首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifies a coupled mode between SST and surface heat flux in the North Atlantic at the decadal timescale,as well as a forcing mode of surface heat flux at the interannual timescale.The coupled mode is regulated by AMOC through meridional heat transport.The increase in surface heating in the North Atlantic weakens the AMOC approximately 10 yr later,and the weakened AMOC in turn decreases SST and sea surface salinity.The decreased SST results in an increase in surface heating in the North Atlantic,thus forming a positive feedback loop.Meanwhile,the weakened AMOC weakens northward heat transport and therefore lowers subsurface temperature approximately 19 yr later,which prevents the AMOC from weakening.In the forcing mode,the surface heat flux leads AMOC by approximately 4 yr.  相似文献   

2.
The possibility of estimating the equilibrium climate sensitivity of the earth-system from observations following explosive volcanic eruptions is assessed in the context of a perfect model study. Two modern climate models (the CCCma CGCM3 and the NCAR CCSM2) with different equilibrium climate sensitivities are employed in the investigation. The models are perturbed with the same transient volcano-like forcing and the responses analysed to infer climate sensitivities. For volcano-like forcing the global mean surface temperature responses of the two models are very similar, despite their differing equilibrium climate sensitivities, indicating that climate sensitivity cannot be inferred from the temperature record alone even if the forcing is known. Equilibrium climate sensitivities can be reasonably determined only if both the forcing and the change in heat storage in the system are known very accurately. The geographic patterns of clear-sky atmosphere/surface and cloud feedbacks are similar for both the transient volcano-like and near-equilibrium constant forcing simulations showing that, to a considerable extent, the same feedback processes are invoked, and determine the climate sensitivity, in both cases.  相似文献   

3.
Summary The influence of variations in time of the forcing radiation on the thermal evolution of the soil/atmosphere surface layer system and the possibility to derive thermal characteristics from an analysis of the simultaneous series of the forcing and the response is represented. The described method permits to estimate soil density and heat eddy diffusivity in air. The method is tested using experimental data of the radiative fluxes, the fluctuations of the surface temperature and the temperatures of air at several levels.  相似文献   

4.
Political leaders in numerous nations argue for an upper limit of the global average surface temperature of 2 K above the pre-industrial level, in order to attempt to avoid the most serious impacts of climate change. This paper analyzes what this limit implies in terms of radiative forcing, emissions pathways and abatement costs, for a range of assumptions on rate of ocean heat uptake and climate sensitivity. The primary aim is to analyze the importance of ocean heat uptake for radiative forcing pathways that temporarily overshoot the long-run stabilization forcing, yet keep the temperature increase at or below the 2 K limit. In order to generate such pathways, an integrated climate-economy model, MiMiC, is used, in which the emissions pathways generated represent the least-cost solution of stabilizing the global average surface temperature at 2 K above the pre-industrial level. We find that the level of overshoot can be substantial. For example, the level of overshoot in radiative forcing in 2100 ranges from about 0.2 to 1 W/m2, where the value depends strongly and positively on the effective diffusivity of heat in the oceans. Measured in relative terms, the level of radiative forcing overshoot above its longrun equilibrium level in 2100 is 20% to 60% for high values of climate sensitivity (i.e., about 4.5 K) and 8% to 30% for low values of climate sensitivity (i.e., about 2 K). In addition, for cases in which the radiative forcing level can be directly stabilized at the equilibrium level associated with a specific climate sensitivity and the 2 K limit, the net present value abatement cost is roughly cut by half if overshoot pathways are considered instead of stabilization of radiative forcing at the equilibrium level without an overshoot.  相似文献   

5.
The impact of diurnal variations of the heat fluxes from building and ground surfaces on the fluid flow and air temperature distribution in street canyons is numerically investigated using the PArallelized Large-eddy Simulation Model (PALM). Simulations are performed for a 3 by 5 array of buildings with canyon aspect ratio of one for two clear summer days that differ in atmospheric instability. A detailed building energy model with a three-dimensional raster-type geometry—Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES)—provides urban surface heat fluxes as thermal boundary conditions for PALM. In vertical cross-sections at the centre of the spanwise canyon the mechanical forcing and the horizontal streamwise thermal forcing at roof level outweigh the thermal forces from the heated surfaces inside the canyon in defining the general flow pattern throughout the day. This results in a dominant canyon vortex with a persistent speed, centered at a constant height. Compared to neutral simulations, non-uniform heating of the urban canyon surfaces significantly modifies the pressure field and turbulence statistics in street canyons. Strong horizontal pressure gradients were detected in streamwise and spanwise canyons throughout the day, and which motivate larger turbulent velocity fluctuations in the horizontal directions rather than in the vertical direction. Canyon-averaged turbulent kinetic energy in all non-neutral simulations exhibits a diurnal cycle following the insolation on the ground in both spanwise and streamwise canyons, and it is larger when the canopy bottom surface is paved with darker materials and the ground surface temperature is higher as a result. Compared to uniformly distributed thermal forcing on urban surfaces, the present analysis shows that realistic non-uniform thermal forcing can result in complex local airflow patterns, as evident, for example, from the location of the vortices in horizontal planes in the spanwise canyon. This study shows the importance of three-dimensional simulations with detailed thermal boundary conditions to explore the heat and mass transport in an urban area.  相似文献   

6.
本文选择2012年8月16~17日降水个例,利用WRFV3.5天气模式模拟研究青藏高原东坡的地形坡度、坡向及覆盖短波辐射效应(Effect of Slope,Aspect and Shading,ESAS)。结果显示,ESAS产生的短波辐射强迫(强迫)空间分布与坡度大小一致,表现为坡度大时强迫大,坡度小时强迫小;朝西坡向为负强迫,坡向朝东为正强迫,正负强迫分别超过20和32W m-2。地形覆盖使得坡度和坡向在青藏高原东坡(高原东坡)上产生的地面短波辐射通量变化(辐射通量变化)整体向东南移入盆地,位移后的辐射通量增减仍然和高原东坡的坡度、坡向分布一致。地表热通量、地表温度在白天的变化和辐射通量变化分布一致,均在四川盆地内有一条高值带,且形状类似高原东坡和盆地的衔接线;EASA对地面各热通量的影响可以延续到夜间,使得夜间地表热通量变化和高值区位置与白天相似,但变化幅度减小。水汽混合比和风场的变化均具有与潜热变化相似的空间形态,在夜间尤其明显。潜热的增加(减小)可能引起风速增减加(减小),并最终导致降水的改变。   相似文献   

7.
将8个主要平衡分潮加入到耦合模式中,对比研究潮汐对北大西洋模拟影响。由于潮汐的引入,模式模拟SST在北大西洋中纬度区域偏差显著减小,高纬度区域SST降温明显。SST模拟的改变使潮汐试验的海表净热通量模拟误差下降了约30%,但高纬度海冰显著增加。模式中引入潮汐对北大西洋上层环流,尤其是西边界流的路径模拟改进显著,这是SST及海表净热通量模拟改变的主要原因。同时,北大西洋上层和深层西边界流在潮汐的作用下,都表现出环流减弱的特点,这也使得大西洋经向翻转环流在26.5°N处上层2 km的输送减弱,与观测数据更为接近。较弱的大西洋经向翻转环流导致海洋热量在中低纬度聚集而无法输送到高纬度区域,这是造成潮汐试验模拟的海温在中低纬度偏高、高纬度偏低的原因,较弱的热输送也同时导致了潮汐试验中北半球海冰面积增加。  相似文献   

8.
系统辨识(1):辨识导引   总被引:1,自引:1,他引:0  
海气交界面的能量交换与海洋平流共同决定海表面温度(sea surface temperature,SST)异常的形成、维持与衰减。基于作者近期的研究,本文回顾了海表面热通量(surface heat flux,SHF)反馈以及SST方差与海表热通量及海洋热输送方差之间的关系。海表热通量异常可近似为一个与SST成正比的线性反馈项与一个大气强迫项之和。SHF的反馈参数取决于SST和SHF间的滞后交叉协方差以及SST自协方差。这种反馈总体上为负反馈,减弱SST异常,海表湍流部分起主导作用。最强的反馈可见于南北两半球的中纬度,最大值出现在大洋的西部和中部位置并延伸至高纬度地区。SHF反馈于北半球秋冬两季增强,春夏两季减弱。这些反馈特征在CMIP3耦合气候模式中得到合理的模拟。然而,多数模式中反馈的强度与再分析资料的估值相比略为偏弱。与再分析资料的估值相比,"平均模式"反馈参数比单一模式有更相似的空间形态以及较小的均方根差。基于海表面能量收支平衡,SST的方差可以表示为3个要素的积:1)海表面辐射和湍流通量以及海洋热输送的方差之和;2)一个衡量SST持续性的传输系数G;3)一个反映海表热通量以及海洋热输送之间协方差结构的有效因子e。SST方差的地理分布类似于海表热通量及海洋热输送的方差之和,但为G和e因子所修正。  相似文献   

9.
The coupled climate model EC-Earth2 is used to investigate the impact of direct radiative effects of aerosols on stationary waves in the northern hemisphere wintertime circulation. The direct effect of aerosols is simulated by introducing prescribed mixing ratios of different aerosol compounds representing pre-industrial and present-day conditions, no indirect effects are included. In the EC-Earth2 results, the surface temperature response is uncorrelated with the highly asymmetric aerosol radiative forcing pattern. Instead, the anomalous extratropical temperature field bears a strong resemblance to the aerosol-induced changes in the stationary-wave pattern. It is demonstrated that the main features of the wave pattern of EC-Earth2 can be replicated by a linear, baroclinic model forced with latent heat changes corresponding to the anomalous convective precipitation generated by EC-Earth2. The tropical latent heat release is an effective means of generating stationary wave trains that propagate into the extratropics. Hence, the results of the present study indicate that aerosol-induced convective precipitation anomalies govern the extratropical wave-field changes, and that the far-field temperature response dominates over local effects of aerosol radiative forcing.  相似文献   

10.
Three simple climate models (SCMs) are calibrated using simulations from atmosphere ocean general circulation models (AOGCMs). In addition to using two conventional SCMs, results from a third simpler model developed specifically for this study are obtained. An easy to implement and comprehensive iterative procedure is applied that optimises the SCM emulation of global-mean surface temperature and total ocean heat content, and, if available in the SCM, of surface temperature over land, over the ocean and in both hemispheres, and of the global-mean ocean temperature profile. The method gives best-fit estimates as well as uncertainty intervals for the different SCM parameters. For the calibration, AOGCM simulations with two different types of forcing scenarios are used: pulse forcing simulations performed with 2 AOGCMs and gradually changing forcing simulations from 15 AOGCMs obtained within the framework of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The method is found to work well. For all possible combinations of SCMs and AOGCMs the emulation of AOGCM results could be improved. The obtained SCM parameters depend both on the AOGCM data and the type of forcing scenario. SCMs with a poor representation of the atmosphere thermal inertia are better able to emulate AOGCM results from gradually changing forcing than from pulse forcing simulations. Correct simultaneous emulation of both atmospheric temperatures and the ocean temperature profile by the SCMs strongly depends on the representation of the temperature gradient between the atmosphere and the mixed layer. Introducing climate sensitivities that are dependent on the forcing mechanism in the SCMs allows the emulation of AOGCM responses to carbon dioxide and solar insolation forcings equally well. Also, some SCM parameters are found to be very insensitive to the fitting, and the reduction of their uncertainty through the fitting procedure is only marginal, while other parameters change considerably. The very simple SCM is found to reproduce the AOGCM results as well as the other two comparably more sophisticated SCMs.  相似文献   

11.
A scheme for computing surface fluxes from mean flow observations   总被引:3,自引:0,他引:3  
A computational scheme is developed for estimating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at a single height in the atmospheric surface layer; conditions at this reference level are presumed known from observations or from a numerical atmospheric circulation model. The method is based on coupling a Monin-Obukhov similarity profile to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant flux at the surface.In addition to reference-level mean flow properties, the parameters needed to implement the scheme are thermal heat capacity of the soil, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity.Sample calculations are presented for (a), constant atmospheric forcing at the reference level, and (b) variable atmospheric forcing corresponding to Kahle's (1977) measurements of windspeed, air temperature and radiometer soil surface temperature under dry vegetatively sparse conditions in the Mohave Desert in California. The latter case simulated the observed diurnal variations resonably well for the parameters used.Consultant, Atmospheric Sciences Division, Department of Energy and Environment, Brookhaven National Laboratory, Upton, N.Y., pc11973, U.S.A.  相似文献   

12.
刘晓东 《气象科学》1995,15(4):57-63
本文就我们5年来在下垫面强迫对东亚区域气候影响方面的研究进行了总结。这些工作包括青藏高原,陆面过程及热带西太平洋热源异常对短期气候变化影响的数值试验研究,积雪,地温及海温等下垫面状况与短期气候变化关系的分析研究,以及在特征地质时期的边界条件下对东亚古气候的数值模拟。  相似文献   

13.
热力强迫对局地环流的扰动作用   总被引:2,自引:0,他引:2       下载免费PDF全文
用积分变换法求解了包含地面加热作用的二维不可压缩流体的Boussinesq方程组,得到一组描述地面加热作用激发的局地扰动流场的解析解,主要有垂直风、水平扰动风、扰动气压、扰动温度。进而用动力学分析的观点结合图形分析,定性讨论了热力强迫作用对局地环流的扰动作用,以及加热影响下各物理扰动场的空间分布及时间演变特征。  相似文献   

14.
Sea surface temperature (SST) anomalies can induce anomalous convection through surface evaporation and low-level moisture convergence. This SST forcing of the atmosphere is indicated in a positive local rainfall–SST correlation. Anomalous convection can feedback on SST through cloud-radiation and wind-evaporation effects and wind-induced oceanic mixing and upwelling. These atmospheric feedbacks are reflected in a negative local rainfall–SST tendency correlation. As such, the simultaneous rainfall–SST and rainfall–SST tendency correlations can indicate the nature of local air–sea interactions. Based on the magnitude of simultaneous rainfall–SST and rainfall–SST tendency correlations, the present study identifies three distinct regimes of local air–sea interactions. The relative importance of SST forcing and atmospheric forcing differs in these regimes. In the equatorial central-eastern Pacific and, to a smaller degree, in the western equatorial Indian Ocean, SST forcing dominates throughout the year and the surface heat flux acts mainly as a damping term. In the tropical Indo-western Pacific Ocean regions, SST forcing and atmospheric forcing dominate alternatively in different seasons. Atmospheric forcing dominates in the local warm/rainy season. SST forcing dominates with a positive wind-evaporation feedback during the transition to the cold/dry season. SST forcing also dominates during the transition to the warm/rainy season but with a negative cloud-radiation feedback. The performance of atmospheric general circulation model simulations forced by observed SST is closely linked to the regime of air–sea interaction. The forced simulations have good performance when SST forcing dominates. The performance is low or poor when atmospheric forcing dominates.  相似文献   

15.
 A three-dimensional, coupled atmosphere-ocean general circulation model is developed and effects of the seasonal variation on forming a steady-state coupled atmosphere-ocean system are studied. Case studies are carried out for a basin of idealized geometry by changing the period of the seasonal variation in the solar forcing. The coupled system shows significant differences depending on the existence of the seasonal variation, where the heat transport by the oceanic circulation plays a central role. For the regular seasonal variation, a stronger oceanic meridional circulation, which accompanies larger poleward heat transport, is realized compared with that for the annual-mean solar forcing. The stronger meridional circulation is associated with a larger wintertime meridional gradient of the sea surface temperature. The meridional gradient of the annual-mean sea surface temperature is smaller for the regular seasonal variation, which results in a smaller atmospheric poleward heat transport. In consequence, the total of the atmospheric and the oceanic poleward heat transport is almost identical for the two cases. Cases with the seasonal variation of the doubled period and with the time-filtered flux exchange between the atmosphere and the ocean are also studied, showing that the system is not sensitive to those factors.  相似文献   

16.
Atmospheric variability is driven not only by internal dynamics, but also by external forcing, such as soil states, SST, snow, sea-ice cover, and so on. To investigate the forecast uncertainties and effects of land surface processes on numerical weather prediction, we added modules to perturb soil moisture and soil temperature into NCEP’s Global Ensemble Forecast System (GEFS), and compared the results of a set of experiments involving different configurations of land surface and atmospheric perturbation. It was found that uncertainties in different soil layers varied due to the multiple timescales of interactions between land surface and atmospheric processes. Perturbations of the soil moisture and soil temperature at the land surface changed sensible and latent heat flux obviously, as compared to the less or indirect land surface perturbation experiment from the day-to-day forecasts. Soil state perturbations led to greater variation in surface heat fluxes that transferred to the upper troposphere, thus reflecting interactions and the response to atmospheric external forcing. Various verification scores were calculated in this study. The results indicated that taking the uncertainties of land surface processes into account in GEFS could contribute a slight improvement in forecast skill in terms of resolution and reliability, a noticeable reduction in forecast error, as well as an increase in ensemble spread in an under-dispersive system. This paper provides a preliminary evaluation of the effects of land surface processes on predictability. Further research using more complex and suitable methods is needed to fully explore our understanding in this area.  相似文献   

17.
ABSTRACT

Sea surface temperature (SST) from four Nucleus for European Modelling of the Ocean (NEMO) model simulations is analyzed to study the bulk flux parameterization to compute SST over the Hudson Bay Complex (HBC) for the summer months (August and September) from 2002 to 2009. The NEMO simulation was forced with two atmospheric forcing sets with different resolutions: the Coordinated Ocean-ice Reference Experiment, version 2 (COREv2), as the lower resolution and the Canadian Meteorological Centre’s Global Deterministic Prediction System Reforecasts (CGRF) as the higher resolution. The CGRF forcing is also implemented in the third and fourth runs using different runoff data and different NEMO resolutions (1/12° versus 1/4°). Results show that all four modelled SSTs followed observed SST patterns, with regional differences in SST bias between simulations with different atmospheric forcing. The SST differences are small between simulations forced with the same atmospheric forcing but with different model resolution or runoff. This implies that the model resolution and runoff have a small effect on the simulated SST in the HBC. Moreover, to better capture the effect of near-surface temperature (Tair) on simulated SST, we conducted three analyses using the Haney flux linearization formula. Results from these assessments did not indicate any direct influence on the model-simulated SSTs by Tair. Looking at the heat flux as a signature for SST showed that both averaged spatial distribution and time series of net heat flux produced by the three CGRF forcing simulations were higher than the net heat flux generated by the CORE 2 simulation. This was generally true for all four components of the total heat flux (sensible, latent, shortwave, and longwave) individually as well. Total heat flux in summer is governed by the shortwave heat flux, with values up to 120?W?m?2 in August, and the longwave heat flux is the main contributor to the total heat flux differences. These heat flux differences lead to corresponding colder model SSTs for the CGRF runs and warmer SSTs for the CORE 2 simulations.  相似文献   

18.
宫湛秋  孙诚  李建平  冯娟  谢飞  杨韵  薛佳庆 《大气科学》2019,43(5):1081-1094
大西洋多年代际振荡(AMO)是指发生在北大西洋的海表温度(SST)冷暖异常多年代际(50~80年)振荡的现象。通常AMO被认为是受大西洋经向翻转环流(AMOC)及其对应的海洋动力过程(经向热量输运)的影响。近年来有观点认为,AMO是大气随机热力强迫的产物,大气主导了海气间的热量交换进而影响AMO。弄清AMO和北大西洋海表热通量的因果关系是辨析AMO动力和热力驱动机制的关键。本文利用基于信息流理论的因果分析方法,研究了1880年以来观测的AMO与北大西洋海表热通量间的因果关系。结果表明,在多年代际尺度上,从AMO到海表热通量的信息流要远大于二者相反方向的信息流,这说明AMO是北大西洋海表热通量异常的因,海洋主导了海气间的热量交换。大气随机热力强迫机制无法解释AMO与热通量两者因果分析的结果。对泛大西洋地区的陆地气温和AMO指数进行分析,进一步表明由于海洋主导了海气热量交换,AMO的海温异常加热/冷却控制了绝大多数地区气温的多年代际变化。利用海温驱动的大气环流模式的模拟结果验证了AMO的海温异常对周边陆地气温强迫作用。本文的结果为辨析AMO的动力和热力驱动机制提供了新线索,进一步表明AMO并非是大气随机热力强迫的产物,海洋环流可能是AMO的主要驱动因子。  相似文献   

19.
The impact of the wind forcing temporal resolution in the central Mediterranean Sea is addressed using a numerical ocean circulation model. The model uses interactive surface fluxes based on the ERA-Interim 6-hourly atmospheric reanalyses except for the 10 m wind for which ERA5 hourly reanalyses are used. Additional temporal resolution (2, 3, 6, 12 and 24 h) wind sets are deduced from the ERA5 hourly data. An ensemble of simulations (six members) is then performed where only the temporal resolution of the wind forcing is changed. The impact of the temporal resolution is studied based on this set of simulations. The dependence of the surface wind stress and heat flux on the wind resolution is derived based on an analytical expression where the Weibull distribution is used to characterise the probability density function of the wind speed. Results from the analytical model are found close to those from the numerical model when a linear increase of the exchange coefficients with the wind speed is considered. Power input into the sea and surface heat loss both increase with the increase of the temporal resolution but at lower rates when approaching hourly forcing values. The increase of the latent heat loss at these high resolutions is small (~−0.8 Wm-2) but still important, around 10–20% the Mediterranean basin heat budget (−5 to −7 Wm-2). The increase of the wind forcing temporal resolution decreases the sea surface temperature (SST) and increases the sea surface salinity (SSS) with largest values in the shallow area of the Gulf of Gabès (eastern coast of Tunisia). A decrease of SSS is however noticed in some areas mainly northwest of the Tunisia coast. Hydrographical changes are also found in the Tunisia-Sicily channel. They are characterised by mesoscale structures with no remarkable change of the major water veins.  相似文献   

20.
 The concept of radiative forcing has been extensively used as an indicator of the potential importance of climate change mechanisms. It allows a first order estimate of the global-mean surface temperature change; and it is possible to compare forcings from different mechanisms, on the assumption that similar global-mean forcings produce similar global-mean surface temperature changes. This study illustrates two circumstances where simple models show that the conventional definition of radiative forcing needs refining. These problems arise mainly with the calculation of forcing due to stratospheric ozone depletion. The first part uses simple arguments to produce an alternative definition of radiative forcing, using a time-dependent stratospheric adjustment method, which can give different forcings from those calculated using the standard definition. A seasonally varying ozone depletion can produce a quite different seasonal evolution of forcing than fixed dynamical heating arguments would suggest. This is especially true of an idealised and extreme “Antarctic ozone hole” type scenario where a sudden loss of ozone is followed by a sudden recovery. However, for observed ozone changes the annually averaged forcing is usually within 5% of the forcing calculated using the fixed dynamical heating approximation. Another problem with the accepted view of radiative forcing arises from the definition of the tropopause considered in the second part of this study. For a correct radiative forcing estimate the “tropopause” needs to separate the atmosphere into regions with a purely radiative response and those with a radiative-convective response. From radiative-convective model results it is found that radiative equilibrium conditions persist for several kilometres below the tropopause (the tropopause being defined as where the lapse rate reaches 2 K km-1). This region needs to be included in stratospheric adjustment calculations for an accurate calculation of forcing, as it is only the region between the surface and the top of the convection that can be considered as a single, forced, system. Including temperature changes in this region has a very large effect on stratospheric ozone forcing estimates, and can reduce the magnitude of the forcing by more than a factor of two. Although these experiments are performed using simple climate models, the results are of equal importance for the analysis of forcing-response relationships using general circulation models. Received: 25 October 1996/Accepted: 14 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号