首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a study of the molecular composition of the saturated and aromatic hydrocarbon fractions of crude oils from the Orinoco Oil Belt (Junín area) in the Eastern Venezuelan Basin, with the purpose of classifying these samples following two distinct biodegradation assessment schemes: the PM scale [Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, New Jersey, p. 363] and the Manco scale [Larter, S., Huang, H., Adams, J., Bennett, B., Snowdon, L.R., 2012. A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils. Organic Geochemistry 45, 66–76]. Both scales agree on the presence of different levels of biodegradation for the analyzed oils, although they are based on different groups of compounds. The PM scale uses mainly compounds from the saturated hydrocarbon fractions (e.g., n-alkanes, acyclic isoprenoids, terpanes and steranes) as well as aromatic steroids. On the other hand, the Manco scale considers other compounds (e.g., alkyltoluenes, naphthalene, methylnaphthalene, phenanthrene, alkylphenanthrenes and methyldibenzothiophenes) not included in the PM biodegradation scale. Thus, the combined use of these two scales allows the determination of the level of biodegradation of both saturated and aromatic compound classes. Dibenzothiophene (DBT), which was not included for the Manco score determination, also shows variations in peak intensity when compared to C4-alkylnaphthalenes, presumably associated with the process of biological alteration. The differences in the biodegradation levels observed in the present study may be attributed to variations in parameters that control biodegradation rates laterally across the study area or the existence of varying communities of microorganisms, among other possible factors.  相似文献   

2.
生物降解原油地球化学研究新进展   总被引:18,自引:0,他引:18  
生物降解作用是原油的一种重要的蚀变作用,对原油的物性和经济价值有着负面的影响。全球石油大多遭受过生物降解。生物降解作用对常见生物标志物的影响得以较好的描述,综述了近年来高分子量正构烷烃、三环萜烷、25 降藿烷生物降解的新进展。目前对生物降解作用的细节、发生机理尚不十分清楚,讨论了原油喜氧和厌氧降解机制,认为厌氧作用可能起主导作用,降解速率很慢。温度是控制生物降解作用的重要因素,储层温度大于80℃不会发生生物降解作用。生物降解原油多为混源油,介绍了研究生物降解原油的多期成藏方法。沥青质不易生物降解,其热解产物及钌离子催化氧化产物在生物降解原油对比、油源对比中具有重要的作用;最后指出了今后的发展方向。  相似文献   

3.
We have investigated the distributions of alkylcarbazoles in a series of crude oils with different biodegradation extents, in combination with biomarker parameters, stable carbon isotopic ratios and viscosities. The analyses showed that slight biodegradation has little effect on alkylcarbazoles. The concentrations of C0-, C1-, and C2-carbazoles seem to display a slight decrease with biodegradation through the moderately biodegraded stage, and an abrupt decrease to the heavily biodegraded stage. The relative concentrations of C0-, C1-, and C2-carbazoles do not show any apparent change in the non-heavily biodegraded stages, but through non-heavily biodegraded to heavily biodegraded stages, the percentages of C0- and C1-carbazoles decrease, and those of C2-carbazoles increase significantly, which may indicate that C2-carbazoles are more resistant to biodegradation than lower homologous species. As to C2-carbazole isomers, the relative concentrations of the pyrrolic N-H-shielded, pyrrolic N−H partially shielded and pyrrolic N-H-exposed isomers do not show any obvious variation in the non-heavily biodegraded oil, but there is an abrupt change through the mid-biodegraded stage to the heavily biodegraded stage. This project was financially supported by the Youth Knowledge-Innovation Foundation of CNPC (No. 00Z1304).  相似文献   

4.
The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) has been studied in oil columns from the Liaohe basin, NE China, characterized by varied degrees of biodegradation. The Es3 oil column has undergone light to moderate biodegradation – ranging from levels 2 to 5 on the [Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, NJ, p. 363] scale (abbreviated as ‘PM level’) – while the shallower Es1 column has undergone more severe biodegradation, ranging from PM level 5 to 8. Both columns show excellent vertical biodegradation gradients, with degree of biodegradation increasing with increasing depth toward the oil–water contact (OWC). The compositional gradients in the oil columns imply mass transport control on degradation rates, with degradation occurring primarily at the OWC. The diffusion of hydrocarbons to the OWC zone will be the ultimate control on the maximum degradation rate. The chemical composition and physical properties of the reservoired oils, and the ‘degradation sequence’ of chemical components are determined by mixing of fresh oil with biodegraded oil.The PAH concentrations and molecular distributions in the reservoired oils from these biodegraded columns show systematic changes with increasing degree of biodegradation. The C3+-alkylbenzenes are the first compounds to be depleted in the aromatic fraction. Concentrations of the C0–5-alkylnaphthalenes and the C0–3-alkylphenanthrenes decrease markedly during PM levels 3–5, while significant isomer variations occur at more advanced stages of biodegradation (>PM level 4).The degree of alkylation is a critical factor controlling the rate of biodegradation; in most cases the rate decreases with increasing number of alkyl substituents. However, we have observed that C3-naphthalenes concentrations decrease faster than those of C2-naphthalenes, and methylphenanthrenes concentrations decrease faster than that of phenanthrene. Demethylation of a substituted compound is inferred as a possible reaction in the biodegradation process.Differential degradation of specific alkylated isomers was observed in our sample set. The relative susceptibility of the individual dimethylnaphthalene, trimethylnaphthalene, tetramethylnaphthalene, pentamethylnaphthalene, methylphenanthrene, dimethylphenanthrene and trimethylphenanthrene isomers to biodegradation was determined. The C20 and C21 short side-chained triaromatic steroid hydrocarbons are degraded more readily than their C26–28 long side-chained counterparts. The C21–22-monoaromatic steroid hydrocarbons (MAS) appear to be more resistant to biodegradation than the C27–29-MAS.Interestingly, the most thermally stable PAH isomers are more susceptible to biodegradation than less thermally stable isomers, suggesting that selectivity during biodegradation is not solely controlled by thermodynamic stability and that susceptibility to biodegradation may be related to stereochemical structure. Many commonly used aromatic hydrocarbon maturity parameters are no longer valid after biodegradation to PM level 4 although some ratios change later than others. The distribution of PAHs coupled with knowledge of their biodegradation characteristics constitutes a useful probe for the study of biodegradation processes and can provide insight into the mechanisms of biodegradation of reservoired oil.  相似文献   

5.
油藏原油微生物降解的氮同位素分馏效应   总被引:1,自引:0,他引:1  
陈传平  梅博文 《沉积学报》2004,22(4):707-710
选取辽河油田冷东地区来自Es3烃源岩不同性质原油,测定氮同位素比值,试图分析生物降解过程中原油氮同位素的分馏作用,探讨含氮化合物组成的变化机理。正常原油与相应干酪根的氮同位素比值接近,δ15N分布在4.0‰左右。遭受生物降解的原油,氮同位素比值明显增加,δ15N接近或超过10.0‰。比较遭受不同程度微生物降解自然系列的原油,氮同位素比值的变化与降解程度相联系。微生物降解过程中发生氮同位素分馏作用这一事实暗示降解原油中含氮有机化合物在降解过程中参与了代谢。  相似文献   

6.
Analyses of some Australian crude oils show that many contain varying concentrations of A/ B-ring demethylated hopanes. These range from C26 to C34 and have been identified from their retention times and mass spectral data as 17α(H)-25-norhopanes. Comparison of hopane and demethylated hopane concentrations and distributions in source-related, biodegraded oils suggests that demethylated hopanes are biotransformation products of the hopanes. Further, it appears that the process occurs at a late stage of biodegradation, after partial degradation of steranes has occurred. Demethylated hopanes are proposed as biomarkers for this stage of severe biodegradation. The presence of these compounds in apparently undegraded crude oils is thought to be due to the presence of biodegraded crude oil residues which have been dissolved by the undegraded crude oil during accumulation in the reservoir sands. The timing of hopane demethylation, relative to the degradation of other compounds, has been assessed and the progressive changes in crude oil composition with increasing extent of biodegradation have been identified. The use of demethylated hopanes as maturity parameters for severely biodegraded crude oils, and the applicability of established biomarker maturity parameters to such oils, are also discussed.  相似文献   

7.
Biodegradation of crude oil causes volumetrically important compositional changes, which lead to significant deterioration in quality, in particular during the early stages of alteration. To better understand these effects we focussed on a detailed assessment of light to moderate levels of alteration. We investigated a suite of 40 crude oil samples from five different petroleum systems to evaluate the extent of alteration occurring in reservoirs. Based on a comprehensive geochemical characterization, five individual crude oil sequences were defined, where compositional variability is mainly due to microbial activity in the reservoir. In particular, samples from the Gullfaks field (offshore Norway) and from a petroleum system offshore Angola illustrate that conventional molecular biodegradation parameters, such as the Pr/n-C17 and Ph/n-C18 alkane ratios are not suitable for defining the extent of biodegradation in petroleum reservoirs. Here, we suggest a new molecular biodegradation parameter, the degradative loss, that can be used to quantify depletion in individual crude oil constituents. The approach allows improved assessment of the extent of biodegradation in crude oil samples by means of the mean degradative loss. It is demonstrated that crude oil quality, as assessed from API gravity, can be predicted directly from the molecular composition of crude oils. Our data clearly indicate that the degradation patterns of light hydrocarbons and n-alkanes differ in different petroleum systems. This suggests that microbial communities are different and therefore generate different molecular degradation patterns which have to be evaluated individually for each system.  相似文献   

8.
东营凹陷生物降解稠油甾烷分子的选择蚀变   总被引:1,自引:0,他引:1  
为分析生物降解原油中甾烷生物标志物分子发生选择性蚀变的先后顺序及生物降解作用对甾烷分子成熟度参数的影响,在渤海湾盆地东营凹陷广饶潜山油藏选择了发生不同程度生物降解作用的原油,利用色谱质谱(GC-MS)仪对其中甾烷进行了定量测试分析和对比。结果发现在生物降解过程中,不同级别的生物降解作用对甾烷具有不同程度的影响:6级以下的生物降解作用对甾烷的降解能力有限,甾烷及其相关化合物比值没有可以识别的改变;6级以上的严重生物降解作用会对甾烷生物标志物的相关参数产生显著的影响。在严重生物降解原油中(级别≥6):甾烷系列被降解和蚀耗的先后顺序为,ααα20R>αββ20R>αββ20S≥ααα20S,C27>C29>C28,规则甾烷优先于重排甾烷发生降解,C27,C28,C29甾烷优先于C20,C21甾烷发生降解;甾烷生物标志物分子参数C2920S/(20S+20R),C29ββ/(ββ+αα)会发生显著升高,不能真实反映成熟度大小。研究结果为正确评价生物降解原油的成熟度及甾烷生物标志物分子的选择性蚀变提供了新的科学依据。  相似文献   

9.
采用小太平山同一层位不同深度且连续的油砂样品,对油砂油的地球化学及生物降解特征进行分析。小太平山油砂油在生物降解作用下产生了丰富的25-降霍烷,常规藿烷和甾烷也发生了一系列变化。由于分子结构和稳定性不同,抗降解能力不同,C_(21)/C_(23)三环萜烷、伽马蜡烷/C_(30)藿烷、Ts/Tm、C_(30)重排藿烷/C_(30)藿烷值、αααC_(27)R/αααC_(29)R、C_(28)αααR/C_(29)αααR、C_(29)ααα20R/αββ20S、C_(29)ααα20R/αββ20R、C_(27)重排甾烷/(规则甾烷+重排甾烷)、常规藿烷异构体降解为25-降霍烷的比例,均反映出油砂油的生物降解程度随深度的增加而增大。小太平山油砂油随含水饱和度的增加降解程度增大,证实地层水有利于细菌类微生物的迁移、营养物质的传递,促进原油的生物降解及25-降霍烷的产生。  相似文献   

10.
Biodegradation, one of the most important weathering processes, alters the composition of spilled oil, making it difficult to identify the source of the release and to monitor its fate in the environment. A laboratory experiment was conducted to simulate oil spill weathering process of microbial degradation to investigate compositional changes in a range of source- and weathering-dependent molecular parameters in oil residues, and the conventional diagnostic ratios for oil spill identification were also evaluated. The conventional diagnostic ratios of n-alkane displayed obvious changes after biodegradation, especially for Pr/n-C17 and Ph/n-C18 with relative standard deviation more than 118.84 %, which suggests they are invalid for oil source identification of the middle-serious spill. Many polycyclic aromatic hydrocarbons (PAHs) are more resistant to biodegradation process than their saturated hydrocarbon counterparts, thus making PAHs to be one of the most valuable fingerprinting classes of hydrocarbons for oil identification. Biomarker ratios of hopanes and steranes were also useful for source identification even after moderate biodegradation, and the diagnostic ratios from them could be used in tracking origin and sources of hydrocarbon pollution. Finally, the carbon isotopic type curve may provide another diagnostic means for correlation and differentiation of spilled oils, and be particularly valuable for lighter refined products or severely biodegraded oils, the source of which may be difficult to identify by routine biomarker techniques.  相似文献   

11.
Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much information regarding the genetic origin and alteration of crude oils. But secondary alterations—especially biodegradation—have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6–C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6–C7 cycloalkanes. For branched C6–C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6–C7 LHs. There is a particular case: although 2,2,3-trimethylbutane has a relative higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2-Dimethylpentane is the most resistant to biodegradation in branched C6–C7 alkanes. Furthermore, the 2-methylpentane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango’s LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the “Biodegraded” zone. When the heptane value is 0–21 and the isoheptane value is 0–2.6, the crude oil in Dawanqi Oilfield is defined as the “Biodegraded” zone.  相似文献   

12.
借助于定量GC—MS分析技术,系统分析了一组取自辽河油田生物降解程度不同的原油芳烃馏分中三芴系列的组成特征。结果表明在生物降解过程中三芴系列化合物很容易遭受生物降解。母体三芴化合物在原油轻微降解阶段抗降解能力相似,其相对组成保持基本稳定,仍可指示沉积环境的性质;但进入中等及以上程度降解作用后,抗生物降解能力出现差异,相对组成发生变异,失去其环境意义。在甲基三芴系列中,甲基硫芴的抗降解能力强于甲基芴和甲基氧芴,降解速率不一致,组成特征不断变化,使甲基三芴系列相对组成不能指示沉积环境的性质。“三芴系列”被细菌消耗的速率不同,整个生物降解过程中其相对组成都在发生变化,因此对生物降解原油而言,无论其降解程度如何,“三芴系列”相对组成特征均不能有效的指示沉积环境的性质。  相似文献   

13.
Although the effects of biodegradation on the composition and physical properties of crude oil have been well studied, effects of in-reservoir petroleum biodegradation on molecular and isotopic compositions of crude oils are not yet clearly understood. The Alberta Basin, in western Canada, is one of the world’s largest petroleum accumulations and constitutes an ideal example of a natural suite of sequentially biodegraded oils. The basin hosts moderately to severely biodegraded petroleum, regionally distributed and in single, more or less continuous, oil columns. In this study, a series of oil samples from the Alberta heavy oil and oil sands provinces, with varying degrees of biodegradation, were analyzed to assess the impact of progressive biodegradation on the molecular and C, H, N, and S isotopic compositions of oils. The results of the molecular characterization of the hydrocarbon fraction of the studied oils show that the oils have suffered biodegradation levels from 2 to 10+ (toward the Alberta–Saskatchewan border) on the Peters and Moldowan scale of biodegradation (abbreviated PM 2 to PM 10) and from tens to hundreds on the Manco scale. Within single reservoirs, increasing biodegradation was observed from top to bottom of the oil columns at all sites studied. The whole oil stable isotopic compositions of the samples varied in the ranges δ13C = −31.2‰ to −29.0‰, δ2H = −147‰ to −133‰, δ15N = 0.3–4.7‰ and δ34S = 0.4–6.4‰. The maximum differences between δ values of samples (Δ) within single oil columns were Δ13C = 1.4‰, Δ2H = 7‰, Δ15N = 1.7‰ and Δ34S = 1.0‰. Regional variations in the isotopic compositions of oil samples from different wells (averaged values from top to bottom) were 1.2‰ for δ13C, 12‰ for δ2H, 4.1‰ for δ15N and 5.5‰ for δ34S and hence generally significantly larger variations were seen than variations observed within single oil columns, especially for N and S. It appears that even severe levels of biodegradation do not cause observable systematic variations in carbon, nitrogen or sulfur isotope composition of whole oils. This indicates that sulfur and nitrogen isotopic compositions may be used in very degraded oils as indicators for oil charge from different source rock facies.  相似文献   

14.
生物降解原油中吡咯氮化合物组成的变化   总被引:1,自引:0,他引:1  
渤海海域地区近50个原油样品中性氮组分的GC/MS定量分析资料表明,油藏中的生物降解作用对原油的吡咯氮化合物含量和分布有明显影响。经与同源未降解原油比较,各种烷基咔唑和苯并咔唑在3。4级中轻度降解油中就出现明显降解迹象,随生物降解程度增高其含量逐渐减少,在6—8级严重降解油中它们的总含量降低到原有的五分之一左右。在3—4级中轻度降解油中,裸露型甲基咔唑异构体更容易被微生物侵袭而代谢,抗生物降解能力按1-甲基咔唑〉4-甲基咔唑〉2-、3-甲基咔唑顺序递减;当降解程度更高时,这些化合物降解速率相当,1-/4-MCA等比值相对稳定。低-中等降解阶段,不同类型二甲基咔唑异构体的抗生物降解能力也存在明显差异性,呈屏蔽型〉半屏蔽型〉裸露型降低;在生物降解水平进一步增高时,这些异构体之间的相对含量变化不大。生物降解作用对苯并咔唑系列化合物分布的影响具有不确定性,且随降解程度的增加变得更为显著,降解油中【a】/[c】苯并咔唑比值或增高或降低。生物降解原油中吡咯氮化合物的组成变化,使降解油的二次运移示踪面临新的问题。  相似文献   

15.
包建平  朱翠山  杨茜 《地质学报》2023,97(8):2659-2675
借助色谱- 质谱(GC- MS)和色谱- 质谱- 质谱(GC- MS- MS)分析,对黔南坳陷凯里残余油藏凯棠和洛棉剖面上储层沥青中的烃类组成进行了系统分析,以判断其所遭受生物降解作用的程度,探寻在极端降解原油中是否还存在原生生物标志物,为这类原油的油源研究开拓新的途径和方法。结果表明:凯棠剖面上的储层沥青中尽管仍可检测到较为完整的C19- 30三环萜烷和C27- 35藿烷系列,但C19- 29脱甲基三环萜烷系列和C26- 34 25- 降藿烷系列丰富而完整,甾烷系列中C21- 22低分子量甾烷和重排甾烷优势明显,这一系列特征表明这些沥青遭受了剧烈生物降解作用的改造。但三芳甾类仍保存完好,依据原油生物降解程度的评判标准,判断其生物降解级别介于8~9级之间。洛棉剖面上的储层沥青中藿烷系列基本消失殆尽,三环萜烷系列及其脱甲基产物和25- 降藿烷系列的分布因极端生物降解作用而发生显著变异,某些化合物如C23T、C24T、C23NTE和C28- 29NH成为优势成员;甾烷系列中C21- 22低分子量甾烷占绝对优势,三芳甾类完全消失,据此判断该剖面上沥青的生物降解级别已达到10级或更严重。由于这两个剖面上的沥青遭受了极端生物降解作用的改造,常用的甾、萜类生物标志物完全失去了实用价值。但是,在所分析的这些沥青中都检测到三个系列的C27- 35 8,14- 开环藿烷系列,它们与塔里木盆地塔中地区海相端元油中存在的同类标志物的分布特征相似。正常海相端元油和极端生物降解沥青中同时检测到这三个系列的8,14- 开环藿烷,这一事实表明这类生物标志物在成因上具有原生性,而与生物降解作用无关。此外,在极端生物降解作用沥青中的完好保存,表明它们具有极强的抗生物降解能力,因而它们在此类原油的油源研究中可能具有潜在的实用价值。  相似文献   

16.
对渤海湾盆地一系列生物降解原油的色谱-质谱分析结果表明,庙西凹陷PL15-8D与PL9-4井四个严重生物降解原油三环萜烷系列分布较为异常,主要表现为以C23为主峰的后峰型、C20与C23为主峰的微弱双峰型以及以C20与C24为主峰的双峰型分布模式。强烈的生物降解作用导致C19~C23三环萜烷优先于C24+三环萜烷被不同程度地侵蚀,是形成这一异常分布的根本原因。三环萜烷系列相对丰度与绝对浓度的变化规律表明,不同碳数三环萜烷的生物降解作用同时发生,但其降解速率有明显差别,即抗生物降解能力不同。三环萜烷系列化合物(除C20三环萜烷以外)的抗生物降解能力具有随碳数增加而增强的趋势,而C20三环萜烷抗降解能力似乎强于C21~C23三环萜烷。原油中未检测到脱甲基三环萜烷,表明三环萜烷的降解并非通过微生物的脱甲基化作用,推测其降解途径是微生物氧化三环萜烷C环支链末端的甲基,形成对应的羧酸化合物。四个原油样品甾烷、藿烷与三环萜烷被微生物严重侵蚀,不能用于油源对比研究,而三芳甾烷未受生物降解影响,可作为研究区严重生物降解原油油源对比的有效指标。  相似文献   

17.
生物降解作用对储层抽提物中多甲基取代萘分布的影响   总被引:5,自引:0,他引:5  
对辽河盆地冷东油田冷43块沙三段油藏3口取心井岩心抽提物进行了详细的地球化学分析, 族组成和饱和烃生物标志物分布显示油藏遭受了不同程度生物降解作用的影响, 降解程度由油柱顶部向底部增大, 呈良好梯度变化特征.对比不同降解程度原油样品中三甲基萘、四甲基萘和五甲基萘含量和分布可以发现生物降解的明显控制作用, 根据甲基取代萘异构体在生物降解过程中相对含量的变化初步确定了三甲基萘、四甲基萘和五甲基萘单个异构体的生物降解顺序, 结果表明那些热力学稳定性高的异构体容易遭受微生物的攻击, 而热力学稳定性低的异构体却在生物降解过程中相对富集, 表明生物降解作用完全不同于热力学作用过程, 当原油遭受中等程度生物降解作用影响后, 根据热力学稳定性提出的成熟度参数不再能提供有效的成熟度信息, 易降解和难降解异构体间的比值却是衡量原油遭受生物降解作用程度的地球化学新指标.   相似文献   

18.
The detailed investigation of the saturated hydrocarbon fractions of two biodegraded asphalts from the Morondava Basin, Madagascar, and the comparison with a related non-biodegraded asphaltic oil revealed new information on the compositional alteration of reservoired hydrocarbons due to biodegradation. A nuclear-demethylated 17α(H)-hopane was isolated from one of the asphalts and the preferred structure is suggested to be 25-nor-17α(H)-hopane. In addition to a homologous series of 25-nor-17α(H)-hopanes and 25-normoretanes a series of tetracyclic triterpanes was detected. These are thought to be derived from 17α(H)-hopanes by ring C opening. Steranes in the biodegraded asphalts were found to be altered but not completely removed.  相似文献   

19.
Nineteen oil samples from Silesian Unit of the eastern Carpathian Overthrust have been characterised geochemically in order to determine the causes of compositional differences among them and elucidating the processes responsible for their differences. Some of analysed crude oils have undergone post-emplacement alteration in the reservoir such as biodegradation and evaporative fractionation. This explains much of the chemical and physical properties variability across individual fields from one tectonic unit. Geochemical correlation based on biomarker distributions showed a close relationship between all oils (included biodegraded oils). However, data based on the whole oil GC analysis of selected oils suggest that the process of evaporative fractionation may change the composition of lower molecular weight hydrocarbons of the oils in this region. This paper outlines the probable mechanisms for oil mixing in the region and describes how this can lead to observable lateral differences in the composition of oils.  相似文献   

20.
The crude oils from Oligocene and Miocene formation of upper Assam basin have moderate API gravity and significant wax content. Crude oils from HJN and MKM fields of upper Assam basin are being produced from Oligocene and Miocene sands. These oils are somewhat biodegraded in nature as evidenced from their API gravity, density, bulk composition, GC fingerprints and relative concentrations of compounds in the gasoline range. It is observed from whole oil gas chromatographic data that the lighter hydrocarbons are more effected as a result of biodegradation and water washing than the heavier components. In the gasoline range compounds highest degradation of n-alkanes are observed followed by iso- and cyclo- alkanes. The extent of the effect of biodegradation of the gasoline range compounds in crude oil samples cannot be illustrated by the concentrations of the compounds. The concentrations only describe qualitative differences in molecular composition. This difficulty can be overcome by using parameters called degradative loss (%). This parameter shows exactly how much loss or gain has taken place in the gasoline range compounds. Within the gasoline range compounds, n-alkanes, Benzene baring HJN 15 and MKM 14 and Toluene experienced degradative loss indicating effects of both biodegradation and water washing in these oils. Cyclo-alkanes are least effected by biodegradation followed by iso-alkanes in all the oils. The extent of biodegradation and water washing is different for each oils from HJN and MKM fields as indicated by the degradative loss (%) of the compounds in the gasoline range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号