首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil organic matter (SOM) is one of the earth’s largest reservoirs of actively cycled carbon and plays a critical role in various ecosystem functions. In this study, mineral soils with the same parent material and of similar approximate age were sampled from the same climatic region in Halsey, Nebraska to determine the relationship between overlying vegetation inputs to SOM composition using complementary molecular level methods (biomarker analyses and solid state 13C nuclear magnetic resonance (NMR) spectroscopy). Soil samples were collected from a native prairie and cedar and pine sites planted on the native prairie. Free and bound lipids isolated from the pine soil were more enriched in aliphatic and cutin-derived compounds than the other two soils. Cinnamyl type lignin-derived phenols were more abundant in the grassland soil than in the pine and cedar soils. Acid to aldehyde ratios (Ad/Al) for vanillyl and syringyl type phenols were higher for the pine soil indicating a more advanced stage of lignin oxidation (also observed by 13C NMR) in the soil that has also been reported to have accelerated carbon loss. In agreement with the more abundant aliphatic lipids and cutin-derived compounds, solid state 13C NMR results also indicated that the SOM of the pine soil may have received more aliphatic carbon inputs or may have lost other components during enhanced decomposition. The observed relationship between vegetation and SOM composition may have important implications for global carbon cycling as some structures (e.g. aliphatics) are hypothesized to be more recalcitrant compared to others and their accumulation in soils may enhance below ground carbon storage.  相似文献   

2.
The Yangtze (Changjiang) River as the largest fiver originating from eastern Tibetan Plateau, has increasingly attracted considerable attention of many researchers for almost one hundred years. The fiver linking the Tibetan Plateau with the West Pacific Marginal Sea, encompasses variable source rocks and complicated drainage patterns and spans across distinct climate zones. The increasing human activities in the last 2000 years have significantly changed the weathering process and sediment source-to-sink pattern in the fiver basins. In terms of this, the Yangtze drainage basin as well as the deltaic and coastal areas can be regarded as one of the best regions in the world to investigate the source-to-sink process of continental sediments into the marginal sea. In the past ten years we systematically measured elemental and Sr-Nd-Pb isotopic compositions of the Yangtze riverine sediments which were collected from the mainstream and main tributaries. Analytical results clearly showed that the Yangtze sediments yield geochemical compositions different from those of other fiver sediments due to the very complicated source rock types and variable chemical weathering regimes in the large drainage basin. REE and Sr-Nd isotopic compositions suggest that the sediment source-to-sink pattern in the modern Yantze River basins varies considerably from the upper basin to the lower valley. Different chemical compositions among the main tributaries and the mainstream are responsible for the compositional variations of the Yangtze River sediments. It is a piece of quite challenging work to establish a sediment source-to-sink model to quantifying the contributions of the main tributaries to the mainstream.  相似文献   

3.
Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ? 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of ‘active’ humic substances.  相似文献   

4.
Bhat  Mohammad Shafi  Lone  Fayaz A.  Shafiq  Mifta ul  Rather  Javaid A. 《GeoJournal》2021,86(3):1193-1202
GeoJournal - Horticulture plays a pivotal role in the economy of Jammu and Kashmir. Owing to favourable agro-climatic conditions, temperate horticulture is fast expanding in the state which is...  相似文献   

5.
The spatial heterogeneity of soil nutrients influences crop yield and the environment. Previous research has focused mainly on the surface layer, with little research being carried out on the deep soil layers, where high root density is highly related to crop growth. In the study, 610 soil samples were collected from 122 soil profiles (0–60 cm) in a random-sample method. Both geostatistics and traditional statistics were used to describe the spatial variability of soil organic matter (SOM) and total nitrogen (TN) deeper in the soil profile (0–60 cm) with high root density from a typical Mollisol watershed of Northeast China. Also, the SOM and TN in farmland and forest (field returned to forest over 10 years) areas was compared. The spatial autocorrelations of SOM at 0–50 cm depth and TN at 30–60 cm depth were strong, and were mainly influenced by structural factors. Compared to farmland, SOM and TN were typically lower in the 0–30 cm depth of the forest areas, while they were higher in the 30–60 cm depth. As well, both SOM and TN decreased from the 0–20 cm layer to the 30–40 cm layer, and then discontinues, while they continuously decreased with increasing soil depth in the farmland. SOM and TN were typically higher at the gently sloped summit of the watershed and part of the bottom of the slope than at mid-slope positions at the 0–30 cm depth. SOM and TN were lower on the back slope at the 30–60 cm depth, but were higher at the bottom of the slope. Also, the spatial distribution of the carbon storage and nitrogen storage were all highest at the bottom of the slope and part of the summit, while they were lowest in most of back slope in depth of 0–60 cm, and mainly caused by soil loss and deposition. SOM at 0–60 cm and TN at 0–40 cm greater than the sufficiency level for crop growth (3.7–79.2 and 0.09–3.09 g kg?1, respectively) covered 99 % of the total area, yet for TN, over 35 % of the total area was less than the insufficiency level at the 40–60 cm depth. Generally, accurately predicting SOM and TN is nearly impossible when based only on soil loss by water, although the fact that variability is influenced by elevation, soil loss, deposition and steepness, was shown in this research. Nitrogen fertilizer and manure application were needed, especially in conjunction with conservation tillage in special conditions and specific areas such as the back slope, where soil loss was severe and the deep soil that lacked TN was exposed at the surface.  相似文献   

6.
Dissolved mercury in estuarine waters from the Mississippi Delta and Florida Everglades is associated with dissolved organic matter which has the properties of fulvic matter found in soils. Ultrafiltration of water samples demonstrated that mercury and dissolved organic carbon are selectively enriched in the < 500 molecular size cut-off fraction. A decrease in high molecular weight dissolved organic matter with increasing salinity in the Everglades exerts a partial control on the mercury content of these estuarine waters.  相似文献   

7.
Two organic rich sediments, an oxic muddy sand and a silty mud containing sulphate reducing and methane producing metabolic zones, were sampled from Loch Duich, a fjord type estuary in the N.W. coast of Scotland. Dissolved organic carbon (DOC), as measured by dry combustion and UV absorption, remained constant (8.3–15.8 mg C/l) with depth in the oxic pore waters at a concentration at least twice that of the overlying seawater. DOC in the anoxic pore waters increased linearly with depth from 13.6 at the surface to 55.9–70.5 mg C/l at 80cm. Most of the DOC was present in the high molecular weight (HMW) fraction as separated by ultrafiltration; the low molecular weight (LMW) fraction remained constant (10.0 mg C/l) in both oxic and anoxic pore waters. Spectroscopic data showed the ‘humic’ fraction of the HMW dissolved organic matter was mainly fulvic acid, a small proportion (approx 1%) of humic acid, and a third fraction, possibly melanoidins, which increased relative to fulvic acid with depth. These data confirm the pathway of humification (NissenBaum et al, 1971; nissenbaum and Kaplan, 1972) where HMW organic matter accumulates in pore waters as condensation products of LMW organic substances.  相似文献   

8.
The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.  相似文献   

9.
Pore waters were collected from a sea-marginal, hypersaline pond in the Sinai and analyzed for dissolved organic carbon (DOC). The pore water DOC values ranged from 121 to 818 mg 1−1 with maxima between 15 and 54 cm deep. These values are some of the highest observed from recent sediments and probably reflect production via abiotic as well as biotic sources.  相似文献   

10.
11.
张春来  陆来谋  杨慧  黄芬 《中国岩溶》2022,41(2):228-239
采用GIS和地统计学研究土壤有机质(SOM)的空间分布、影响因素和预测是指导农业生产、环境治理和土壤碳储计量的重要手段。基于广西马山县北部岩溶区表层土壤 (0~20 cm)的441个SOM数据,建立普通克里格(OK)、回归克里格(RK),以及结合辅助变量的地理加权回归克里格(GWRK)、残差均值(MM_OK)和中值(MC_OK)均一化克里格的5种模型,并比较其预测精度,旨在探讨岩溶区SOM制图中地统计学方法的适用性。结果表明:(1)SOM的变异系数为37.30%,属于中等空间变异;(2)岩溶区SOM空间变异受土地利用方式、土壤类型和地形因子等因素共同影响,SOM高值区分布在西北部、西部和东部等石灰土分布的岩溶区和水田,低值区位于北部红水河沿岸的冲积土地带;(3)RK、GWRK、MM_OK和 MC_OK对SOM解释能力均较优,可用于岩溶区SOM预测制图。结合辅助变量因子的GWRK预测模型能有效消除空间变异因素的影响,克服岩溶区SOM含量的空间非平稳性,从而提高SOM含量模型的稳定性和精度,同时MC_OK模型能提高预测的准确度。  相似文献   

12.
As part of an assessment of crystalline rock as a potential host for a nuclear waste repository, water samples were collected from more than 50 locations from the crystalline basement where it is under sedimentary cover in Northern Switzerland and where it is at the surface in the Black Forest. These samples describe the changing chemistry of water in an extended flow system from dilute recharge waters far from chemical equilibrium with its host rock to saline waters at temperatures of 50 to 100°C with residence times far in excess of 105 a that have reached chemical equilibrium with their host rock.This unique set of samples allows an analysis of the chemical evolution of granitic waters from surficial waters far from equilibrium to almost equilibrated waters. Mobile ions, rare gases and isotopic data are used to estimate the extent of reaction between waters and their host rock. The evolution of controlled elements is interpreted as a function of this extent of reaction. Silica contents correspond to approximate equilibrium even in the recharge waters. The relative concentrations of Ca and especially Mg are significantly lower in the borehole waters than in recharge waters indicating a trend towards equilibrium. The Na/K ratios correspond to equilibrium only in the most evolved, older, waters which are shown to be at full equilibrium.  相似文献   

13.
Soil organic matter (SOM) is important for soil fertility and for the global C cycle. Previous studies have shown that during SOM formation no new compound classes are formed and that it consists basically of plant- and microorganism-derived materials. However, little data on the contribution from microbial sources are available. Therefore, we investigated previously in a model study the fate of C from 13C-labelled Gram-negative bacteria in soil (Kindler, R., Miltner, A. Richnow, H.H., Kästner, M., 2006. Fate of gram negative bacterial biomass in soil – mineralization and contribution to SOM. Soil Biology and Biochemistry 38, 2860–2870) and showed that 44% of the bulk 13C remained in the soil. Here we present the corresponding data on the fate of amino acids hydrolysed from proteins, which are the most abundant components of microbial biomass. After 224 days incubation, the label in the total amino acids in the soil amended with 13C-labelled cells decreased only to >95%. The total amino acids therefore clearly showed a lower turnover than the bulk 13C and a surprisingly stable concentration. Proteins therefore have to be considered as being stabilised in soil in dead, non-extractable biomass or cell fragments by known general stabilisation mechanisms. The label in the amino acids in a fraction highly enriched in living microbial biomass decreased to a greater extent, i.e. to 25% of the initially added amount. The amino acids removed from this fraction were redistributed via the microbial food web to non-living SOM. All amino acids in the microbial biomass were degraded at similar rates without a change in isotopic signature. The nuclear magnetic resonance (NMR) spectra of the soils were very similar and indicate that the residues of the degraded microbial biomass were very similar to those of the SOM and are a significant source for the formation of the SOM.  相似文献   

14.
《Applied Geochemistry》2003,18(1):25-36
The controls on the internal neutralization of low productivity, highly acidified waters by sulfide accumulation in sediments are yet poorly understood. It is demonstrated that the neutralization process is constrained by organic matter quality and thermodynamic effects which control the relative rates of SO4 and Fe reduction, and the fate of the reduced Fe and S in the sediments. The investigated sediments were rich in dissolved Fe(II) (0.005–12 mmol l−1) and SO4 (1.3–22 mmol l−1). The pH ranged from 3.0 to 6.8. Contents of reduced inorganic S (0.1–9.5%), molar C/N ratios of the organic matter (12–80) and metabolic turnover rates (1–110 μeq cm−3 a−1) varied strongly. Substantial amounts of Fe sulfides were only found at a simultaneous partial thermodynamic and solubility equilibrium of the involved biogeochemical processes. Sulfide oxidation was apparently inhibited, and SO4 and Fe reduction coexisted. In this type of sediment increases in C availability cause enhanced neutralization rates. In the absence of a partial equilibrium, the sediments were in a sulfide oxidizing and Fe reducing state, and did not accumulate Fe sulfides. The latter type of sediment will increase neutralization rates in response to decreasing deposition of reactive Fe oxides but not necessarily in response to increases in lake productivity by e.g. fertilization measures.  相似文献   

15.
Concentrations and composition of suspended particulate matter and organic compounds (OC), including Сorg, lipids, hydrocarbons (HC), and pigments, were determined in the near-water aerosol layer and in surface waters on the meridional section across the Atlantic Ocean from the port of Ushuaia to the port of Gdansk (Cruise 47th of the R/V Akademic Ioffe, March 26–May, 7, 2015). It was established that the distribution of OC (except for pigments) in aerosols, in general, repeats the distribution of particle number and weight concentrations of aerosols, with maximums in the influence zone of fluxes from Patagonia and African deserts. The concentrations of aerosols changed within wide ranges: from 1237 to 111739 particles/L for 0.3–1 μm fraction; and from 0.02 to 19.890 μg/m3 for aerosols collected by network method (flux of 0.02–34.4 mg/m2 day). The contrasting mineral composition of aeolian material reflects the diversity of its provenances. In surface waters, the studied compounds were accumulated in the frontal river–sea area (runoff of the Rio-Colorado River) and with approaching the coast, especially in the English Channel. A simultaneous change of concentrations of suspended particulate matter and OC is observed only in open oceanic waters.  相似文献   

16.
Diagenetic changes are difficult to distinguish from variations in sources of organic matter to sediments. Organic geochemical comparisons of samples of wood, bark, and needles from a white spruce (Picea glauca) living today and one buried for 10,000 years in lake sediments have been used to identify the effects of diagenesis on vascular plant matter. Important biogeochemical changes are evident in the aged spruce components, even though the cellular structures of the samples are well preserved. Concentrations of total fatty acids dramatically diminish; unsaturated and shorter chainlength components are preferentially lost from the molecular distributions. Concentrations of total alcohols are similar in the modern and 10,000-year-old wood and bark but markedly lowered in the aged needles. Hydrocarbon concentrations and distributions show little diagenetic change in the 10,000-year-old plant materials. Cellulose components in the wood decrease relative to lignin components, although both types of materials remain in high concentration in comparison to other organic components. Aromatization of abietic acid proceeds more rapidly in buried spruce wood than in bark; retene is the dominant polyaromatic hydrocarbon in the aged wood. In contrast to the variety of changes evident in molecular compositions, neither 13C values nor C/N ratios differ significantly in the bulk organic matter of modern and aged spruce components.  相似文献   

17.
18.
The molecular sources, dynamics and analytical characterizations of the phosphorus (P) containing components of marine dissolved and particulate organic matter (OM) are reviewed. Using a combination of 13C and 31P nuclear magnetic resonance spectroscopy on samples collected from a depth profile (20-4000 m) at Station Aloha in the North Pacific subtropical gyre, the biomolecular associations of P functional groups in marine OM are identified. Compositional differences between ultrafiltered dissolved organic matter (UDOM; 1-100 nm size fraction) and ultrafiltered particulate organic matter (UPOM; 0.1-60 μm size fraction) as reflected by NMR and elemental analyses indicate that UDOM does not originate from simple solubilization of UPOM, and the aggregation of UDOM is not the primary source of UPOM. Regression analyses indicated a large fraction of the P in UDOM is associated with carbohydrates and amino acids, but not with lipids. Similar analyses for UPOM indicated that P is associated with carbohydrates, amino acids and lipids. The P functional groups also appear to be balanced in their distribution among molecular classes, because they remain in relatively constant proportion throughout the ocean.  相似文献   

19.
Soil organic matter (SOM) is a major pool of the global C cycle and determines soil fertility. The stability of SOM strongly depends on the molecular precursors and structures. Plant residues have been regarded as the dominant precursors, but recent results showed a major contribution of microbial biomass. The fate of microbial biomass constituents has not yet been explored; therefore, we investigated the fate of fatty acids (FA) from 13C labeled Gram-negative bacteria (Escherichia coli) in a model soil study [Kindler, R., Miltner, A., Richnow, H.H., Kästner, M., 2006. Fate of gram negative bacterial biomass in soil—mineralization and contribution to SOM. Soil Biology & Biochemistry 38, 2860–2870]. After 224 days of incubation, the label in the total fatty acids (t-FA) in the soil decreased to 24% and in the phospholipid fatty acids (PLFA) of living microbes to 11% of the initially added amount. Since the bulk C decreased only to 44% in this period, the turnover of FA is clearly higher indicating that other compounds must have a lower turnover. The 13C label in the t-FA reached a stable level after 50 days but the label of the PLFA of the living microbial biomass declined until the end of the experiment. The isotopic enrichment of individual PLFA shows that the biomass derived C was spread across the microbial food web. Modelling of the C fluxes in this experiment indicated that microbial biomass is continuously mineralized after cell death and recycled by other organisms down to the 10% level, whereas the majority of biomass derived residual bulk C (~33%) was stabilized in the non-living SOM pool.  相似文献   

20.
Dissolved aromatic compounds in Hungarian thermal waters were first reported more than 10 years ago. Among the identified compounds were alkylbenzene, polyaromatic hydrocarbon and heteroaromatic homologue series. The appearance of dissolved organic compounds has been bound to a threshold temperature of ∼80 °C, and their distribution is controlled by the water temperature. Relative demethylation and aromatisation were observed with increasing temperature. The origin of these compounds is not proved. Among precursor candidates are humic substances.Simulation experiments were carried out on humic and fulvic acid and on their mixture to gain information on aromatic compounds formed. The samples were heated and products were measured with GC-MS.In the presence of oxygen, increasing concentration of benzene can be observed as a function of temperature. Toluene and thiophene can be identified, other alkylbenzenes are missing. Under reductive conditions the concentration of benzene, toluene and the ratio of short to long chained aromatics generally increases in every sample as a function of temperature. Main compounds are toluene and benzene. The amount of heteroaromatic compounds increases with temperature, but their relative concentration compared to aromatic hydrocarbons decreases. At higher temperatures the proportion of pyrroles drops and S and O containing ones become dominant.The different processes (formation, aromatisation, polycondensation, relative demethylation, decomposition) occur in parallel but their relative intensities vary as a function of temperature. The effects of duration and increasing temperature are similar but not equal: both demethylation and aromatisation can be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号