首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic oxidation of methane (AOM) and sulfate reduction (SR) were investigated in sediments of the Chilean upwelling region at three stations between 800 and 3000 m water depth. Major goals of this study were to quantify and evaluate rates of AOM and SR in a coastal marine upwelling system with high organic input, to analyze the impact of AOM on the methane budget, and to determine the contribution of AOM to SR within the sulfate-methane transition zone (SMT). Furthermore, we investigated the formation of authigenic carbonates correlated with AOM. We determined the vertical distribution of AOM and SR activity, methane, sulfate, sulfide, pH, total chlorins, and a variety of other geochemical parameters. Depth-integrated rates of AOM within the SMT were between 7 and 1124 mmol m−2 a−1, effectively removing methane below the sediment-water interface. Single measurements revealed AOM peaks of 2 to 51 nmol cm−3 d−1, with highest rates at the shallowest station (800 m). The methane turnover was higher than in other diffusive systems of similar ocean depth. This higher turnover was most likely due to elevated organic matter input in this upwelling region offering significant amounts of substrates for methanogenesis. SR within the SMT was mostly fuelled by methane. AOM led to the formation of isotopically light DIC (δ13C: −24.6‰ VPDB) and of distinct layers of authigenic carbonates (δ13C: −14.6‰ VPDB).  相似文献   

2.
The terrigenous fraction of seabed sediments recovered along the north‐west African continental margin illustrates spatial variability in grain size attributed to different transport mechanisms. Three subpopulations are determined from the grain‐size analyses (n = 78) of the carbonate‐free silt fraction applying an end‐member modelling algorithm (G. J. Weltje, 1997). The two coarsest end‐members are interpreted as representing aeolian dust, and the fine‐grained end‐member is related to fluvial supply. The end‐member model thus allows aeolian fallout to be distinguished from fluvial‐sourced mud in this area. The relative contributions of the end‐members show distinct regional variations that can be related to different transport processes and pathways. Understanding present‐day sediment dispersal and mixing is important for a better understanding of older sedimentary records and palaeoclimate reconstructions in the region.  相似文献   

3.
Y. Mart 《Tectonophysics》1987,140(2-4):213-232
Resurgent tectonic phases superimposed their structural imprints on the continental margin of the southeastern Mediterranean. This margin underwent a complete cycle, from a margin of a marine basin in the Paleozoic, to the margin of the incipient Neo-Tethys ocean in the early Jurassic, through the margin of the mature ocean in the late Jurassic, Cretaceous, and Paleogene. It became the margin of a desiccated marine basin in the late Miocene, and finally became the margin of a rejuvenated marine basin after the Pliocene.

The margin was affected by folding, faulting and intermittent volcanism during the early Liassic, early Neocomian, late Cretaceous, Oligocene and early Miocene. The younger tectonic phases were superimposed on the older ones, reactivating them in some places and masking them in others. The geological characteristics and this complex tectonic history are masked effectively by the thick Messinian evaporitic sequence. This smoothing effect was further enhanced by the huge pile of sediments that has been deposited by the River Nile since the early Pliocene.  相似文献   


4.
The concept of the wave-graded continental shelf, with sea floor sediment coarsening from offshore mud to shoreface sand, has been well known from the time of Johnson (1919) . Although most of the modern shelf shows textures unrelated to water depth on account of relict features or sediment starvation, the geological record is more likely to preserve sites where sediment is being fed to a subsiding inner-shelf. These consistently show the landward-coarsening pattern of the wave-graded shelf, recording past water depth history in accumulated sea floor sediment. The landward-coarsening pattern is driven primarily by wave-induced bed shear stress, which increases shoreward exponentially, although it also varies from place to place with wave climate, and can be influenced by sediment concentration and currents. In this study, the relationship between bed shear stress, sediment texture and water depth has been investigated by comparing per cent mud and wave climate data from shore-normal transects of three modern wave-graded coastal settings: Wellington Harbour (low energy) and the Manawatu coast (moderate energy) in New Zealand, and Monterey Bay in California (moderate–high energy). Samples from all three locations show a progressive change from poorly sorted mud offshore to well-sorted fine sand nearshore, with the sand–mud transition ranging from 3 m (low energy) to 50 m (moderate–high energy), reflecting differences in average bed shear. Repeat measurements of per cent mud on seasonal, annual and decadal time scales along a Manawatu coastal transect showed no measurable change, demonstrating equilibrium between sediment supply, wave energy, water depth and sediment texture. A simple model based on the relationship between wave climate, shear stress and per cent mud, and using data and conditions from the modern Manawatu coast, is applied to two mid-Pliocene cyclothems exposed 50 km inland, giving results comparable with estimates from foraminifera and the deep-sea isotope record. Per cent mud offers more detail for palaeobathymetric trends in shallow water shelf strata than other proxy depth recorders, although it is limited to depths above wave base and requires an independent estimate of wave climate if depths are to be quantified.  相似文献   

5.
International Journal of Earth Sciences - A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB)....  相似文献   

6.
Multi-channel seismic reflection profiles across the southwest continental margin of India (SWCMI) show presence of westerly dipping seismic reflectors beneath sedimentary strata along the western flank of the Laccadive Ridge — northernmost part of the Chagos-Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors (SDRs).  相似文献   

7.
The Paleocene-recent post-rift subsidence history recorded in the Mumbai Offshore Basin off western continental margin of India is examined. Results obtained through 2-D flexural backstripping modelling of new seismic data reveal considerable thermo-tectonic subsidence over last ca. 56 Myr. Reverse postrift subsidence modelling with variable β stretching factor predicts residual topography of ca. 2000 m to the west of Shelf Margin Basin and fails to restore late Paleocene horizon and the underlying igneous basement to the sea level. This potentially implies that:(1) either the igneous basement formed during the late Cretaceous was emplaced under open marine environs; or(2) a laterally varying cumulative subsidence occurred within Mumbai Offshore Basin(MOB) during ca. 68 to ca. 56 Ma. Pre-depositional topographic variations at ca. 56 Ma across the basin could be attributed to the extensional processes such as varied lower crustal underplating along Western Continental Margin of India(WCMI). Investigations about basement tectonics after unroofing of sediments since late Paleocene from this region support a transitional and heavily stretched nature of crust with high to very high β factors. Computations of past sediment accumulation rates show that the basin sedimentation peaked during late Miocene concurrently with uplift of Himalayan-Tibetan Plateau and intensification of Indian monsoon system. Results from basin subsidence modelling presented here may have significant implications for further studies attempting to explore tectono-climatic interactions in Asia.  相似文献   

8.
Thrust tectonics along the north-western continental margin of Sabah/Borneo   总被引:4,自引:0,他引:4  
Widely accepted plate tectonic models suggest that an inactive subduction zone lies along the north-west continental margin of Sabah. In contrast, interpretation of reflection seismic data acquired by BGR shows an autochthonous continental terrane comprising an Oligocene to Early Miocene carbonate platform being progressively overthrust by an allochthonous rock complex. Progressive compression resulted in the development of four structural zones: Imbricated thrust sheets (Zone III); two thrust sheet systems one on top of the other (Zone IV); a complex zone with multiphase deformation (Zone V); and piercement ridges (Zone VI).
Zusammenfassung Nach herkömmlichen plattentektonischen Vorstellungen soll eine inaktive Subduktionszone am nordwestlichen Kontinentalrand von Sabah liegen. Reflexionsseismische Meßdaten der BGR zeigen jedoch, daß hier autochthone kontinentale Kruste mit einer oligozänen-frühmiozänen Karbonatplattform progressiv von einem allochthonen Gesteinsverband überschoben wird. Fortschreitender Zusammenschub seit dem frühen Miozän führte zur Anlage von vier Deformationszonen: Tekonische Schuppen (Zone III); zwei übereinander geschobene Verschuppungssysteme (Zone IV); Gürtel mit mehrphasiger Deformation (Zone V) und Durchspießungsstrukturen (Zone VI).

Résumé Les modèles géodynamiques que l'on admet habituellement comportent une zone de subduction inactive le long de la marge continentale nord-occidentale de Sabah. Toutefois, des mesures de sismique-réflexion exécutées par le BGR font apparaître qu'à cet endroit, une croûte continentale autochtone, comportant une plateforme carbonatée oligocène à éomiocène, est chevauchée progressivement par un complexe allochtone. La compression, qui s'est manifestée progressivement depuis le Miocène inférieur, a engendré quatre zones structurales: un ensemble d'écailles tectoniques (zone III); deux systèmes de lames tectoniques charriés l'un sur l'autre (zone IV); une zone complexe à déformation multiphasée (zone V); des structures d'extrusion tectonique (zone VI).

, - Sabah'a. , - . 4-? : ( 3), ( 4) ( 5) ( 6).
  相似文献   

9.
The southern Chilean convergent margin, between 50° and 57° S, is shaped by the interaction of the three main plates: Antarctic, South America and Scotia. North of 53° S, the convergence between Antarctic and South America plates is close to orthogonal to the continental margin strike. Here, the deformational style of the accretionary prism is mainly characterized by seaward-verging thrusts and locally by normal faults and fractures, a very limited lateral extension of prism, a very shallow dip ( 6°) décollement, and subduction of a thick and relatively undeformed trench sedimentary sequence. South of 53° S, convergence is oblique to the margin, locally, the trench sediments are proto-deformed by double vergence thrusting and the front of the prism grows through landward-verging thrusting. The décollement is sub-horizontal and deep, involving most of the sediment over the oceanic crust in the accretionary process, building a comparatively wide and thicker prism. A Bottom Simulating Reflector is present across the whole prism to the abyssal plan, suggesting the presence of gas in the sediments.The analysis of P- and S-wave velocity reflectivity sections, derived by amplitude versus offset technique (AVO), detailed velocity information and the velocity-derived sediment porosity have been integrated with the structural analysis of the accretionary prism of two selected pre-stack depth migrated seismic lines, aiming to explain the relation between fluid circulation and tectonics.Accretion along double vergence thrust faults may be associated with the presence of overpressured fluid, which decreases the effective shear stress coefficient along the main décollement and within the sediments, and modify the rheolgical properties of rocks. The presence of an adequate drainage network, represented by interconnected faults and fractures affecting the entire sedimentary sequence, can favour the escape of pore fluid toward the sea bottom, while, less permeable and not faulted sediments can favour fluid accumulations. Gravitational and tectonic dewatering, and stratigraphy could control the consolidation and the pore overpressure of sediments involved in subduction along the trench. The results of our analysis suggest the existence of a feedback between tectonic style and fluid circulation.  相似文献   

10.
11.
We document upper slope sedimentary process and strata on the passive margin of the north-western South China Sea (SCS) using multibeam bathymetry and high-resolution seismic data. The upper slope can be divided into two segments based on geomorphology, strata, and sediment supply. (1) The east segment is characterised by deep incised canyons and gullies, and slope failure. Submarine canyons with both U- and V-shaped morphology (13–28 km long × 2–4 km wide) are oriented NNE–SSW or NNW–SSE and are approximately perpendicular to the slope. Erosion is dominant, with escarpments, slumps, and several mass transport deposits (MTDs). Shelf-margin clinoforms show strongly upward vertical aggradation with time and are strongly aggradational in style. Since 5.5 Ma, the shelf break line migrated southwards and then retreated to its present position. The segment is classified as erosion-dominated due to insufficient sediment supply. (2) The west segment has a smooth surface, gentle gradient, and a strongly progradational style, with MTDs triggered by high sedimentation rates. Shelf-margin clinoforms display a combination of progradational and aggradational stacking patterns. The shelf break line migrated southwards with time. The segment is classified as deposition-dominated, resulting from plentiful sediment supply. Depositional models have been constructed for each segment: a constant shelf break model with insufficient sediment supply in the east, and a migration shelf break model with plenty sediment supply in the west. This case study contributes to the understanding of the upper slope sedimentary process and stratigraphic style under different sediment supply conditions.  相似文献   

12.

华南陆缘在新生代期间经历了千米量级的上覆盖层剥蚀和山脉隆升;同时,其东侧的东海陆架盆地经历多次构造应力场的反转并发育多期反转构造。东海陆架盆地内的构造反转与华南陆缘隆升的发生时间和触发机制是否一致有待研究。为此,本文对浙江地区的岩石样品进行磷灰石裂变径迹测试和热演化史反演分析其隆升历史,并通过地震剖面分析东海陆架盆地的反转时间及其反转所导致的地层剥蚀量;最后,将二者进行对比分析并研究其动力学机制。结果发现,华南东部陆缘地区至少存在晚始新世(34.5~33.5Ma)、中中新世(16~11.5Ma)、上新世以来(5~0Ma)三期明显的快速隆升事件,三期隆升导致的地层剥蚀量分别为227m、593m和865m;东海陆架盆地经历了古新世末-始新世初(~56Ma)、始新世末-渐新世初(~32Ma)和晚中新世(~10Ma)三期构造反转,三期反转导致的局部地层最大剥蚀量分别可达1200m、1300m和2000m。在时间上,东海陆架盆地的始新世末-渐新世初(~32Ma)和晚中新世(~10Ma)的构造反转分别滞后于浙江的晚始新世(34.5~33.5Ma)和中中新世(16~11.5Ma)的隆升时间,说明这两期挤压-剥蚀事件分别具有自西向东的迁移性,即印度-欧亚板块碰撞的远程效应可能是导致该迁移特征的原因;在强度上,东海陆架盆地的反转剥蚀量大于浙江境内的地层隆升量、挤压强度东强西弱,中新世晚期菲律宾海板块向西俯冲导致冲绳海槽弧后伸展产生向西的挤压力、这种挤压应力向陆内传递且强度变弱可能是导致该特征的原因。

  相似文献   

13.
The SE-Brazil passive continental margin is characterized by tholeiitic magmatism that is particularly widespread in the marginal Campos basin, facing the inland flood basalts of the adjacent Paranà basin. Campos magmatism is represented by Early Cretaceous (EC; 134–122 Ma) flood basalts and minor Upper Cretaceous-Early Tertiary basalt flows and intrusives, which were emplaced in a basin with attenuated crustal thickness (20 km). Petrography, mineral chemistry, wholerock geochemistry and Sr–Nd isotope composition emphasize that the EC-Campos basalts have suffered extensive seawater interaction which caused enrichment in MgO, FeO total, K2O, Rb and Ba, and depletion in SiO2 and CaO, while Zr, Nb, Y and REE remained virtually constant in samples with loss-on-ignition values less than 4 wt%. In general, Campos basalts have bulkrock chemistry similar to those of the inland Parana tholeiites (140–130 Ma) with relatively low concentrations of incompatible elements and TiO2 (<2 wt%). Batch-melting calculations suggest that Campos basalt genesis requires a garnet-peridotite source and variable degree of melting (9–25%) in order to explain the rare-earth-element (REE) patterns with chondrite normalised La/Yb(N) ratio ranging from 0.9–1.0 to 4.4–7.1. The Sr–Nd isotopic data for the slightly altered Campos basalts, of both Early Cretaceous and Upper Cretaceous-Early Tertiary age, plot close to bulk earth, or in the enriched quadrant of the mantle array. Inter-element (La, Zr, Nb, Ba) ratios preclude for the Campos (and Paranà) basalt genesis any significant participation of N-type (Zr/Nb>16) MORB (mid-ocean-ridge basalt) mantle in simple binary mixing models. On the whole, the Early Cretaceous Campos basalts appear as an easterly, younger extension of the northern Paranà volcanism and probably erupted during early stages of the major riftingprocesses which caused continental thinning. It is notable that in the Campos marginal basin both the basalt magmatism contemporaneous with the continental break-up, as well as that which occurred after the S. America-Africa separation, appears substantially related to subcontinental lithosphere and a Dupal-like OIB (ocean-island basalt) (e.g. Tristan da Cunha) source components.  相似文献   

14.
The northeastern South China Sea continental margin holds the key to understanding Late Mesozoic tectonics and evaluating hydrocarbon potentials in Mesozoic tectonic and stratigraphic structures offshore southeast China. With newly obtained and processed seismic data, and new drilling and logging data, we correlate regional Mesozoic stratigraphy and analyze major Mesozoic tectonic events and structures. In particular, we focus our study on the three major tectonic units in the area, the Chaoshan Depression, the Tainan Basin, and the Dongsha–Penghu Uplift, which are separated by basement high, thrust fold, and (or) faults. Stratigraphic correlations suggest a major phase of southeastward regression, spanning in time from the late Early Jurassic (180 Ma) to the Early Cretaceous (120 Ma). Seismic data reveal two major tectonic events, with the first one in the Late Jurassic to the Early Cretaceous, contemporary with the regression, and the second one in the Late Cretaceous. Regional magnetic anomaly map after the reduction to the pole clearly reveals the boundary between the Dongsha–Penghu Uplift and the Chaoshan–Tainan depositional system. The seismic and magnetic data also suggest that, while the Dongsha–Penghu Uplift has highly magnetized sources buried mostly in the upper crust at depths from about 2 km to about 20 km, the Chaoshan–Tainan depositional system has thick Mesozoic sediments of low magnetization.  相似文献   

15.
The southern margin of Australia is a passive continental margin, formed during a Late Jurassic–Cretaceous rifting phase. The development of this passive margin is mainly associated with extensional processes that caused crustal thinning. In this work, we have measured the amount of extension and the stretching factor (β factor) across seven transect profiles approximately evenly distributed across the margin. The obtained results show that the amount of extension and the β factor along the margin vary from west to east. The lowest amount of extension, low–intermediate β factors and a very narrow margin are observed in the western part with 80 km of extension and is underlain mostly by the Archean Yilgarn Craton and the Albany–Fraser Orogen. The Gawler Craton in the centre of the south Australian margin is another region of low extension and low–intermediate β factor. The largest amount of extension (384 km) and the largest β factor (β = 1.88) are found in the eastern part of the passive margin in an area underlain by Phanerozoic Tasman Orogen units. Our results imply that there is a strong control of the age and thickness of the continental lithosphere on the style of rifting along the Australian passive margin. Rifting of old and cold lithosphere results in a narrow passive margin, with the formation of relatively few faults with relatively wide spacing, while rifting of younger, warmer lithosphere leads to wide rifting that is accommodated by a large number of faults with small spacing.  相似文献   

16.
Late Neoproterozoic-Early Cambrian calc-alkaline granitoids are ubiquitous in the continental basement of Iran and indicate formation within a Cadomian arc system at the northern margin of Gondwana. A basement complex comprising mainly mica schist, paragneisses, and metagranite along with metabasite and rare pegmatite is exposed in the Zayanderud region north of Shahrekord located in the hinterland of the Zagros mountain range. This complex is unique in the Neotethyan realm because it includes eclogites with Jurassic metamorphic ages implying involvement of continental crust at the onset of subduction. Ion microprobe UPb zircon dating along with trace element and oxygen isotope analyses for metagranites define two zircon age clusters of ca. 552 and 565 Ma confirming connection with the other Ediacaran age basement arc plutons in the belt. Zircon geochronology for pegmatite, by contrast, yielded a concordant age population averaging 176.5 ± 3.3 (2σ) Ma. Zircon crystals from the pegmatite also have unusually low rare earth element (REE) abundances with sharp increases towards the heavy REE. Along with an absence of a negative Eu anomaly, this indicates a high-grade metamorphic origin of zircon crystallizing from a pegmatite which was formed by melting of mica schist and possibly amphibole eclogite during decompression where incipient garnet breakdown released Zr and HREE to form zircon, and LREE were retained in stable apatite and titanite. Corresponding 40Ar/39Ar phengite dates from the pegmatite and the mica schist country-rock are overlapping with or only slightly postdate the UPb zircon ages, indicating rapid cooling after reaching maximum metamorphic pressure in the Early Jurassic. The Zayanderud basement complex is thus potentially a rare example of deep burial of continental crust and rapid exhumation due to buoyant escape during the incipient stages of subduction, well before the ultimate closing of the Neotethys ocean basin between Arabia and Eurasia in the mid-Tertiary.  相似文献   

17.
Flexure of the lithosphere and continental margin basins   总被引:4,自引:0,他引:4  
The accumulation of sediments at an Atlantic-type continental margin constitutes a load on the lithosphere which simply sags due to its weight. Studies of the geometry of deformation suggests the lithosphere will respond to these loads either by local loading of an Airy-type crust or flexural loading of a strong rigid crust. Sediment loading models of either type cannot, however, explain the substantial thicknesses of shallow-water sediments observed in commercial boreholes from Atlantic-type margins. Other factors such as thermal contraction, gravitational outflow of crustal material or deep crustal metamorphism may contribute to the subsidence. We have used biostratigraphic data from commercial boreholes from the Gulf of Lion and the East Coast U.S.A. to quantitatively determine the contribution of sediment loading to the subsidence. From these data we determined sea-floor and basement depths for sequential time intervals during margin development. Using the sediment loading models the sediment layers at each margin were progressively “backstripped” and the depth basement would have been without the sediment load calculated. The computed basement depths indicate there is a recognizable component of the subsidence of these margins which is caused by processes other than adjustments to the weight of the sediment. The nature of this subsidence is discussed and comparisons are made with that which would be expected from thermal-contraction models.  相似文献   

18.
The subtidal sediments of four coastal environments (beach, berm, surf zone and nearshore sea floor) of Kuala Terengganu have been studied in terms of their textural characteristics and depositional process. Sampling and statistical analyses of the grain size distributions of beach, surf zone and shallow sea-floor sediments at various locations along the coastline show that they varied in their mean grain size as well as values of sorting and skewness. The statistical parameters of grain size distributions thus allowed recognition of distinct sub-environments. The size distribution of such sediments suggests that the various processes that are responsible for their transportation and deposition are wave, current and wind action. The different energy conditions and the morphology of each coastal environment seem to be reflected in the characteristics of the sediments in each environment.  相似文献   

19.
Based on distinctive stratigraphic and/or structural characteristics, the Brazilian continental margin can be divided into two main provinces:
  1. The southeastern-eastern province, extending from the Pelotas to the Recife-João Pessoa Basin, presents a tensional tectonic style of Late Jurassic-Early Cretaceous age, paralleling the structural alignements of the Precambrian basement, except in the north-eastern segment where the Mesozoic faults of the Recife-João Pessoa Basin cut across the east-west basement directions. The basin-fill, Upper Jurassic through Recent, consists, where complete, of three stratigraphic sequences, each of a distinct depositional environment: (a) a lower clastic non-marine sequence; (b) a middle evaporitic sequence, and (c) an upper clastic paralic and open marine sequence.
  2. The northern province, extending from the Potiguar Basin to the Amazon Submarine Basin, displays both tensional and compressional tectonic styles of Upper Jurassic (?) to Upper Cretaceous age either paralleling or cutting transversally the basement alignments. The stratigraphic column differs from the southeastern-eastern province in lacking the Lower Cretaceous evaporitic rocks.
The integration of the stratigraphie and structural data allows one to determine in the eastern Brazilian marginal basins the main evolutionary stages of a typical pull-apart continental margin: a continental pre-rift and rift stage, an evaporitic proto-ocean stage, and a normal marine open ocean stage. In the northern province it is possible to infer a continental rift-valley-stage, a transform stage and an open continental-margin stage. The relationship between the rift-valley and the transform stages is yet not clear.  相似文献   

20.
Deep-large faults in the central continental margin of eastern China are well developed. Based on the regularity of spatial and temporal distribution of the faults, four fault systems were divided: the Yanshan orogenic belt fault system, the Qinling-Dabie-Sulu orogenic belt fault system, the Tanlu fault system and the East China Sea shelf basin-Okinawa trough fault system. The four fault systems exhibit different migration behaviors. The Yanshan orogenic belt fault system deflected from an EW to a NE direction, then to a NNE direction during the Indo-Chinese epoch-Yanshanian epoch. The thrust-nappe strength of the Qinling-Dabie orogenic belt fault system showed the tendency that the strength was greater in the south and east, but weaker in the north and west. This fault system faulted in the east and folded in the west from the Indo-Chinese epoch to the early Yanshanian epoch. At the same time, the faults also had a diachronous migration from east to west from the Indo-Chinese epoch to the early Yanshanian epoch. On the contrary, the thrust-nappe strength was greater in the north and west, weaker in the south and east during the late Yanshanian epoch-early Himalayan epoch. The Tanlu fault system caused the basin to migrate from west to east and south to north. The migration regularity of the East China Sea shelf basin-Okinawa trough fault system shows that the formation age became younger in the west. The four fault systems and their migration regularities were respectively the results of four different geodynamic backgrounds. The Yanshan orogenic belt fault system derived from the intracontinental orogeny. The Qinling-Dabie-Sulu orogenic belt fault system derived from the collision of plates and intracontinental subduction. The Tanlu fault system derived from the strike-slip movement and the East China Sea shelf basin-Okinawa trough fault system derived from plate subduction and retreat of the subduction belt. Translated from Journal of Jilin University (Earth Science Edition), 2005, 35(5): 554–563 [译自: 吉林大学学报 (地球科学版)]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号