共查询到16条相似文献,搜索用时 49 毫秒
1.
收集及处理尼泊尔境内的GPS连续观测站和中国藏南地区的GPS基准站数据,获得2015年尼泊尔MW7.8地震震后3 a的GPS水平形变场。结果显示,尼泊尔地震的震后形变主要分布于尼泊尔北部及中尼边境区域,且东西方向形变较小,南北方向形变较大,整体继续向南运动,最大震后位移约为10.93 cm。采用孔隙弹性回弹模型计算的理论地表位移远小于GPS观测值,无法解释GPS观测到的震后形变。采用震后余滑模型反演的结果表明,震后余滑主要集中在断层的下倾延伸部分,且空间分布较广,余滑释放的地震矩为1.09×1020 Nm。采用PSGRN/PSCMP程序计算粘弹性引起的理论地表形变结果显示,粘弹性松弛模型不能解释近场GPS观测值,但在远场区域的运动方向与GPS观测值一致。采用粘弹性松弛和震后余滑组合机制模型进行反演,余滑释放的地震矩降为1.08×1020 Nm,且空间分布更加集中。研究结果表明,组合机制模型在保证了模型拟合精度的基础上,反演结果与应力驱动模型反演结果更接近。 相似文献
2.
采用2010~2015年汶川地区GNSS震后形变资料,利用有限元法建立三维震后粘弹性松弛模型,通过二维格网搜索获得龙门山断裂带上盘最佳弹性层厚度和中下地壳最佳粘滞系数,并分析汶川地震震后2~7 a粘弹性松弛影响下的震后形变特征;然后采用2008~2009年GNSS震后形变资料,根据最佳参数建立粘弹性松弛与余滑组合模型,... 相似文献
3.
基于GPS观测的震后水平位移对2011年日本MW9.0地震的震后形变特征进行研究。震后近5a(截至2015-12),震后水平位移累积达到东向60~165cm,南向20~65cm,距离震中较远处的G104、G105及J192站点观测到的震后位移累积变化已超过同震位移,且震后形变还在持续。联合震后余滑和粘弹性位错理论模拟震后形变,利用这2种作用机制对震后GPS水平形变进行解释。研究表明,震后余滑在震后形变最初阶段起主要作用,但随着时间增长而逐渐衰减,粘滞性松弛作用的贡献随着时间增长而变大,GPS观测到的震后地表形变可由这2种机制结合得到较合理的解释。利用震后GPS形变模拟估算地震区域的地幔粘滞系数在1.5×1019 Pa·s量级。 相似文献
4.
根据2001年昆仑山MS8.1地震震后2~6 a的InSAR形变场,采用震后粘弹性松弛模型进行模拟,使用半解析平面分层模型研究青藏高原昆仑山地震震区流变结构。Maxwell半空间粘弹性应力松弛模型模拟结果表明,最优的弹性上地壳厚度为15~20 km,莫霍面深度为70 km,该地区下地壳有效粘滞系数在(1~2.5)×1019 Pas之间,上地幔有效粘滞系数在(1~6.3)×1019 Pas之间。该结果与青藏高原玛尼震区的震后粘弹性松弛反演结果基本一致。 相似文献
5.
震后形变的解析模型和时空分布特征 总被引:5,自引:3,他引:5
利用3种可能震后效应(震后余滑、孔隙弹性回弹、震后粘弹性松弛)的数学解析模型,分析了各种震后形变的时空分布特征,并且以1931年富蕴8级地震的震后粘弹性松弛反演为算例,说明震后粘弹性松弛解析模型的应用。分析与计算表明:震后1~2年,3种因素都发挥着很大作用:震后余滑和孔隙弹性回弹主要影响近场,粘弹性松弛影响范围较宽广;此后,震后粘弹性松弛则成为构造活动稳定地区震间形变的重要因素。 相似文献
6.
汶川地震同震形变的静态和动态分析 总被引:3,自引:1,他引:3
汶川8.0级地震的同震形变在郫县、绵阳、中江和成都等GPS测站的水平形变分别达70 cm、31 cm、23 cm、20 cm,变形方向约N45°W,垂直于断裂带方向,且成都平原呈下降趋势.动态GPS数据处理结果显示,地震的动态变形在郫县达1 m.根据四川GPS网络参考站各站记录的汶川地震的确切发震时间,反算得到了汶川地区S波的平均传播波速. 相似文献
7.
利用单历元定位方法处理2008年汶川Ms8.0级地震震中附近GPS连续站1 Hz数据,获取近场地壳运动学特征。观测结果表明,测站运动的方向和幅度不仅与测站与震中距离相关,而且与破裂带的距离相关,近场运动学的复杂性反映了震源破裂过程具有逆冲和走滑的特征。距震中最近的郫县站最大运动学位移EW方向超过100 cm,NS方向达到70 cm,其GPS位移和强震仪得到的位移一致。对12个GPS测站的运动学位移与永久静态位移进行对比,发现6个测站前者明显大于后者,5个测站二者大小相当,成都站前者小于后者。 相似文献
8.
基于有限元方法,采用2015年尼泊尔MW7.8地震震后5 a的GPS观测资料约束青藏高原南缘的岩石圈流变结构,利用通过主前缘逆冲断裂带(MFT)间的距离来约束边界位置的垂直边界结构和印度弹性俯冲板片结构探测印度板块和青藏高原板块的边界结构。结果表明,2种结构均能产生与观测数据一致的南-西南水平运动模式,并能较好地解释远场地面位移,但垂直边界结构模型得到的垂直形变偏大,而俯冲板片结构模型能很好地解释中尼边境及以北地区的隆升现象。青藏高原下地壳稳态和瞬态粘滞系数的最优结果分别为1×1018 Pa·s和1×1017 Pa·s。 相似文献
9.
10.
汶川地震地形形变监测与分析 总被引:1,自引:1,他引:1
地形形变监测与分析对于研究汶川地震对震区及青藏板块地形变化的影响有重要意义。通过收集相关监测点的汶川地震前后地形形变数据,采用统一模式进行数据处理,将震前与震后的形变监测成果归算到ITRF2005参考框架和2008.363(2008年5月12日)历元,计算得到震中区域的大地基准造成严重破坏,监测点形变位错,水平位移量达243 cm,沉降量达68 cm,隆起量达36 cm。并对汶川地震地形形变监测进行分析,认为位于"映秀镇—北川—青川"断裂带西侧块体呈现向东南方向移动并呈现隆起趋势;东侧块体向西北方向移动并呈现下沉趋势;北侧块体向东北方向移动,南侧块体向西南北方向移动,块体两侧形成了明显挤压形态。上述研究为进一步揭示汶川地震产生的机理和龙门山断裂带的活动提供了良好基础。 相似文献
11.
通过对尼泊尔MS8.1地震前后附近区域GPS台站记录到的观测数据进行处理,获得了震区以及中国青藏高原地区地震前后GPS站点速度场以及震后形变场。震前速度场显示,喜马拉雅构造带整体呈现出约16 mm/a的压缩特征。同时,震前喜马拉雅构造带根据形变特征可分为东、中、西3段,其地震发生在中段,主要以北向挤压为主,而东西两段分别具有逆时针旋转和顺时针旋转的特征。震后GPS站点形变场显示,此次地震对中国新疆、青海、西藏等地区的影响较大,其最大震后位移达20 mm左右。震后速度场显示,本次地震对尼泊尔地区以及中国藏南地区的构造形变影响较大,主要表现为喜马拉雅构造带的年推挤速度减小,藏南地区的南北向运动速率减小,而东西向速度有增大的现象。这一现象可能对藏南地区的走滑断层有较大影响。 相似文献
12.
利用2015年尼泊尔MW7.9地震震后16个站531 d的连续观测数据,基于弹性位错理论,使用主成分反演方法(PCAIM)分析该地震震后断层滑动的时空变化特性。结果表明:1)震后断层滑动服从对数衰减模式;2)余滑主要分布在主震破裂带北部区域,最大滑动量达到20.6 cm,位于地表以下26.7 km处;3)余滑释放的地震矩为3.36×1020 N·m,对应矩震级约为MW7.6。 相似文献
13.
利用InSAR技术获取2008-03-21新疆于田MS7.3地震的同震和震后形变场。同震分布式滑动反演结果表明,同震断层最大滑动量达5.4 m,主要分布在南部断层的0~5 km深度附近,地震以正断错动为主,兼有左旋走滑分量。震后形变结果表明,发震断层北段两侧存在差异性运动,最大累积差异形变在震后782 d达15 cm。进一步分析表明,震后断层余滑可能是震后形变的主要机制。余滑反演结果表明,震后2 a断层余滑量相对较小,滑移区范围明显减小且均位于浅部区域,北部断层能量释放较彻底,南部仍存有少量能量,整体能量基本释放完。 相似文献
14.
利用2008年汶川地震破裂模型及2017年九寨沟地震接收断层参数和断层面有效摩擦系数等不同模型参数,计算2008年汶川地震造成的库仑应力变化。结果显示,在考虑不同模型参数条件下,2017年九寨沟地震震源处的库仑应力增量(同震及震后)约为3~7 kPa,尚未达到地震触发阈值10 kPa。综合分析认为,2008年汶川地震对2017年九寨沟地震有一定的触发作用,但作用十分有限,九寨沟地震的发生主要受控于区域构造活动及地壳流变结构。分析不同参数对计算结果的影响发现,不同破裂模型的选取对2018年汶川地震计算结果的影响最大,这可能是导致前人研究结论产生差异的原因之一。 相似文献
15.
汶川震后龙门山周边活动地块构造变形及断裂活动 总被引:2,自引:0,他引:2
利用1999~2013陆态网络观测资料,计算汶川地震前后龙门山地区周边活动地块应变率场分布及欧拉旋转矢量,基于Okada矩形位错模型,反演块体边界主要断层活动性状,分析研究区域现今构造变形和应变分配,并讨论汶川地震对上述过程的影响。研究表明,巴颜喀拉东部、川西北、滇中等活动地块向南东向运移的同时自身作顺时针旋转;由于龙门山断裂、丽江-小金河断裂等逆冲带对地壳应变的吸收与调整,研究区域地壳变形由西向东逐渐减弱,区域地壳变形以连续渐变为主要特征;汶川地震使巴颜喀拉块体、川西北块体的南东向运移加速,并增强了安宁河-则木河-小江断裂带左旋走滑运动和丽江-小金河断裂的逆冲运动。 相似文献
16.
??????8.0????????????????????????????????????λ??????????????η????????ν??????????????????8.0??????GPS??InSAR????α??????????????????????????????????????????1?????????????????GPS??InSAR??????????α????????????97.27%;2??????????????????????????????????????0??20 km??????????????λ???????????????????????????????????????????0??20 km???????????????????10 m????????10??15 km?????????????6.5 m??3??????????????????????????????????????????????????????????103??????????????????????121????????????????????138??????????????????????????105??4?????????????????8.7??10 20 Nm???????Mw7.9?? 相似文献