首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our literature studies show that the thermal regime along continental strike-slip rifts is inconspicuous and that they are "low-volcanicity rifts" at best. Along with that, young continental strike-slip rifts exhibit no signs of major thermally controlled doming. We suggest that the larger the strike-slip component of a rift is, the less likely major thermal doming is causally associated with the rift zone. Since vertical lithosphere movements are reflected in the stratigraphic record of a rifted area, different rift modes (strike-slip, dip-slip) may be distinguished by analyzing the relevant sequences. Two ancient and especially suitable strike-slip rift margins in Tethyan mountain belts, the Bangong/Nujiang zone of Tibet and the South Penninic zone of the Alps, were analyzed with regard to their uplift history. The results confirm recent regional rift models which indicate in both cases that rifting was dominated by strike-slip. The stratigraphic approach may provide significant clues as to the mode of paleorifting when structural data are unavailable.  相似文献   

2.
Abstract

The Karasu Rift (Antakya province, SE Turkey) has developed between east-dipping, NNE-striking faults of the Karasu fault zone, which define the western margin of the rift and westdipping, N-S to N20°-30°E-striking faults of Dead Sea Transform fault zone (DST) in the central part and eastern margin of the rift. The strand of the Karasu fault zone that bounds the basin from west forms a linkage zone between the DST and the East Anatolian fault zone (EAFZ). The greater vertical offset on the western margin faults relative to the eastern ones indicates asymmetrical evolution of the rift as implied by the higher escarpments and accumulation of extensive, thick alluvial fans on the western margins of the rift. The thickness of the Quaternary sedimentary fill is more than 465 m, with clastic sediments intercalated with basaltic lavas. The Quaternary alkali basaltic volcanism accompanied fluvial to lacustrine sedimentation between 1.57 ± 0.08 and 0.05 ± 0.03 Ma. The faults are left-lateral oblique-slip faults as indicated by left-stepping faulting patterns, slip-lineation data and left-laterally offset lava flows and stream channels along the Karasu fault zone. At Hacilar village, an offset lava flow, dated to 0.08 ± 0.06 Ma, indicates a rate of leftlateral oblique slip of approximately 4.1 mm?year?1. Overall, the Karasu Rift is an asymmetrical transtensional basin, which has developed between seismically active splays of the left-lateral DST and the left-lateral oblique-slip Karasu fault zone during the neotectonic period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

3.
《Geodinamica Acta》2001,14(1-3):197-212
The Karasu Rift (Antakya province, SE Turkey) has developed between east-dipping, NNE-striking faults of the Karasu fault zone, which define the western margin of the rift and west-dipping, N–S to N20°–30°E-striking faults of Dead Sea Transform fault zone (DST) in the central part and eastern margin of the rift. The strand of the Karasu fault zone that bounds the basin from west forms a linkage zone between the DST and the East Anatolian fault zone (EAFZ). The greater vertical offset on the western margin faults relative to the eastern ones indicates asymmetrical evolution of the rift as implied by the higher escarpments and accumulation of extensive, thick alluvial fans on the western margins of the rift. The thickness of the Quaternary sedimentary fill is more than 465 m, with clastic sediments intercalated with basaltic lavas. The Quaternary alkali basaltic volcanism accompanied fluvial to lacustrine sedimentation between 1.57 ± 0.08 and 0.05 ± 0.03 Ma. The faults are left-lateral oblique-slip faults as indicated by left-stepping faulting patterns, slip-lineation data and left-laterally offset lava flows and stream channels along the Karasu fault zone. At Hacılar village, an offset lava flow, dated to 0.08 ± 0.06 Ma, indicates a rate of left-lateral oblique slip of approximately 4.1 mm·year–1. Overall, the Karasu Rift is an asymmetrical transtensional basin, which has developed between seismically active splays of the left-lateral DST and the left-lateral oblique-slip Karasu fault zone during the neotectonic period.  相似文献   

4.
In the Kurai fault zone, travertine forms a matrix cementing clastic material of colluvial and glacial deposits or rarely forming a stockwork in a system of fractures in Palaeozoic rocks. The regular change of composition of solutions in the process of travertine formation has resulted in change of stable Mg–calcite by Sr–aragonite. According to the carbon isotopic composition, the travertine has intermediate genesis between thermal and meteogene. The light oxygen isotopic composition of CaCO3 indicates formational water input. The carbonates inherited Y, Sr, U, and Ni and in some areas, V, As, and Zn from the endogeneous water sources. Given that the Kurai zone travertine cements the Late Pleistocene–Holocene sediments and 14C dating of the carbonates gives a range of >40 000–3475 ± 35 years, the faults serving as routes of migration of the solutions forming the travertine should be considered as active structures.  相似文献   

5.
We discuss the results of study of the Holocene seismic activity of the Hustai Fault zone, Central Mongolia. Applying seismological methods (remote, trenching, geophysics), we have revealed signs and determined the quantitative parameters of the paleoearthquake that led to the fault dissection at 3–5.5 ka. The high seismic potential of the Tola earthquake focus zone and its proximity to Ulaanbaatar confirm earlier estimates of the seismicity of the capital of Mongolia, 8 points on the MSK-64 scale.  相似文献   

6.
One of the major tectonic problems in Europe concerns the southwest margin of the East European Platform in the region of the so-called Polish-Danish trough. In general, this margin is assumed to be the Tornquist-Teisseyre (T-T) Line, running approximately from northwest to southeast in this part of Europe. Determination of deep crustal structure of the contact zone between the Precambrian Platform and the Palaeozoic Platform was the main aim of the deep seismic sounding (DSS) programme in Poland in 1965–1982.Deep seismic soundings of the Earth's crust have been made in the T-T Line zone along nine profiles with a total length of about 2600 km. The results of deep seismic soundings have shown that the crust in the marginal zone of the East European Platform has highly anomalous properties. The width of this zone ranges from 50 km in northwest Poland to about 90 km in southeast Poland. The crustal thickness of the Palaeozoic Platform in Poland is 30–35 km, and of the Precambrian Platform 42–47 km, while in the T-T tectonic zone it varies from 50 to 55 km. Above the Moho boundary, in the T-T zone, at a depth of 40–45 km, there is a seismic discontinuity with P-wave velocities of 7.5–7.7 km/s. Boundary velocities, mean velocities and stratification of the Earth's crust vary distinctly along the T-T zone. There are also observed high gravimetric and magnetic anomalies in the T-T zone. The T-T tectonic zone determined in this manner is a deep tectonic trough with rift properties.The deep fractures delineating the T-T tectonic zone are of fundamental importance for the localization of the plate edge of the Precambrian Platform of eastern Europe. In the light of DSS results, the northeastern margin of the T-T tectonic zone is a former plate boundary of the East European Platform.  相似文献   

7.
In the Makran subduction zone, earthquake focal mechanisms and geodetic data indicate that the deforming prism currently experiences N–S compression. However, palaeostress inversions performed on normal faults observed along the coast reveal local stress components consistent with N‐S extension. Previously proposed mechanisms such as gravitational collapse are not favoured by N–S compression and surface uplift. We propose that the observed kinematics result from transient stress reversals following large earthquakes. During the interseismic period (now), the region experiences N–S compression. However, following a large reverse rupture on the subduction interface, stresses in the inner wedge relax, enabling a brief period of extensional faulting before a compressive stress state is re‐established. This mechanism, also observed in other subduction zones, requires low overall stresses in the upper plate and that the margin ruptures in large megathrust earthquakes that result in nearly complete stress drops.  相似文献   

8.
We present a comprehensive study of the recent and active tectonics of the external part of the Northern Apennines (Italy) by using morphotectonic, geological–structural, and stratigraphic analysis, compared with the current seismicity of the region. This analysis suggests that the external part of the Northern Apennines is characterised by presence of three major systems of Quaternary compressive structures corresponding to (1) the Apenninic watershed, (2) the Apennines–Po Plain margin (pede-Apenninic thrust front), and (3) the Emilia, Ferrara, and Adriatic Fold systems buried below the Po Plain. Geological data and interpreted seismic sections indicate a roughly N–S Quaternary deformation direction, with rates <2.5 mm/year. The shortening decreased since the Pliocene, when our data indicate compression in a NNW–SSE direction and rates up to 7 mm/year. The trend and kinematics of the structures affecting the Apennines–Po Plain margin and the Po Plain subsoil fit well the pattern of the current seismicity of the area, as well as recent GPS and geodetic levelling data, pointing to a current activity of these thrust systems controlled by an overall compressive stress field. Close to the Apenninic watershed, earthquake focal mechanisms indicate that shallow extension is associated to deep compression. The extensional events may be related to a secondary extensional stress field developing on the hangingwall of the thrust system affecting the Apenninic watershed; alternatively, this thrust system may have been recently deactivated and overprinted by active normal faulting. Deeper compressive events are related to the activity of both a major basement thrust that connects at surface with the pede-Apenninic thrust front and a major Moho structure.  相似文献   

9.
10.
郯庐断裂带(安徽部分)动力学演化及其构造意义   总被引:16,自引:2,他引:14  
依据区域构造层划分,从最新地层内的断裂动力学分析开始,层层深入,层层筛选,采用计算机程序对所获的断层面上的擦痕统计分析计算,求得每个点上的古应力场状态,继而求得区域古构造应力场状态。确定发生于各个不同时代断裂活动的古应力场特征。最后确定了一个连续的、完整的古应力场演化序列表,结合区域构造变形特征分析,阐述断裂带的构造事件演化序列及其构造意义。  相似文献   

11.
The novel detailed geological and geochronological data for the tonalitie rocks and products of its structural and metamorphic overprint in the Orekhovo-Pavlogradskaya collision zone (Ukrainian Shield) are discussed. Magmatic crystallization of tonalites (3500 ± 13 Ma) followed by amphibolite (2863 ± 22 Ma) and granulite (2105 ± 40 Ma) facies metamorphic events, resulting in biotite-garnet gneisses formation. The last date also indicating the time of collision event. The earliest age of 3.64 Ga was found in the zonal zircon fragment within 3.5-Ga old magmatic zircon from tonalite.  相似文献   

12.
13.
14.
15.
International Journal of Earth Sciences -  相似文献   

16.
Lead isotope data on whole rocks, feldspars and sulfides from the Ivrea zone indicate that the magmas which formed the Hercynian (?) mafic complex derived from an isotopically anomalous mantle with a lead isotope composition that resembled average continental crustal leads. Contamination during magma emplacement played a minor role and probably accounts for second order variations of the μ values. Similar leads were observed in Caledonian orthogneisses, late-Hercynian granites and volcanics of the near-by Ceneri zone. Metasediments of the kinzigitic series of the Ivrea zone as well as metasediments of the Ceneri zone contain lead with high μ values which indicates of prolonged crustal history in agreement with the mean ages of 1900 to 2500 my of their detrital zircon populations. Amphibolites of the kinzigitic series still contain MORB-type leads, and contamination by metasediments played only a minor role in spite of the regional metamorphism in upper amphibolite facies. The trace leads of stratiform sulfide ores are variable mixtures of mantle-derived and crustal leads depending on the host rock lithologies which are either amphibolites, amphibolites plus metasediments or metasediments.  相似文献   

17.
Granite gneiss, gneiss, and granite domes of Central Karelia are developed near the junction zone between two tectonic structures, the Western anticlinorium of the Belomorides and the East Karelian zone of the Karelides, The established regular restriction of both shows and deposits of a number of mineral resources to the surroundings of the domes is of importance in forecasting and the future direction of exploration work in this region. —Authors.  相似文献   

18.
The available seismic and magnetic data show the Gakkel Ridge rift zone consisting of the Atlantic and Siberian segments divided by a tectonic suture at 70° E. The two segments have had different histories recorded in their sedimentary cover. Apart from the difference in its morphology, the Siberian segment differs from the Atlantic one in the existence of a series of deposition centers, which might represent a vast Paleogenic basin that formed prior to the Gakkel Ridge. The simple model of North Atlantic spreading fails to explain the long and complex history of the Gakkel Ridge rift and the existence of the depocenters. The particular structure of this zone might have resulted from the growth of rift mountains by accretion of magmatic material during the Paleogene, without significant sea floor spreading.  相似文献   

19.
We studied fault scarps produced by prehistoric earthquakes in the Barguzin fault zone and estimated the ages and the magnitudes of the scarp-forming events in each scarp segment from their structure, morphology, and scarp parameters. Morphological and structural data reveal two to four surface-rupturing events with displacement up to 5–9.5 m, and two events showed 14C ages of 4.5 and 9 kyr. The area of the Barguzin Fault may have experienced six 7.5 ≤ M < 8.0 earthquakes and two M ≥ 8.0 (8.0–8.2) events for the past 10–12 kyr.  相似文献   

20.
Paragneisses of the Ivrea-Verbano zone exhibit over a horizontal distance of 5 km mineralogical changes indicative of the transition from amphibolite to granulite facies metamorphism. The most obvious change is the progressive replacement of biotite by garnet via the reaction: a $${\text{Biotite + sillimanite + quartz }} \to {\text{ Garnet + K - feldspar + H}}_{\text{2}} {\text{O}}$$ which results in a systematic increase in the modal ratio g = (garnet)/(garnet + biotite) with increasing grade. The systematic variations in garnet and biotite contents of metapelites are also reflected by the compositions of these phases, both of which become more magnesian with increasing metamorphic grade. The pressure of metamorphism has been estimated from the Ca3Al2Si3O12 contents of garnets coexisting with plagioclase, sillimanite and quartz. These phases are related by the equilibrium: b $$\begin{gathered} 3 CaAl_2 {\text{Si}}_{\text{2}} {\text{O}}_{\text{8}} \rightleftharpoons Ca_3 Al_2 {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} + 2 Al_2 {\text{SiO}}_{\text{5}} + {\text{SiO}}_{\text{2}} \hfill \\ plagioclase garnet sillimanite quartz \hfill \\ \end{gathered} $$ which has been applied to these rocks using the available data on the mixing properties of plagioclase and garnet solid solutions. Temperature and f H 2O estimates have been made in a similar way using thermodynamic data on the biotite-garnet reaction (a) and the approximate solidus temperatures of paragneisses. Amphibolite to granulite facies metamorphism in the Ivrea-Verbano zone took place in the P-T ranges 9–11 kb and 700–820 °C. The differences in temperature and pressure of metamorphism between g= 0 and g = 1 (5 kms horizontal distance) were less than 50° C and approximately 1 kb. Retrogression and re-equilibration of garnets and biotites in the metapelites extended to temperatures more than 50° C below and pressures more than 1.5 kb below the peak of metamorphism, the degree of retrogression increasing with decreasing grade of the metamorphic “peak”. The pressure and temperature of the peak of metamorphism are not inconsistent with the hypothesis that the Ivrea-Verbano zone is a slice of upthrusted lower crust from the crust-mantle transition region, although it appears that the thermal gradient was too low for the zone to represent a near-vertical section through the crust. The most reasonable explanation of the granulite facies metamorphism is that it arose through intrusion of mafic rocks into a region already undergoing recrystallisation under amphibolite facies conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号