首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根细胞壁是植物吸收、转运镉(Cd)的第一道屏障。为了揭示烟草根细胞壁中Cd的亚细胞分布与结合形态对烟草茎叶Cd吸收、转运的影响机理,文中研究了12种不同烟草根、茎、叶对Cd的富集、转运特征,利用活体细胞分离技术分析了根细胞壁中Cd的亚细胞分布及结合形态,在此基础上对根细胞壁Cd的亚细胞分布与烟草Cd吸收、转运的关系进行了研究。结果表明不同烟草根、叶对土壤中Cd的富集系数间存在显著差异(P<0.05):根中Cd含量为3.13~7.10 mg/kg,最大相差2.27倍;烟叶中Cd含量为3.29~9.93 mg/kg,最大相差3.0倍;根叶转运系数为0.50~3.17,最大相差6.34倍。烟草根部Cd主要以醋酸浸提态(FHAC)为主。不同细胞壁组分中Cd含量测定发现,去果胶后细胞壁(CW-P)中Cd含量显著增加,而去半纤维素后细胞壁中Cd含量显著降低。去果胶后细胞壁中Cd含量与根叶中Cd的转运系数呈显著的负相关,转运系数最低的K346中,CW-P中Cd含量最高,说明半纤维素是烟草根细胞壁蓄积Cd的主要场所,烟草根细胞壁中半纤维素对Cd的束缚降低了Cd通过长距离向地上部分的转运。  相似文献   

2.
Eucalyptus urophyllaXE.grandis is a fast-growing economic tree species that contributes to habitat restoration of degraded or fragile environments. Hydrophonic experiments were performed to evaluate the extent of lead (Pb) tolerance and accumulation in three cultivars of this species, ST-2, ST-9 and ST-29, when exposed to nutrient solutions with different concentrations of Pb [7, 14, 28 or 56 mg Pb L?1 as Pb(NO3)2]. Obtained results showed that, in the presence of Pb treatments, ST-9 grows well without any toxicity symptoms of leaf necrosis and reduced growth, indicating its feature of tolerance to Pb. Furthermore, marked variation in Pb accumulation was found among plant organs (roots, shoots and leaves), cultivars and Pb supply. In most cases, cultivar ST-9 was shown to accumulate more Pb than others. In conclusion, E. urophyllaXE.grandis ST-9 can be a good choice for remediating Pb-contaminated soils.  相似文献   

3.
Little information is available about effects of elevated CO2 (EC) on growth of poplars and willows grown on Cd-contaminated soil and their potential use for Cd phytoremediation. Plant growth, gas exchange, root morphology, and Cd uptake responses to EC were assessed for one poplar genotype [Populus euramericana cv. ??74/76?? (P107)] and two willow genotypes [Salix jiangsuensis CL. ??799?? (J799) and Salix jiangsuensis CL. ??172?? (J172)]. Rooted cuttings were grown on Cd-contaminated soil in six open-top chambers supplied with ambient and elevated CO2. EC increased leaf, stem, root and total biomass and total Cd uptake, but did not change Cd concentration in the tree tissues. Although stomatal conductance declined remarkably, EC stimulated leaf photosynthesis and intrinsic water use efficiency. There were differences among tree genotypes in growth and photosynthesis response to EC, with photosynthetic acclimation occurring only in P107. EC increased root lengths, root surface areas, root volumes and numbers of root tips of the three tree genotypes grown on Cd-contaminated soils. It was concluded that the biomass increase was closely correlated with stimulation of leaf photosynthesis and root growth induced by EC. EC increased the root surface areas of small-diameter roots and consequently, the ability to capture Cd in root systems, which led to increased total Cd uptake in all plant parts. The increase in total Cd uptake by the tree genotypes due to increased biomass under EC suggested an alternative way of improving the efficiency of phytoremediation of contaminated soil.  相似文献   

4.
Heavy metals toxicity is a significant problem for ecological, evolutionary, nutritional and environmental reasons. This study was carried out to evaluate the amount of cadmium, zinc and lead absorption in leaf and root of pine, cypress, plantain and ash in Isfahan, Iran, in 2013. For this purpose, three heavy metals (Cd, Pb and Zn) and three sites (heavy traffic, moderate traffic and control) were chosen based on their effects on human health. The results indicated that the highest and lowest lead and cadmium concentrations belonged to heavy traffic site and control site, respectively. Cd in leaf versus Pb in leaf and Cd in root versus Pb in root had the highest correlation coefficient among the traits indicating positive influence of leaf and root on absorbing Cd and Pb from soil, water and air. In all the studied species, the concentration of Pb was higher than that of Cd and Zn. This was certainty due to the vehicle traffic emitting much more lead than cadmium and zinc. In all the studied species, metal concentration in leaves was higher than in roots, which may be due to high concentration of heavy metals in air than in soil. In this study, Pinus eldarica Medw. tree was found to be the best species to monitor polluted sites in Isfahan city.  相似文献   

5.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   

6.
Vicia villosa is an annual legume plant,and is mainly used for green manure by farmers in southwest China.Field growth experiments were performed on six plots.The concentrations of mineral nutrients and soluble sugar,and the changes of carbon and nitrogen isotopic composition within and among organs of Vicia were deter- mined.Significant differences in legume growth were found in response to soil type and its moisture conditions.The Vicia villosa was relatively well adapted to growth in limestone soils than sandstone soils.The distribution of sugar concentrations andδ1 3C-differences between roots and leaves indicate that the translocation of sugars from leaves to roots may be restricted by soil drought.Therefore,there was an inhibition of Pi distribution from roots to leaves, resulting in over optimum threshold of N/P ratio.Those may originate from the feedback regulation in the legume, where soluble sugar could not be distributed from leaves to roots.The results ofδ1 5N values in tissues suggest that there should be different preferential use of nitrogen resource by legume during the formation of nodules:before nodule formation the legume preferentially utilizes inorganic nitrogen from soils,but afterwards the nitrogen should be mainly from N2-fixation.Our results indicate that the lack of nodulation development,except for S2,should be ascribed to the factor controlling bi-direction nutrient transfer,which should be efficiency of establishment symbiosis with arbuscular mycorrhiza before nodulation formation.It is predicted that the species of Vicia villosa should be a legume associated with dual symbiosis with rhizobia and mycorrhiza.  相似文献   

7.
植物中硅矿化作用的硅同位素示踪研究   总被引:2,自引:0,他引:2  
项目首次对田地生长的水稻与竹子和室内栽培水稻中氧化硅的含量、形态、分布及硅同位素组成进行了系统研究。研究发现水稻中的氧化硅含量有由根到茎、叶、稻壳逐渐增高的趋势, 但在米粒中含量急剧降低。竹子中的氧化硅含量也显由杆到枝、叶逐渐增高的趋势。在竹子和水稻的根部, 氧化硅都集中在内皮层;而在其地上部分(竿、枝、叶、壳), 氧化硅主要出现于外皮层。在单株水稻和竹子中都发现不同器官间存在显著的、系统的硅同位素分馏。水稻的? 30Si显示有由根到茎降低, 而后向叶、壳和米逐渐增高的趋势。竹子的? 30Si也显由根到竿降低, 而后向枝、叶增高的趋势。这种硅同位素变化可能是由植株内体液中的溶解硅在竿、枝、叶、壳相继沉淀出氧化硅时, 产生瑞利过程的硅同位素分馏的结果。研究得出竹子和水稻中溶解硅与沉淀硅间的硅同位素分馏系数分别为0.9981和0.9996。研究发现水稻根和竹根从土壤溶液中吸取硅时, 也存在硅同位素动力分馏。竹子与水稻吸收硅与土壤可溶硅之间的硅同位素分馏系数分别为0.9988和0.9989。研究得出:1)水稻与竹子由外界吸收的含硅化合物主要为正硅酸;2)被动吸收是其吸收硅的重要形式;3)蒸发作用是硅在这些植物中迁移和沉淀的主要机制。研究结果为理解植物中硅吸收、搬运和沉淀硅的方式与机制和探讨植物在硅、碳生物地球化学循环方面的作用提供了可靠的证据  相似文献   

8.
Compound specific hydrogen isotope ratios (δD) of long chain sedimentary n-alkanes, which mostly originate from the leaf waxes of higher terrestrial plants, are increasingly employed as paleoclimate proxies. While soil water is the ultimate hydrogen source for these lipids and the isotopic fractionation during biosynthesis of lipids is thought to remain constant, environmental parameters and plant physiological processes can alter the apparent hydrogen isotopic fractionation between leaf-wax lipids and a plant’s source water. However, the magnitude and timing of these effects and their influence on the isotopic composition of lipids from higher terrestrial plants are still not well understood. Therefore we investigated the seasonal variability of leaf-wax n-alkane δD values for two different temperate deciduous forest ecosystems that are dominated by two different tree species, Beech (Fagus sylvatica) and Maple (Acerpseudoplatanus).We found significant seasonal variations for both tree species in n-alkane δD values of up to 40‰ on timescales as short as one week. Also, the isotopic difference between different n-alkanes from the same plant species did vary significantly and reached up to 50‰ at the same time when overall n-alkane concentrations were lowest.Since δD values of soil water at 5 and 10 cm depth, which we assume represent the δD value of the major water source for the investigated beech trees, were enriched in autumn compared to the spring by 30‰, whereas n-alkane δD values increased only by 10‰, we observed variations in the apparent fractionation between beech leaf derived n-alkanes and soil water of up to 20‰ on a seasonal scale. This observed change in the apparent fractionation was likely caused by differences in leaf water isotopic enrichment. Based on mechanistic leaf water models we conclude that changes in the isotopic difference between water vapor and soil water were the most likely reason for the observed changes in the apparent fractionation between n-alkanes and soil water.The large variability of n-alkane concentrations and δD values over time implies a continuous de novo synthesis of these compounds over the growing season with turnover times possibly as short as weeks. The signal to reach the soil therefore represents an integrated record of the last weeks before leaf senescence. This holds true also for the sedimentary record of small catchment lakes in humid, temperate climates, where wind transport of leaf-wax lipids is negligible compared to transfer through soil and the massive input of leaves directly into the lake in autumn.  相似文献   

9.
The effect of zinc (Zn) deficiency and excessive bicarbonate on the allocation and exudation of organic acids in plant organs (root, stem, and leaf) and root exudates of two Moraceae plants (Broussonetia papyrifera and Morus alba) were investigated. Two Moraceae plants were hydroponically grown and cultured in nutrient solution in four different treatments with 0.02 mM Zn or no Zn, combined with no or 10 mM bicarbonate. The variations of organic acids in different plant organs were similar to those of root exudates in the four treatments except B. papyrifera, which was in a treatment that was a combination of 0.02 mM Zn and no bicarbonate. The response characteristics in the production, translocation, and allocation of organic acids in the plant organs and root exudates varied with species and treatments. Organic acids in plant organs and root exudates increased under Zn-deficient conditions, excessive bicarbonate, or both. An increase of organic acids in the leaves resulted in an increase of root-exuded organic acids. B. papyrifera translocated more oxalate and citrate from the roots to the rhizosphere than M. alba under the dual influence of 10 mM bicarbonate and Zn deficiency. Organic acids of leaves may be derived from dark respiration and photorespiration. By comparison, organic acids in stems, roots, and root exudates may be derived from dark respiration and organic acid translocation from the leaves. These results provide evidence for the selective adaptation of plants to environments with low Zn levels or high bicarbonate levels such as a karst ecosystem.  相似文献   

10.
为研究土壤与植物根系生长及有机碳输入之间的关系,2011年分别将构树(Broussonetia papyrifera)、铁仔(Myrsine africana)、紫花苜蓿(Medicago sativa)、皇竹草(Pennisetum sinese)移栽入贵州大学林学院苗圃基地,采用石灰土(岩溶地区土壤)与硅质黄壤(非岩溶地区土壤)进行培育,然后对根系生长特征和根系对土壤有机碳积累进行了研究。研究结果表明,构树根系在岩溶地区土壤比非岩溶地区土壤发达,即岩溶地区土壤根系碳沉积比非岩溶高。岩溶地区土壤上,紫花苜蓿死亡根系体积最大,其根系对土壤有机碳积累贡献最大。构树根系生长无论在哪种土壤均随土层深度增加而增加,使得森林土壤深层有机碳含量比草地高。因此,可确定土壤有机碳积累与植被生长环境和植被种类密切相关。   相似文献   

11.
Multi-biomarkers were characterized in surface soils with different vegetation during an annual cycle in Oregon, U.S.A., to study the composition and dynamics of soil organic matter (SOM). The major compound classes identified include saccharides, steroids, terpenoids, and homologous series of aliphatic lipids (n-alkanoic acids, n-alkanols, and n-alkanes). Saccharides, n-alkanoic acids, and sterols were the most dominant compound groups identified in Ryegrass field soils, whereas n-alkanoic acids, n-alkanols, and sterols were dominant in soils under conifer and deciduous vegetation. Plant species, instead of microbial organisms, was found to be the primary source influencing the concentration and distribution of the major biomarker tracers in the studied surface soils. Over an annual cycle, concentrations of higher plant lipids such as monoacyl glycerides, sterols, n-alkanoic acids and total wax were higher during summer (especially June–August). During fall into winter, the concentrations of all compounds decreased to steady state levels due to cessation of de novo synthesis and concomitant biodegradation and remineralization of detritus. Sucrose and glucose reached maximum concentrations during spring (especially March–May), which could be related with plant growth, especially rootlets in the soils. Mycose, the microbial/fungal metabolite, maximized during late summer, suggesting the concomitant increase of microbial/fungal activity with the increasing primary production. The composition and variation of biomarkers observed over an annual cycle improved our understanding of SOM dynamics in temperate soils, which could also be linked to regional and global carbon cycles.  相似文献   

12.
The nitrogen isotopic compositions of plant tissue could reflect its uptake of and preference for ammonium or nitrate. However, various factors may influence the field-collected δ15N values under field condition, which causes the interpretation problematic. The spatial variation of nitrogen (N) concentrations and the isotopic compositions were investigated in the soils and tissues of Chinese prickly ash from the southwest China to the east China. The objectives were to investigate the variation in soil and tissue δ15N values and N forms taken up by the plant. The leaf and root δ15N values varied significantly in response to the pattern of soil δ15N values. The difference in δ15N values between the leaves and roots was 2.57‰ and may be caused by an increase in the transport of unassimilated \( {\text{NO}}_{3}^{ - } \) and \( {\text{NH}}_{4}^{ + } \) to the leaves. Leaf nitrogen was significantly and positively correlated with leaf potassium and negatively related to leaf calcium. Because potassium is the favoured counter-cation for nitrate transport in the xylem, the enrichment of 15N in leaf relative to root induced by preferenced uptake of nitrate should be accompanied by significant and positive relationship of leaf nitrogen with leaf potassium concentrations. These results suggest that Chinese prickly ash prefers \( {\text{NO}}_{3}^{ - } \) over \( {\text{NH}}_{4}^{ + } \).  相似文献   

13.
As a part of a wider study aimed at determining new molecular biomarkers in soils and sediments that could be specific for distinct vegetation types with respect to unravelling past changes in land use, we analysed the neutral lipid content of soil developed in the catchment of a small lake in central France. The ketone/acetate lipid fraction of soil under pasture or meadow contained a series of pentacyclic triterpenyl acetates with wide structural diversity, most being reported in soil for the first time. The restricted number of potential plant sources of triterpenyl acetates (some produced by a single species) underlines the potential of triterpenyl acetates as new biomarkers to track past vegetation change in palaeoenvironmental studies, when found in natural archives such as soil, sediments or peat.  相似文献   

14.
Fatty acids (FAs) are abundant lipids in plants, microorganisms and soil. Depending on chain length they provide potential for evaluating different sources of C in soil: shoots, roots and microorganisms. This, together with their fast turnover and transformation in living and decaying plant tissues, suggests the use of FA molecular ratios as source indicators in soil. To evaluate the applicability of FAs as source indicators, their dynamics in plant tissue and soil were traced during a laboratory experiment using the highly productive perennial C4 energy grass Miscanthus x giganteus (Greef et Deu.). For the comprehensive use of FAs as source indicators various ratios were calculated: fatty acid ratio (originally defined as carboxylic acid ratio: CAR), carbon preference index (CPI), average chain length (ACL) and unsaturated vs. saturated C18 acids. The FA composition was specific for individual plant tissues as indicated by the CAR, with high values in roots and lower ones in the above ground plant tissue. Based on ACL values of rhizosphere, soil and roots, an enrichment in root derived FAs vs. root-free soil could be estimated. The rhizosphere contained 35–70% more plant derived FAs than root-free soil. The ACL showed potential for estimating root derived carbon in the rhizosphere. The study documents for the first time very fast spatial processes in soil related to plant growth, thereby strongly influencing the FA composition of soil.  相似文献   

15.
不同演替阶段群落的环境条件有所不同,变化的环境因子驱使群落水平上功能性状和物种适应环境的生态对策改变,然而次生演替过程中群落功能性状和物种生态对策随演替时间的变化规律尚不清楚.本文以云南大黑山喀斯特地区弃耕后处于不同恢复阶段的天然次生林(3年,6年,20年,40年)和老龄林为研究对象,结合不同群落演替阶段的物种特征和群...  相似文献   

16.
Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes (εlipid) varies by as much as 10‰ among different chain lengths. Overall, εlipid values are slightly lower (−4.5‰) for angiosperm than for gymnosperm (−2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented compared with deciduous ones. We apply our modern lipid abundance patterns and εlipid results to constrain the magnitude of the carbon isotope excursion (CIE) at the onset of the Paleocene-Eocene Thermal Maximum (55.8 Ma). When Bighorn Basin (WY) sediment n-alkanes are interpreted in context of floral changes and modern n-alkane production estimates for angiosperms and gymnosperms, the CIE is greater in magnitude (−5.6‰) by ∼1‰ compared to previous estimates that do not take into account n-alkane production.  相似文献   

17.
A survey was made of copper mining spoils in Yunnan Province, southwest China. Polygonum microcephalum and Rumex hastatus were found to grow extensively on copper mining spoils in Yunnan Province as representatives of typical high-elevation copper flowers. Plants and their associated soil samples collected from several copper mines in the Province were analyzed for copper. It is found that both plant species can grow well on mining spoils rich in copper but with medium nutrient supply. P. microcephalum accumulated more copper in its organs than R. hastatus. The copper concentration in the roots of both species tended to increase with copper increase in the substrates. However, the tendency for the levels of copper in the leaves of both species to increase linearly with soil copper increase is not clear. This study suggests that both species may have some potential for phytostabilization of metal-contaminated soils and for biogeochemical prospecting.  相似文献   

18.
The purpose of this study was to determine the levels of heavy metals namely cadmium (Cd), copper (Cu) and lead (Pb) in the five aquatic plants. For this purpose, the concentration of heavy metals were measured in water and in the five aquatic plant species, Lepironia articulata, Pandanus helicopus, Scirpus grossus, Cabomba furcata and Nelumbo nucifera, in 15 sites from Tasik Chini. The concentrations were different among the plant species as well as among the parts of plants. The highest concentration of heavy metals among the aquatic plants and plant parts was found in the roots of S. grossus. The concentrations of Cd in the leaves and stems of submerged aquatic plant, C. furcata, were higher than concentration of Cd in the leaves and stems of emergent aquatic plant and floating leaf plant. The concentration of Cu in the stem of C. furcata was greater than that in the leaf, while the concentration of Cd was more in the leaf than in the stem. The heavy metal contents of the aquatic plants were in descending order of Pb > Cu > Cd. The metal concentration quotient of leaves/roots and stems/roots (ML/MR and MS/MR) were calculated. The highest internal translocation was found in P. helicopus, while the lowest internal translocation was found in S. grossus.  相似文献   

19.
20.
Variation of vegetation coverage and canopy height may reflect the complex spatial heterogeneity of nutrient storage and supply capacity, soil moisture, and surface hydrology in the karst terrains suffering from severe land degradation. To assess the patterns of nutrient limitation under different vegetation covers in the subtropical karst ecosystems from Guizhou province, southwestern China, topsoil and leaf samples of dominant tree species were collected in forest stand (FO), shrub stand (SH) and shrub-grass stand (SG), respectively. Nutrient concentrations of both soil and leaf were determined, and ratios of N to P and vegetation nutrient reuse capacity (VNR) calculated as well as vegetation coverage, vegetation canopy height and tree density measured across the three stands. Mean leaf N/P ratio was lowest (16.1 ± 1.4) in FO and highest (33.5 ± 3.2) in SG. Vegetation nutrient reuse increased with the decline in N and P availability in soils for these three stands. VNR of N and P ranged from 8.5 to 25.2 mg N g−1 and from 0.4 to 1.1 mg P g−1, respectively, and appeared lowest in SG (10.4 mg N g−1 and 0.5 P mg g−1 on average, respectively) and highest in FO (22.4 mg N g−1 and 0.9 mg P g−1 on average, respectively). Although there was no substantial difference in phosphorus reuse efficiencies between plant species and vegetation stands, concentrations of N and P of senesced leaves (SLs) were, respectively, found in positive correlation with the concentrations of mature leaves. The variation of VNR with elements indicated that P is cycled within vegetation much more efficiently than N across the stands. This study demonstrated that the karst vegetations were generally at P-limited or N- and P- co-limited stresses and that N/P ratio could be an effective indictor for nutrient limitation in the karst ecosystems at vegetation community level rather than at tree species level. It is proposed that phosphorus reuse by mature leaves could be an adaptation strategy by the dominant species to the low P availability in the karst soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号