首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《地学前缘(英文版)》2020,11(6):2287-2296
In this contribution we present new insights on the evolution of the Dom Feliciano Belt, southernmost Mantiqueira Province, integrating new whole-rock Sm–Nd isotopic data for the Arroio Grande Ophiolite (Punta del Este Terrane, Brazil/Uruguay border) with previously published bulk-rock and isotope geochemistry of the South Adamastor paleo-ocean metamafic rocks located in Uruguay (Paso del Dragón Complex, Punta del Este Terrane) and Namibia (Chameis Subterrane, Marmora Terrane, Gariep Belt). For the regional geology, the new data corroborate previous hypothesis and demonstrate the depleted mantle features of the amphibolites and metagabbros of the studied ophiolite. The Arroio Grande Ophiolite rocks are compared with its Uruguayan and Namibian counterparts, demonstrating their isotopic and geochemical similarities and differences, and the back-arc affinity of the South Adamastor paleo-ocean. The MORB-affinity amphibolites from the Arroio Grande Ophiolite-Paso del Dragón Complex are, so far, the most juvenile rocks in the eastern sector of the Dom Feliciano Belt, yielding εNd(640 ​Ma) between +7.3 and ​+​9, and high 147Sm/144Nd (>0.169) and 143Nd/144Nd(640 ​Ma) ratios (0.51219–0.51229). The South Adamastor is interpreted in this paper as an internal back-arc ocean, with limited lateral extension, opened at around 750–650 ​Ma as the result of the closure of the older Charrua-Goianide paleo-ocean during the Brasiliano/Pan-African orogenic cycle and final configuration of the West Gondwana paleocontinent.  相似文献   

2.
The ophiolite-bearing Bangong-Nujiang zone (BNZ) traversing central Tibet from east to west separates the Qiangtang block in the north from the Lhasa block in the south. Their stratigraphic development indicates that both blocks once formed a continuous continental platform until the Late Triassic. Following Late Paleozoic-Triassic rifting, ocean crust formed between both blocks during the Late Triassic creating the Dongqiao-Naqu basin (DNB) among other basins (Yu et al. 1991). The analysis of the rift flank sequences reveals that rifting was dominated by transtension. The basin was shortened by post-Mid-Cretaceous transpression. Thus, the overall basin evolution represents a Reading cycle despite some active margin processes which gave this cycle a special imprint. Major basin parts were preserved despite transpressional shortening suggesting that the eastern BNZ represents a remnant basin. Our understanding of the DNB solves the prior problem of viewing the BNZ as a Mid-Late Jurassic collisional suture although typical collision-related deformation, thickening, mountain building, as well as related molasse formation are lacking. Our model also explains the scattered linear ophiolite distribution by local transpression of remnant oceanic basin floor without having to consider problematic long range ophiolite thrusting.  相似文献   

3.
《Quaternary Science Reviews》2004,23(14-15):1681-1698
The southern Cape region of South Africa has extensive coastal aeolianites and barrier dunes. Whilst previously reported, limited knowledge of their age has precluded an understanding of their relationship with the climatic and sea-level fluctuations that have taken place during the Late Quaternary. Sedimentological and geomorphological studies combined with an optical dating programme reveal aeolianite development and barrier dune construction spanning at least the last two glacial–interglacial cycles. Aeolianite deposition has occurred on the southern Cape coast at ca 67–80, 88–90, 104–128, 160–189 and >200 ka before the present. Using this and other published data coupled with a better understanding of Late Quaternary sea-level fluctuations and palaeocoastline configurations, it is concluded that these depositional phases appear to be controlled by interglacial and subsequent interstadial sea-level high stands. These marine transgressions and regressions allowed onshore carbonate-rich sediment movement and subsequent aeolian reworking to occur at similar points in the landscape on a number of occasions. The lack of carbonates in more recent dunes (Oxygen Isotope Stages 1/2 and 4/5) is attributed not to leaching but to changes to carbonate production in the sediment source area caused by increased terrigenous material and/or changes in the balance between the warm Agulhas and nutrient-rich Benguela ocean currents.  相似文献   

4.
5.
Abstract: The Balfour Formation has a pronounced lithological variation that is characterized by alternating sandstone- and mudstone-dominated members. The sandstone-dominated Oudeberg and Barberskrans Members are composed of lithofacies that range from intraformational conglomerates to fine-grained sediments, whereas the mudstone-dominated members (Daggaboersnek, Elandsberg, and Palingkloof) are dominated by the facies Fm and Fl. Petrography, geochemistry, and a paleocurrent analysis indicated that the source rock of the Balfour Formation was to south east and the rocks had a transitional/dissected magmatic arc signature. The sandstones-rich members were deposited by seasonal and ephemeral high-energy, low-sinuous streams, and the fine-grained-rich members were formed by ephemeral meandering streams. The paleoclimates have been equated to present temperate climates; they were semiarid becoming arid towards the top of the Balfour Formation. This has been determined by reconstructing the paleolatitude of the Karoo Basin, geochemistry, paleontology, sedimentary structures, and other rock properties, like color.  相似文献   

6.
Columbite-group minerals (CGM) account for the majority of the production of tantalum, an important metal for high-technology applications. Along with other Ta–Nb oxides such as tapiolite, wodginite, ixiolite and pyrochlore supergroup minerals, CGM are recovered from rare-metal granites and granitic rare-element pegmatites. In this paper mineralogical and geochemical data with a focus on CGM, tapiolite, wodginite and ixiolite are presented for rare-element granites and pegmatites from worldwide occurrences except Africa that has been covered in a previous contribution (Melcher et al., 2015). Major and trace element data of the Ta–Nb oxides are presented and compared for a total of 25 granite/pegmatite provinces, and one carbonatite for comparison. Based on CGM compositions, the data allow to distinguish between various subgroups of Li–Cs–Ta (LCT)-family pegmatites, Nb–Y–F (NYF)-family pegmatites, mixed LCT–NYF pegmatites, and rare-element granites.Each period of Ta-ore formation in Earth history is characterised by peculiar mineralogical and geochemical features. Some of the largest and economically most important rare-element pegmatite bodies are located within Archean terrains and intruded ultramafic and mafic host rocks (e.g., Tanco/Canada, Wodgina and Greenbushes/Western Australia, Kolmozero/Kola). They are highly fractionated, of LCT affinity throughout and yield complex mineralogical compositions. The variety of minor and trace elements incorporated attests to a rather insignificant role of the immediate host rocks to their geochemical signature and rather points to the significance of the composition of the underlying crustal protoliths, internal fractionation and the processes of melt generation. Many of the Archean pegmatites carry significant Li mineralization as spodumene, petalite, and amblygonite, and all of them are also characterised by elevated Li in CGM. In addition, Sb and Bi are important trace elements, also reflected by the occasional presence of stibiotantalite and bismutotantalite. REEN patterns of CGM are dominated by the MREE or HREE, and range from very low to high total REE concentrations. Negative Eu anomalies are omnipresent. Scandium contents are also highly variable, from very high (Tanco) to very low concentrations (Wodgina, Kolmozero).A second period of worldwide pegmatite formation was in the Paleoproterozoic. All CGM analysed derive from LCT-family pegmatites except samples from the Amazonas region where Ta is mined from rare-metal granites at Pitinga. Pegmatites intruded highly variable lithologies including metasediments, metabasites, gneiss, granite and quartzite within a variety of structural and paleogeographic settings; however, most of them are syn- to post-orogenic with respect to major Paleoproterozoic orogenic events. Minor and trace element signatures are similar to CGM from Archean pegmatites. Some are characterised by considerable REE enrichment (São João del Rei/Brazil; Amapá/Brazil; Finnish Lapland/Finland), whereas others have normal to low total REE concentrations (Black Hills/USA, Bastar/India). Examples with high REE commonly are enriched in Sc and Y as well, and are often transitional to NYF-family pegmatites.The Mesoproterozoic period is comparatively poor in rare-element pegmatites and rare-metal granites. Mineralogical and chemical attributes of ixiolite–wodginite, tapiolite, CGM and rutile from placer material in Colombia point to an unusual pegmatite source of NYF affinity, yielding high total REE, Sc and Th at low Li and Bi. REE patterns have typical negative Eu and Y anomalies.A third major period of pegmatite formation was the Early Neoproterozoic at around 1 Ga, documented in the Grenvillian (North America), the Sveconorwegian (northern Europe) and the Kibaran in central Africa. CGM are present in numerous, mostly small pegmatites, although larger examples also occur (e.g., Manono in the D.R. Congo; Melcher et al., 2015). Pegmatite fields often display a zonal arrangement of mineralised pegmatites with respect to assumed “fertile” parent granites. They intrude metasediments, metabasites, gneiss and granite of middle to upper crustal levels and display a variety of mineralogical and chemical characteristics. Pegmatites of the Sveconorwegian and Grenville domains are usually of the NYF type and CGM are characterised by elevated Y, REE, Th and Sc. In contrast, the pegmatites of central (Kibara Belt) and southwestern Africa (Orange River Belt) are commonly of LCT affinity carrying spodumene, beryl and cassiterite (Melcher et al., 2015). These CGM have elevated conce ntrations of Li, Mg, Sn and Hf. Total REE concentrations are low except for the Sveconorwegian, and exhibit a variety of shapes in normalised diagrams.The fourth major pegmatite-forming event coincides with amalgamation of Gondwana at the Neoproterozoic/Paleozoic boundary around 550 Ma ago. This event is omnipresent in Africa (“Panafrican”) and South America (“Brasiliano event” documented in the Eastern Brazilian pegmatite and Borborema provinces). Pegmatites often intruded high-grade metamorphic terrains composed of metasediments including schist, marble, quartzite, as well as gneiss, amphibolite, ultramafic rocks, and granite. Within the Neoproterozoic, rare-metal granites of NYF affinity are locally abundant. Pegmatites show both LCT and NYF affinities, and mixed types occur in Mozambique. The Alto Ligonha and Madagascar provinces are characterised by abundant REE and Sc both within Ta–Nb-oxides and as separate mineral phases. Notably, some pegmatite provinces are almost devoid of cassiterite, whereas others carry cassiterite in economic amounts.In the Phanerozoic (younger than 542 Ma), pegmatites formed at all times in response to orogenetic processes involving various continents and terranes during the long-time amalgamation of Pangea and the Alpine orogenies. Whereas some activity is related to the Pampean, Acadian and Caledonian orogenies, the Variscan/Hercynian and Alleghanian orogenies are of utmost importance as manifested in pegmatite formation associated with Sn–W mineralised granites in central and western Europe as well as in the Appalachians. Most of the Variscan and Alleghanian pegmatites are of LCT affinity, although NYF and some mixed types have been described as well. Variscan pegmatite formation culminated at ca. 330 to 300 Ma, whereas Alleghanian pegmatites range in age from about 390 Ma to about 240 Ma. Most are syn- to post-orogenic and were emplaced at different crustal levels and into a variety of host rocks. Degree of fractionation as well as minor and trace element geochemistry of Ta–Nb oxides are rather variable and cover the complete field of CGM compositions. REE patterns are characterised by prominent negative Eu anomalies.Some Mesozoic and Cenozoic pegmatites and rare-metal granites from Southeast Asia and the Russian Far East are included in the compilation. Rare-metal granites of the Jos Plateau (Nigeria) were previously investigated (Melcher et al., 2015). The proportion of NYF pegmatites and rare-metal granites in the Mesozoic is striking, i.e. illustrated by Jos, Orlovka, Ulug Tanzek as well as the southeast Asian deposits related to tin granites. CGM from these areas are invariably rich in REE, Sc, Y and Th. In all rare-metal granites, Ta–Nb oxides are characterised by high total REE concentrations and both, negative Eu and Y anomalies in chondrite-normalised REE diagrams.Although constituting a vastly different magmatic system compared to rare metal pegmatites and granites, we included the Upper Fir carbonatite from the Canadian Cordillera, for comparison, because it is characterised by unusal high Ta contents. As expected, the CGM differ from the pegmatitic CGM by having high Mg and Th, and low U concentrations in columbite-(Fe) and lack an Eu anomaly. However, they also show similarities to primitive CGM from rare metal pegmatites of the NYF family in terms of the REE pattern and the increase in #Ta and #Mn towards the margins of the CGM. Our findings support recent results presented in Chudy (2014) indicating that the Ta enrichment in some carbonatites might be attributed to magmatic processes and conditions that are similar to the pegmatitic systems.  相似文献   

7.
New radiometric U–Pb ages obtained on zircon crystals from Early Jurassic ash layers found within beds of the Chachil Limestone at its type locality in the Chachil depocentre (southern Neuquén Basin) confirm a Pliensbachian age (186.0 ± 0.4 Ma). Additionally, two ash layers found in limestone beds in Chacay Melehue at the Cordillera del Viento depocentre (central Neuquén Basin) gave Early Pliensbachian (185.7 ± 0.4 Ma) and earliest Toarcian (182.3 ± 0.4 Ma) U–Pb zircon ages. Based on these new datings and regional geological observations, we propose that the limestones cropping out at Chacay Melehue are correlatable with the Chachil Limestone. Recent data by other authors from limestones at Serrucho creek in the upper Puesto Araya Formation (Valenciana depocentre, southern Mendoza) reveal ages of 182.16 ± 0.6 Ma. Based on these new evidences, we consider the Chachil Limestone an important Early Jurassic stratigraphic marker, representing an almost instantaneous widespread flooding episode in western Gondwana. The unit marks the initiation in the Neuquén Basin of the Cuyo Group, followed by widespread black shale deposition. Accordingly, these limestones can be regarded as the natural seal of the Late Triassic –earliest Jurassic Precuyano Cycle, which represents the infill of halfgrabens and/or grabens related to a strong extensional regime. Paleontological evidence supports that during Pliensbachian–earliest Toarcian times these limestones were deposited in western Gondwana in marine warm water environments.  相似文献   

8.
Contention surrounds the Ediacaran–Cambrian geodynamic evolution of the palaeo-Pacific margin of Gondwana as it underwent a transition from passive to active margin tectonics. In Australia, disagreement stems from conflicting geodynamic models for the Delamerian Orogen, which differ in the polarity of subduction and the state of the subduction hinge (i.e., stationary or retreating). This study tests competing models of the Delamerian Orogen through reconstructing Ediacaran–Cambrian basin evolution in the Koonenberry Belt, Australia. This was done through characterising the mineral and U–Pb detrital zircon age provenance of sediments deposited during postulated passive and active margin stages. Based on these data, we present a new basin evolution model for the Koonenberry Belt, which also impacts palaeogeographic models of Australia and East Gondwana. Our basin evolution and palaeogeographic model is composed of four main stages, namely: (i) Ediacaran passive margin stage with sediments derived from the Musgrave Province; (ii) Middle Cambrian (517–500 Ma) convergent margin stage with sediments derived from collisional orogens in central Gondwana (i.e., the Maud Belt of East Antarctica) and deposited in a backarc setting; (iii) crustal shortening during the c. 500 Ma Delamerian Orogeny, and; (iv) Middle to Late Cambrian–Ordovician stage with sediments sourced from the local basement and 520–490 Ma igneous rocks and deposited into post-orogenic pull-apart basins. Based on this new basin evolution model we propose a new geodynamic model for the Cambrian evolution of the Koonenberry Belt where: (i) the initiation of a west-dipping subduction zone at c. 517 Ma was associated with incipient calc-alkaline magmatism (Mount Wright Volcanics) and deposition of the Teltawongee and Ponto groups; (ii) immediate east-directed retreat of the subduction zone positioned the Koonenberry Belt in a backarc basin setting (517 to 500 Ma), which became a depocentre for continued deposition of the Teltawongee and Ponto groups; (iii) inversion of the backarc basin during the c. 500 Delamerian Orogeny was driven by increased upper and low plate coupling caused by the arrival of a lower plate asperity to the subduction hinge, and; (iv) subduction of the asperity resulted in renewed rollback and upper plate extension, leading to the development of small, post-orogenic pull-apart basins that received locally derived detritus.  相似文献   

9.
To better understand the formative mechanism of the Cretaceous Gyeongsang Basin in South Korea, we determined the geochemical compositions of Early Cretaceous syntectonic basaltic rocks intercalated with basin sedimentary assemblages. Two distinct compositional groups appeared: tholeiitic to calc-alkaline basalts from the Yeongyang sub-basin and high-K to shoshonitic basaltic trachyandesites from the Jinju and Uiseong sub-basins. All collected samples exhibit patterns of light rare earth element enrichment and chondrite-normalized (La/Yb)N ratios ranging from 2.4 to 23.6. In a primitive-mantle-normalized spidergram, the samples show distinctive negative anomalies in Nb, Ta, and Ti and a positive anomaly in Pb. The basalts exhibit no or a weak positive U anomaly in a spidergram, but the basaltic trachyandesites show a negative U anomaly. The basalts have highly radiogenic Sr [(87Sr/86Sr)i = 0.70722–0.71145], slightly negative εNd, positive εHf [(εNd)i = −2.7 to 0.0; (εHf)i = +2.9 to +6.4], and radiogenic Pb isotopic compositions [(206Pb/204Pb)i = 18.20–19.19; (207Pb/204Pb)i = 15.60–15.77; (208Pb/204Pb)i = 38.38–39.11]. The basaltic trachyandesites are characterized by radiogenic Sr [(87Sr/86Sr)i = 0.70576–0.71119] and unradiogenic Nd, Hf, and Pb isotopic compositions [(εNd)i = −14.0 to −1.4; (εHf)i = −17.9 to +3.7; (206Pb/204Pb)i = 17.83–18.25; (207Pb/204Pb)i = 15.57–15.63; (208Pb/204Pb)i = 38.20–38.70]. The “crust-like” signatures, such as negative Nb–Ta anomalies, elevated Sr isotopic compositions, and negative εNd(t) and εHf(t) values, of the basaltic trachyandesites resemble the geochemistry of Early Cretaceous mafic volcanic rocks from the southern portion of the eastern North China Craton. Considering the lower-crust-like low U/Pb and high Th/U ratios and the unradiogenic Pb isotopic compositions, the basaltic trachyandesites are considered to be derived from lithospheric mantle modified by interaction with melts that originated from foundered eclogite. Basaltic volcanism in the Yeongyang sub-basin is coeval with the basaltic trachyandesite magmatism, but it exhibits an elevated 87Sr/86Sr ratio at a given 143Nd/144Nd and highly radiogenic Pb isotopic compositions, which imply an origin from an enriched but heterogeneous lithospheric mantle source. Melts from subducted altered oceanic basalt and pelagic sediments are considered to be the most likely source for the metasomatism. An extensional tectonic regime induced by highly oblique subduction of the Izanagi Plate beneath the eastern Asian margin during the Early Cretaceous might have triggered the opening of the Gyeongsang Basin. Lithospheric thinning and the resultant thermal effect of asthenospheric upwelling could have caused melting of the metasomatized lithospheric mantle, producing the Early Cretaceous basaltic volcanism in the Gyeongsang Basin.  相似文献   

10.
A number of thermal springs with temperature up to 64°C are found in the Western Cape Province of South Africa. The average δ13C value of gas (CO2+CH4) released at three springs is −22, which is consistent with an entirely biogenic origin for the C and supports previous investigations which showed that the springs are not associated with recent or nascent volcanic activity. Most springs issue from rocks of the Table Mountain Group, where faulted and highly jointed quartzites and sandstones of the Cape Fold Belt act as the main deep aquifer. The δD and δ18O values of the springs range from −46 to −18 and from −7.3 to −3.9, respectively. Although the thermal springs have isotope compositions that plot close to the local meteoric water line, their δD and δ18O values are significantly lower than ambient meteoric water or groundwater. It is, therefore, suggested that the recharge of most of the thermal springs is at a significantly higher altitude than the spring itself. The isotope ratios decrease wuth increasing distance from the west coast of South Africa, which is in part related to the continental effect. However, a negative correlation between the spring water temperature and the δ18O value in the thermal springs closest to the west coast indicates a progressive in increase in the average altitude of recharge away from the coast.  相似文献   

11.
The structure of the Earth’s crust at the junction of the Siberian craton and Sayan–Baikal Fold Belt was studied along the Bayandai Village–Cape Krestovskii profile (85 km long) by a set of geological and geophysical methods: structural survey, interpretation of long-distance photographs, emanation survey, electrical prospecting with self-potential (SP) and direct-current (DC) resistivity profiling, magnetotelluric sounding, magnetic survey, and hydrogeochemical sampling of water objects. Interpretation of the data refined the main features of the tectonic structure of western Cisbaikalia and revealed the disruption pattern and hierarchic zone–block structure of the Earth’s crust. The Obruchev fault system (≈50 km wide), which is the northwestern shoulder of the Baikal Rift, is the main interblock zone of the studied region. It consists of the Morskoi, Primorskii, and Prikhrebtovyi interblock zones, traced from depths of tens of kilometers and widening near the surface owing to superior structures. The studies gave an insight into the regularities in the occurrence of interblock zones and the criteria for their identification in different geologic-geophysical fields. An efficient complex of methods for mapping the Earth’s crust zone–block structure is proposed.  相似文献   

12.
This study presents compositional features of platinum-group element mineralization derived from the Late Archaean placers in the eastern part of the Witwatersrand basin. The significant presence of platinum-group minerals, formed by polycomponent solid-solution series in the system Ru–Os–Ir–Pt(±Fe), was determined using an electron microprobe analysis. Compositional data indicate that the source for polycomponent solid solutions of the Ru–Os–Ir–Pt–Fe system was the Archaean mantle of the Earth, slightly differentiated with respect to platinum-group elements.  相似文献   

13.
This paper reports the occurrence of a Toarcian–Aalenian (Early–Middle Jurassic) radiolarian fauna in the Los Molles Formation, Neuquén Basin, Argentina, as well as comments on its paleobiogeographic affinities. The micropaleontologic analysis was carried out in fine-grained rocks from a turbiditic section of the Los Molles Formation. These samples were first chemically processed using only hydrogen peroxide (H2O2), and afterward treated with acetic (CH3COOH) and hydrofluoric (HF) acids. The first chemical procedure permitted the recovery of only few spongy spumellarians, while the second one enabled to recover more diversified radiolarian assemblages. In general, the studied fauna presents low diversity and abundance, with a strong dominance of spumellarians over nassellarians. The fauna is composed by the genera Paronaella, Homoeoparonaella, Praeconocaryomma, Archaeocenosphaera, Orbiculiformella, Praeparvicingula, and some unidentified spumellarians and nassellarians. According to paleobiogeographic models, the studied Toarcian–Aalenian fauna presents a mid to high latitude affinity. It is possible to infer from those data a bipolar distribution of some taxa, such as Praeparvicingula and probably Praeconocaryomma, between the Northern and Southern hemispheres since the Early Jurassic (Toarcian).  相似文献   

14.
International Journal of Earth Sciences - The Duaringa Basin in eastern Australia is a Late Cretaceous?–early Cenozoic sedimentary basin that developed simultaneously with the opening of the...  相似文献   

15.
This study investigates the isotopic composition (C, O, S and Sr) of carbonates, sulphates and sulphide cements in the rock matrix and fracture fillings in geological formations of the Southeast basin of France, using core samples collected during the Deep Geology of France programme (GPF Ardèche theme). The Southeast basin belongs to the Alpine Tethyan margin. It is one of the thickest sedimentary basins in Europe, reaching upwards of 9 km in certain locations. The main fluid transfer from the basin is related to the large Pb–Zn Mississippi Valley-type district along the southern margin of the Massif Central block. A synthesis of the tectonic, mineralogical and petrographic investigations on the GPF boreholes shows that a major fluid circulation event occurred across the Alpine margin of Tethys during the Early Jurassic (Hettangian–Bathonian). It produced a general cementation of the rock porosity through precipitation of dolomite, sulphate and barite. Fracture fillings yield isotopic signatures distinct from the matrix cements. Matrix cements have particular characteristics, i.e. δ34S and δ13C that agree with a marine origin. The δ34S values of Permo-Carboniferous to Triassic sulphides from fracture cements are interpreted as resulting from the thermo-chemical reduction of sulphates. Fracture sulphates in the same geological formations yield δ34S values that define a relatively homogeneous end-member, whose composition is similar to sulphates in the Largentière Pb–Zn ore deposit. The source of S is attributed to the Permo-Carboniferous succession. The borehole fracture fillings are attributed to a major fluid circulation stage compatible with the Early Jurassic stage identified from the geological investigation of the boreholes. The formation of the Largentière deposit is considered as resulting from the mixing of this Early Jurassic fluid with continental hydrothermal fluids circulating in a basement horst, along its margin with the sedimentary basin. Other Pb–Zn deposits may also be related to fluid migration along the basement/sedimentary cover interface in the eastern and western parts of the Massif Central. This regional fluid circulation event may represent a geodynamic marker of the Jurassic extensional phase.  相似文献   

16.
Critical approaches to development theory and practice provide alternative perspectives that focus on counterhegemonic and discursive dimensions of the development process. Feminist development is one such approach that opens up new spaces and opportunities to promote socially progressive and sustainable economic strategies. This paper uses feminist development geography as a framework to highlight the intersection of diverse spaces and economic strategies at the household and community levels. The analysis focuses on gendered livelihoods that are linked to circular migration and use of natural resources as a way to understand the integration of rural and urban spaces of development. The empirical section of this paper examines demographic patterns and socio-economic trends in Limpopo Province, South Africa as a context for the case study of two community-based women’s producer groups. These examples illustrate how economic strategies and social identities are embedded in and integrate both rural and urban spaces. This analysis contributes to feminist and post-structural development theory and practice by highlighting the potential for progressive forms of economic and social empowerment.  相似文献   

17.
Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The TDM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion.  相似文献   

18.
Located in the centre of the Argentinean Patagonia between 46° and 49°S, the Deseado Region represents the foreland domain of the Southern Patagonian Andes. Its geology is characterized by thick Mesozoic sequences which, at its eastern sector, present a Mesozoic and Cenozoic geologic evolution which has been strongly determined by the development of three major tectonic phases. The present research is based on field geological mapping, interpretation of seismic and aeromagnetic data, as well as satellite image analysis. This approach has allowed us to identify and characterize the deformation that occurred throughout Jurassic, Cretaceous and Miocene times. We interpret that the most relevant structural features are the result of normal faulting generated as a response to the Jurassic rifting stage. These extensional features have strongly influenced the subsequent geometry and distribution of younger Cretaceous and Cenozoic structures.The Jurassic extensional deformation, which affected major areas of Southern Gondwana, is the product of a major intra-continental rifting stage which was accompanied by synkinematic volcanism. This tectonic regime is characterized by SW-NE directed extension that generated major oblique WNW trending faults accommodating regional dextral-extension. In the study area, this tectonic regime is inferred from the geometries of major fault systems interpreted from available seismic reflection data, as well as from the spatial distribution and orientation of the extensional fracturing associated with the opening of hybrid and dilatational siliceous epithermal Au–Ag veins.Following the Jurassic rifting stage, a more restricted Cretaceous -post-Neocomian-compressional tectonic phase took place. Throughout this period, we interpret the previously formed Jurassic extensional structures to have been reactivated under sinistral transpression. Deformation during this period generated sinistral-reverse WNW belts of deformation, which accommodated reverse faulting, imbricate thrusts, dextral and sinistral R1 and R2 shears and disharmonic folds due to a buttress effect.Under the post-Oligocene Andean regime, W–E directed compression acted on previously-formed N to NNE-oriented normal faults. Compression and shortening uplifted a series of narrow and sub-meridional ranges which run as a 200 km long inversion-related tectonic front along the Patagonian foreland. Between 47°11′ and 48°40′S, one of these NNE ranges divides the entire Deseado Region into two distinctive structural domains. Whilst the western domain presents dominant NNW morphotectonic features, that to the east appears highly dominated by WNW fabrics of Jurassic and Cretaceous age.The structural features of the Eastern domain appear to extend further north of the Deseado Region towards the vicinity of the San Jorge Gulf. This WNW-trending belt hosts pre-Upper Cretaceous rocks and pre-drift basement rocks which include igneous Paleozoic metamorphic rocks and Permian to Triassic sedimentary units.The Deseado region’s epithermal Au–Ag Jurassic vein systems result from the infilling and deposition of low temperature hydrothermal fluids within dilatational and hybrid structures. These spectacular vein systems are compatible with the regional SW-NE extension direction controlled by the Jurassic intra-continental rifting of southern Gondwana. Dilatational and hybrid veins are preferentially hosted by fractures in the Jurassic volcanic rocks, while the veins located within the pre-volcanic basement preferentially infill normal faults. Finally, most of these epithermal vein fields where exhumed during a moderate phase of inversion during Cretaceous times.  相似文献   

19.
In order to facilitate the understanding of the geological evolution of the Kalahari Craton and its relation to South America, the provenance of the first large-scale cratonic cover sequence of the craton, namely the Ordovician to Carboniferous Cape Supergroup was studied through geochemical analyses of the siliciclastics, and age determinations of detrital zircon. The Cape Supergroup comprises mainly quartz-arenites and a Hirnantian tillite in the basal Table Mountain Group, subgreywackes and mudrocks in the overlying Bokkeveld Group, while siltstones, interbedded shales and quartz-arenites are typical for the Witteberg Group at the top of the Cape Supergroup. Palaeocurrent analyses indicate transport of sediment mainly from northerly directions, off the interior of the Kalahari Craton with subordinate transport from a westerly source in the southwestern part of the basin near Cape Town. Geochemical provenance data suggest mainly sources from passive to active continental margin settings. The reconnaissance study of detrital zircons reveals a major contribution of Mesoproterozoic sources throughout the basin, reflecting the dominance of the Namaqua-Natal Metamorphic Belt, situated immediately north of the preserved strata of Cape Supergroup, as a source with Archaean-aged zircons being extremely rare. We interpret the Namaqua-Natal Metamorphic Belt to have been a large morphological divide at the time of deposition of the Cape Supergroup that prevented input of detrital zircons from the interior early Archaean Kaapvaal cratonic block of the Kalahari Craton. Neoproterozoic and Cambrian zircons are abundant and reflect the basement geology of the outcrops of Cape strata. Exposures close to Cape Town must have received sediment from a cratonic fragment that was situated off the Kalahari Craton to the west and that has subsequently drifted away. This cratonic fragment predominantly supplied Meso- to Neoproterozoic, and Cambrian-aged zircon grains in addition to minor Silurian to Lower Devonian zircons and very rare Archaean (2.5?Ga) and late Palaeoproterozoic (1.8-2.0?Ga) ones. No Siluro-Devonian source has yet been identified on the Kalahari Craton, but there are indications for such a source in southern Patagonia. Palaeozoic successions in eastern Argentina carry a similar detrital zircon population to that found here, including evidence of a Silurian to Lower Devonian magmatic event. The Kalahari and Río de la Plata Cratons were thus in all likelihood in close proximity until at least the Carboniferous.  相似文献   

20.
The infill of the Neuquén Basin recorded the Meso-Cenozoic geological and tectonic evolution of the southern Central Andes being an excellent site to investigate how the pattern of detrital zircon ages varies trough time. In this work we analyze the U–Pb (LA–MC–ICP–MS) zircon ages from sedimentary and volcanic rocks related to synrift and retroarc stages of the northern part of the Neuquén Basin. These data define the crystallization age of the synrift volcanism at 223 ± 2 Ma (Cerro Negro Andesite) and the maximum depositional age of the original synrift sediments at ca. 204 Ma (El Freno Formation). Two different pulses of rifting could be recognized according to the absolute ages, the oldest developed during the Norian and the younger during the Rhaetian–Sinemurian. The source regions of the El Freno Formation show that the Choiyoi magmatic province was the main source rock of sediment supply. An important amount of detrital zircons with Triassic ages was identified and interpreted as a source area related to the synrift magmatism. The maximum depositional age calculated for the Tordillo Formation in the Atuel-La Valenciana depocenter is at ca. 149 Ma; as well as in other places of the Neuquén Basin, the U–Pb ages calculated in the Late Jurassic Tordillo Formation do not agree with the absolute age of the Kimmeridgian–Tithonian boundary (ca. 152 Ma). The main source region of sediment in the Tordillo Formation was the Andean magmatic arc. Basement regions were also present with age peaks at the Carboniferous, Neoproterozoic, and Mesoproterozoic; these regions were probably located to the east in the San Rafael Block. The pattern of zircon ages summarized for the Late Jurassic Tordillo and Lagunillas formations were interpreted as a record of the magmatic activity during the Triassic and Jurassic in the southern Central Andes. A waning of the magmatism is inferred to have happened during the Triassic. The evident lack of ages observed around ca. 200 Ma suggests cessation of the synrift magmatism. The later increase in magmatic activity during the Early Jurassic is attributed to the onset of Andean subduction, with maximum peaks at ca. 191 and 179 Ma. The trough at ca. 165 Ma and the later increase in the Late Jurassic could be explained by changes in the relative convergence rate in the Andean subduction regime, or by the shift to a more mafic composition of the magmatism with minor zircon fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号