°C beständig.
  相似文献   

19.
Zusammenfassung Die Phasenbeziehungen im Cu-W-S-System wurden zwischen 900 °C und Zimmertemperatur durch DTA- und Abschreckungsexperimente in Quarzglas-und in unter Druck kollabierenden Goldampullen, sowie durch eine Reihe von Verwitterungsversuchen und Umsetzungen in wässrigen Lösungen untersucht. Die im System auftretenden Verbindungen sind Cu2S (Kupferglanz), Cu1.97S (Djurleit), Cu1.75S (Anilit), Cu1+xS (blaubleibender Covellin), CuS (Covellin) und oberhalb 70°C Cu1.8S (Digenit), sowie WS2 (Tungstenit). Es gibt keine ternären Verbindungen. Von allen genannten Phasen ist nur der Tungstenit über den gesamten untersuchten Temperaturbereich stabil. Das System zeigt bei 900 °C neben Schwefelschmelze (L1) eine Sulfidschmelze (L2). Es handelt sich um das oberhalb 813 °C auftretende Monotektikum im Randsystem Cu-S, welches im ternären System 0.5 Gew.-% WS2löst. Die Phase WS2 koexistiert bei 900 °C mit L1, L2 und mit der bei dieser Temperatur lückenlosen Kupferglanz-Digenit-Mischkristallreihe sowie mit W. Außerdem besteht eine Konode zwischen W und Cu2S. Das gegenseitige Lösungsvermögen der Verbindungen ist selbst bei 900 °C gering. Während Digenit 0.5 Gew.-% WS2 in fester Lösung aufzunehmen vermag, beträgt umgekehrt die Löslichkeit von Kupfersulfid in WS20.2%. Die Phasenbeziehungen unter 900 °C sind charakterisiert durch das Stabilwerden des Covellins bei 507 °C. Kurz unterhalb dieser Temperatur werden WS2 und CuS nebeneinander stabil. Die Mischungsreihe zwischen Digenit und Kupferglanz ist unterhalb 430 °C nicht mehr lückenlos. Das System Cu-W-S zeigt daher bei 400 °C Konoden von WS2 zu Covellin, Digenit und Kupferglanz. Unterhalb 70 °C zerfällt der mit Tungstenit koexistierende Digenit zu Anilit und Djurleit. Bei künstlicher Verwitterung von Kupferglanz oder Digenit mit WS2-Einschlüssen konnten durch teilweise Oxidation mit verdünnter Fe-Sulfat- oder Cu-Sulfatlösung die Kupfersulfide in blaubleibenden Covellin überführt werden, während Tungstenit unter gleichen Bedingungen den Agenzien widerstand, wodurch sich die Koexistenz zwischen Cu1+xS und WS2 nachweisen ließ. Die bei niedrigen Temperaturen mit Tungstenit im Cu-W-S-System koexistierenden Phasen sind: Kupferglanz, Djurleit, Anilit, blaubleibender und normaler Covellin; bei Spuren von im Digenitgitter gelösten Fe tritt Anilit nicht auf, statt dessen ist Digenit mit Tungstenit stabil. Ein neues natürliches Tungstenitvorkommen (Kipushi/Katanga) wird beschrieben, das Mineral ist orientiert in massivem Kupferglanz eingewachsen (Abb. 4 und 5).
The phase relations in the Cu-W-S-system were investigated at various temperatures ranging from almost room temperature up to 900 °C. The experiments were performed in evacuated silica glass tubes with a minimum vapor space. At low temperatures alteration experiments were carried out in water solutions containing copper(II)-sulfate or iron(III)-sulfate. No ternary phase exists in the system. At 900 °C Cu2S and W are coexisting phases. Tie lines connect WS2 with the digenite-chalcocite solid solution and with a sulfuric liquid containing 0.5 wt.-% WS2. Below 813 °C the sulfuric liquid disappears in the Cu-S system (monotectic). On continuous cooling CuS will appear at 507 °C in the Cu-S system and shortly below this temperature covellite coexists with tungstenite. At temperatures below 70 °C tungstenite can coexist with covellite, blaubleibender covellite, anilite, djurleite, and with chalcocite in the pure system. If traces of iron are present anilite will not be formed and digenite remains stable with tungstenite. A new occurrence of tungstenite was observed from the Kipushi mine (Katanga), displaying excellent intergrowth with chalcocite (fig. 4 and 5).
  相似文献   

20.
Hydrothermal experiments on natural samples of trachyandesiteand dacite bulk composition show that anhydrite (CaSO4) mayoccur as a stable phenocryst phase at oxygen fugacities greaterthan or equal to 1.0 to 1.5 log fO2 units above the Ni–NiOequilibrium. The dissolved sulfur concentration in anhydritesaturated melts from MnO–Mn3O4 buffered experiments decreaseswith decreasing temperature, from approximately 2300 p.p.m.Sat 1025?C to 250 p.p.m.S at 850?C (all at 2 kb Pfluid = Ptotal).In FeS-saturated melts equilibrated at the Ni–NiO bufferand 2 kb pressure, the concentration of dissolved sulfur alsodecreases with decreasing temperature, varying from approximately400 p.p.m. S at 1025?C to less than 100 p.p.m. S at 850?C. AtNNO or lowerfO2s, decreasing melt FeO content due to crystalfractionation may explain the observed decrease in sulfur solubilitywith decreasing temperature. Sulfur solubility values equivalent to the approximately 0.6wt. per cent S present in fresh bulk pumice samples from the1982 eruptions of El Chichon volcano are not readily achievedunder any reasonable combinations of pressure, temperature,and oxidation state. Dissolved sulfur contents approaching 0.6wt. per cent might occur if the source regions of melts parentalto the El Chichon trachyandesite were at an fO2 several logunits above the Ni–NiO equilibrium. Because such elevatedoxidation states are far greater than the generally acceptedvalues for mantle-derived partial melts we believe the highsulfur content of the El Chichon pumices is not a primary feature;it reflects reaction with sulfur enriched material at some unknowndepth beneath the volcano. Published sulfur isotopic and petrologicdata suggest that hydrothermally altered rocks similar to thepyrite- and anydritebearing lithic fragments found in the 1982pumices could have provided a source of sulfur for crystallizationof magmatic anhydrite. The anhydrite was an important sourceof sulfur for evolution of a sulfur-rich vapor phase duringeruption of the magma. Although many calc-alkaline dacites and rhyolites appear toattain oxidation states high enough to stabilize anhydrite,the characteristically low bulk sulfur contents of these rockswill limit anhydrite abundances to less than approximately 0.1wt. per cent, assuming sufficient sulfur is present to achievesaturation. Such small amounts of a water soluble mineral couldbe easily removed by subaerial weathering processes, dissolvedduring vapor exsolution from a magma, or simply overlooked duringroutine petrographic examination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号