首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The contribution of soil organic matter (SOM) to continental margins is largely ignored in studies on the carbon budget of marine sediments. Detailed geochemical investigations of late Quaternary sediments (245-0 ka) from the Niger and Congo deep-sea fans, however, reveal that Corg/Ntot ratios and isotopic signatures of bulk organic matter (δ13Corg) in both fans are essentially determined by the supply of various types of SOM from the river catchments thus providing a fundamentally different interpretation of established proxies in marine sciences. On the Niger fan, increased Corg/Ntot and δ13Corg (up to −17‰) were driven by generally nitrogen-poor but 13C-enriched terrigenous plant debris and SOM from C4/C3 vegetation/Entisol domains (grass- and tree-savannah on young, sandy soils) supplied during arid climate conditions. Opposite, humid climates supported drainage of C3/C4 vegetation/Alfisol/Ultisol domains (forest and tree-savannah on older/developed, clay-bearing soils) that resulted in lower Corg/Ntot and δ13Corg (< −20‰) in the Niger fan record. Sediments from the Congo fan contain a thermally stable organic fraction that is absent on the Niger fan. This distinct organic fraction relates to strongly degraded SOM of old and highly developed, kaolinite-rich ferallitic soils (Oxisols) that cover large areas of the Congo River basin. Reduced supply of this nitrogen-rich and 12C-depleted SOM during arid climates is compensated by an elevated input of marine OM from the high-productive Congo up-welling area. This climate-driven interplay of marine productivity and fluvial SOM supply explains the significantly smaller variability and generally lower values of Corg/Ntot and δ13Corg for the Congo fan records. This study emphasizes that ignoring the presence of SOM results in a severe underestimation of the terrigenous organic fraction leading to erroneous paleoenvironmental interpretations at least for continental margin records. Furthermore, burial of SOM in marine sediments needs more systematic investigation combining marine and continental sciences to assess its global relevance for long-term sequestration of atmospheric CO2.  相似文献   

2.
Glycerol dialkyl glycerol tetraethers (GDGTs) are increasingly used as proxies for paleoclimate studies of marine and lacustrine environments. While GDGT-based proxies have been applied to a number of lake environments globally, little is known about the distribution of GDGTs on the Qinghai-Tibet Plateau. We have investigated the isoprenoid GDGTs (iGDGTs) and branched GDGTs (bGDGTs) in Lake Qinghai sediments and the surrounding surface soil in order to examine their potential use as paleoclimate proxies on the Qinghai-Tibet Plateau. The results show that (i) the values of the iGDGT/bGDGT ratio for surrounding soil were at the higher end among globally distributed soils and consequently BIT values (avg. 0.71) at the lower end, (ii) the TEX86 values decreased while the MBT and CBT values increased along an onshore soil–nearshore sediment–offshore sediment transect, (iii) the TEX86 values for the offshore sediments were almost identical and their inferred temperatures were close to mean summer surface water temperature and (iv) the bGDGT-inferred mean annual air temperature (MAAT) and pH for soil were consistent with measured MAAT and pH. However, the CBT-inferred pH for offshore sediments seemed inconsistent with the pH of lake water or sediment. Our results suggest that (i) the higher pH may be an important factor leading to the higher iGDGT/bGDGT values (and lower BIT values) in surrounding surface soil, (ii) both iGDGTs and bGDGTs may originate from terrestrial input and in situ production for this saline lake, especially for nearshore sediments. However, for offshore sediments, terrestrial iGDGT input seems minor, and TEX86 may be useful for paleoclimate studies of Lake Qinghai.  相似文献   

3.
We present a high‐resolution reconstruction of tropical palaeoenvironmental changes for the last deglacial transition (18 to 9 cal. kyr BP) based on integrated oceanic and terrestrial proxies from a Congo fan core. Pollen, grass cuticle, Pediastrum and dinoflagellate cyst fluxes, sedimentation rates and planktonic foraminiferal δ18O ratios, u37K′ sea‐surface temperature and alkane/alkenone ratio data highlight a series of abrupt changes in Congo River palaeodischarge. A major discharge pulse is registered at around 13.0 cal. kyr BP which we attribute to latitudinal migration of the Intertropical Convergence Zone (ITCZ) during deglaciation. The data indicate abrupt and short‐lived changes in the equatorial precipitation regime within a system of monsoonal dynamics forced by precessional cycles. The phases of enhanced Congo discharge stimulated river‐induced upwelling and enhanced productivity in the adjacent ocean. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
We investigated a well‐dated marine sediment core from the tropical SE Atlantic covering the last 25 kyr, applying taraxerol and Rhizophora pollen as organic geochemical and palynological proxies for mangrove, respectively. Taraxerol records are positively correlated with Rhizophora pollen records, showing an enhanced supply of mangrove materials into deep‐sea environments during the last deglaciation (Termination I). Sedimentation rates peaked during Meltwater Pulses 1A and 1B, which were associated with the maxima of taraxerol and Rhizophora pollen. This study supports the view that mangrove input was dominantly controlled by erosion of mangrove‐rich shelf sediments during the transgressions. Whether reworked materials were penecontemporaneous or from much older deposits formed during previous sea‐level cycles is discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Subterranean estuary occupies the transition zone between hypoxic fresh groundwater and oxic seawater, and between terrestrial and marine sediment deposits. Consequently, we hypothesize, in a subterranean estuary, biogeochemical reactions of Fe respond to submarine groundwater discharge (SGD) and sea level rise. Porewater and sediment samples were collected across a 30-m wide freshwater discharge zone of the Indian River Lagoon (Florida, USA) subterranean estuary, and at a site 250 m offshore. Porewater Fe concentrations range from 0.5 μM at the shoreline and 250 m offshore to about 286 μM at the freshwater-saltwater boundary. Sediment sulfur and porewater sulfide maxima occur in near-surface OC-rich black sediments of marine origin, and dissolved Fe maxima occur in underlying OC-poor orange sediments of terrestrial origin. Freshwater SGD flow rates decrease offshore from around 1 to 0.1 cm/day, while bioirrigation exchange deepens with distance from about 10 cm at the shoreline to about 40 cm at the freshwater-saltwater boundary. DOC concentrations increase from around 75 μM at the shoreline to as much as 700 μM at the freshwater-saltwater boundary as a result of labile marine carbon inputs from marine SGD. This labile DOC reduces Fe-oxides, which in conjunction with slow discharge of SGD at the boundary, allows dissolved Fe to accumulate. Upward advection of fresh SGD carries dissolved Fe from the Fe-oxide reduction zone to the sulfate reduction zone, where dissolved Fe precipitates as Fe-sulfides. Saturation models of Fe-sulfides indicate some fractions of these Fe-sulfides get dissolved near the sediment-water interface, where bioirrigation exchanges oxic surface water. The estimated dissolved Fe flux is approximately 0.84 μM Fe/day per meter of shoreline to lagoon surface waters. Accelerated sea level rise predictions are thus likely to increase the Fe flux to surface waters and local primary productivity, particularly along coastlines where groundwater discharges through sediments.  相似文献   

6.
This paper reports on the spatial distribution patterns and investigates the controlling mechanisms of phytoplankton biomarkers (brassicasterol for diatoms, alkenones for haptophytes, dinosterol for dinoflagellates) and terrestrial biomarkers (odd C number long-chain (C27 + C29 + C31) n-alkanes) in surface sediments from the southern Yellow Sea (SYS). The contents of the phytoplankton biomarkers in the SYS surface sediments reveals a clear spatial pattern, with low values near the coasts and increased values seaward, caused by higher phytoplankton primary productivity and low sedimentation rates in the basin. The contents of terrestrial biomarkers show high values in the northern part of the study areas off the Shandong Peninsula and Jiangsu coast, caused by inputs of materials from the modern Huanghe River and the old Huanghe delta, respectively. The results also indicate that biomarker ratios offer the best approach for reconstructing marginal sea C cycles, as these proxies can be used to estimate the contributions of both terrestrial and marine organic matter and to reconstruct paleoproductivity and paleoecological changes in the SYS.  相似文献   

7.
Radiocarbon-dated marine cores, measurements of sediment density and seismic surveys were used to estimate the sediment and mass accumulation rates (m/kyr and kg/m2/kyr) in the troughs from the southwest to north-central Iceland shelf (i.e. northwest sector of Iceland). The 3.5-kHz seismic survey showed varying thicknesses of acoustically transparent sediment in the troughs, whereas the inter-trough banks were largely devoid of sediment. The survey showed a pervasive reflector 1 to ≥60 m below the sea floor, which turned out to be Saksunarvatn tephra, dated at 10 180±60 cal. yr BP. The 3.5-kHz analogue data were digitized at 1-min intervals and provided 1645 estimates of maximum sediment thickness and 979 estimates of sediment accumulation over the last 10 200 cal. yr BP. Maximum sediment accumulation occurred in the mid-troughs and not, as expected, in the fjords. The median sediment accumulation rate (SAR) based on the core data was 0.23 m/kyr, but was 0.77 m/kyr based on the seismic data: the difference is attributed to coring limitations. Based on the volume of offshore sediment and the contributing terrestrial drainage area, the Holocene denudation of northern Iceland (c. 50 000 km2) is calculated to have been between 0.02 to 0.05 m/kyr, substantially lower that the 1-3 m/kyr derived from the suspended sediment load of rivers from southern Iceland but in agreement with the rate of accumulation of Holocene glacial lacustrine sediments in central Iceland.  相似文献   

8.
Kinetics of microbial sulfate reduction in estuarine sediments   总被引:2,自引:0,他引:2  
Kinetic parameters of microbial sulfate reduction in intertidal sediments from a freshwater, brackish and marine site of the Scheldt estuary (Belgium, the Netherlands) were determined. Sulfate reduction rates (SRR) were measured at 10, 21, and 30 °C, using both flow-through reactors containing intact sediment slices and conventional sediment slurries. At the three sites, and for all depth intervals studied (0-2, 2-4, 4-6 and 6-8 cm), the dependence of potential SRR on the sulfate concentration followed the Michaelis-Menten rate equation. Apparent sulfate half-saturation concentrations, Km, measured in the flow-through reactor experiments were comparable at the freshwater and marine sites (0.1-0.3 mM), but somewhat higher at the brackish site (0.4-0.9 mM). Maximum potential SRR, Rmax, in the 0-4 cm depth interval of the freshwater sediments were similar to those in the 0-6 cm interval of the marine sediments (10-46 nmol cm−3 h−1 at 21 °C), despite much lower in situ sulfate availability and order-of-magnitude lower densities of sulfate-reducing bacteria (SRB), at the freshwater site. Values of Rmax in the brackish sediments were lower (3.7-7.6 nmol cm−3 h−1 at 21 °C), probably due to less labile organic matter, as inferred from higher Corg/N ratios. Inflow solutions supplemented with lactate enhanced potential SRR at all three sites. Slurry incubations systematically yielded higher Rmax values than flow-through reactor experiments for the freshwater and brackish sediments, but similar values for the marine sediments. Transport limitation of potential SRR at the freshwater and brackish sites may be related to the lower sediment porosities and SRB densities compared to the marine site. Multiple rate controls, including sulfate availability, organic matter quality, temperature, and SRB abundance, modulate in situ sulfate-reducing activity along the estuarine salinity gradient.  相似文献   

9.
通过对中国第3次和第4次北极考察在白令海和西北冰洋采集的65个表层样沉积物中生物标记物四醚膜类脂物(GDGTs)的研究,发现西北冰洋表层沉积物中类异戊二烯和支链GDGTs的浓度分布大致以楚科奇海和波弗特海的陆坡为界线,呈现南高北低的特征,这一特征主要与水体生产力和陆源有机质的输入量有关.基于GDGTs的陆源输入指数BIT显示,从楚科奇海北部到高纬度区的阿尔法脊,陆源有机质的相对比例明显增加,与有机碳稳定同位素等结果一致,表明BIT可以用来指示北极陆源有机质输入量的变化.应用前人TEXL86-SST方程估算的研究区表面海水温度SST与现代年均SST和夏季平均SST的相关性较差,原因可能与陆源输入的类异戊二烯GDGTs干扰以及低的古菌生产力有关.从季节性海冰覆盖区到永久性海冰覆盖区,基于支链GDGTs的环化指数CBT明显升高,可能反映了CBT对海冰覆盖状况的响应,但其响应机制还不清楚.基于支链GDGTs的环化指数CBT和甲基化指数MBT估算的北极陆地年均大气温度和土壤pH差异较大,可能是由表层沉积物的来源复杂以及混合作用造成的.  相似文献   

10.
Sediment cores were collected from deep-water areas of Lake Chenghai, China in June 1997. The vertical profile of 137Cs activity gives reliable geochronological results. The results also indicate that sediment accumulation rates in deep-water areas of Lake Chenghai were relatively constant in recent decades, averaging 0.43 g cm− 2 y− 1, despite a variable organic carbon influx. 210Pbeq (= 226Ra) activity was relatively constant also, with an average value of 54.3 ± 3.2 Bq kg− 1. Vertical profiles of 210Pbex (= 210Pbtotal − 226Ra) decreased exponentially, resulting in somewhat lower sediment accumulation rates (0.3 g cm− 2 y− 1). These lower rates are likely less reliable, as the relatively large fluctuations in 210Pbex activities correlate closely to the organic carbon (Corg) content of the sediments. For example, the vertical profile of 210Pbex activity displays peaks at mass depths of 3.7-4.7 g cm− 2 (10-12 cm) and 10-11 g cm− 2(25-28 cm), similar to the maxima in the vertical profile of Corg. This phenomenon must be related to the delivery of particulate organic matter (POM) from the water to the sediments, or to watershed soil erosion. Since the mean atomic ratios of Horg / Corg and Corg / Norg in Lake Chenghai sediments are 5.5 and 7.0, respectively, indicating that POM was predominantly derived from the remains of authigenic algae, this eliminates watershed erosion rates as a primary control on lake sedimentation rates as resolved by 210Pbex. Sedimentation fluxes (F(Corg)) of particulate organic carbon since 1970 varied between 60 to 160 g m− 2 y− 1, and appeared to closely influence variations in 210Pbex concentrations. For example, sedimentation fluxes of 210Pbex (F(210Pbex)) showed maxima in the years 1972-1974 and 1986-1989, likely reflecting historical variations of lake biological productivity or carbon preservation.  相似文献   

11.
Burial of organic carbon (OC) in ocean sediments acts as the ultimate long-term sink for both terrestrial and marine carbon, however, the mechanisms controlling the preservation of this carbon are poorly understood. To better understand these mechanisms, we applied solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, along with elemental, stable carbon isotopic (δ13C) and lignin phenol analyses, to size and density fractions of sediments influenced by either mixed terrestrial and marine OC inputs (Washington Coast slope) or dominantly marine inputs (Mexican Margin). Elemental, isotopic and lignin analyses all reveal that within the Washington Coast sediment, the OC mixes linearly between nitrogen-poor and 13C-depleted, lignin-rich OC in the large and light fractions and nitrogen-rich and 13C-enriched, lignin-poor OC in the small and dense fractions, suggesting that this sediment contains a two-component mixture of terrestrial vascular plant- and marine-derived OC. The integral areas of each of seven NMR spectral regions in the different samples trend linearly when plotted versus δ13C signature, with most R2 values of 0.78 or greater, demonstrating that the NMR spectra of the two sources of carbon also mix linearly between the two endmembers. The terrestrial endmember in this sediment appears to be dominated by lignin and black carbon whereas the source of the marine endmember is less clear from the NMR spectra. In contrast, all of the analyses indicate that OC in the Mexican Margin sediment fractions is homogenous and derives almost exclusively from marine sources. It appears that selective preservation of (bio)chemically recalcitrant lignin and black carbon is the primary mechanism of preservation of terrestrial OC, whereas mineral-protection is the dominant mechanism preserving marine OC in the Washington coast sediment. There is little evidence showing that either preservation mechanism functions in the Mexican Margin sediments.  相似文献   

12.
Three sediment cores were taken from the Pearl River estuary and adjacent northern South China Sea (SCS). These sediment cores span the time interval 1900–2000 AD. The stratigraphy of the concentration, the ratio of total organic carbon (TOC) to total nitrogen (TN) and stable isotope (δ13Corg) of organic carbon (OC) from three high-resolution sediment cores were analyzed. The stratigraphic profiles of OC concentration, TOC/TN ratios and δ13Corg for the near past 100 yrs indicate that terrestrial organic matter decreases from 68.3% to 27.4% of the TOC in the Pearl River estuary, while Dapeng Bay (offshore east of Hong Kong) apparently had throughout little terrestrial organic matter input. The highest deposited OC occurs at the Humen River mouth and the OC concentrations are higher in the outer estuary than in the inner shelf of the northern SCS. The deposited OC at the River mouth increased with time, which could be caused by the high precipitation of land-derived organic matter and the high input of terrestrial organic matter, which is likely related to the rapid urbanization and industrial development in the Pearl River Delta since the 1970s. The OC concentrations did not exhibit an obvious increase with time in most areas of the Pear River estuary and adjacent inner shelf of the SCS, but the algal-derived OC concentration inferred from the δ13Corg values increased with time especially from 1980 to 2000 in the outer Pearl River estuary and Dapeng Bay. This increase is presumably caused by enhanced primary marine productivity supported by higher anthropogenic nutrient inputs.  相似文献   

13.
In ocean margin sediments both marine and terrestrial organic matter (OM) are buried but the factors governing their relative preservation and degradation are not well understood. In this study, we analysed the degree of preservation of marine isoprenoidal and soil-derived branched glycerol dialkyl glycerol tetraethers (GDGTs) upon long-term oxygen exposure in OM-rich turbidites from the Madeira Abyssal Plain by analyzing GDGT concentrations across oxidation fronts. Relative to the anoxic part of the turbidites ca. 7-20% of the soil-derived branched GDGTs were preserved in the oxidized part while only 0.2-3% of the marine isoprenoid GDGT crenarchaeol was preserved. Due to these different preservation factors the Branched Isoprenoid Tetraether (BIT) index, a ratio between crenarchaeol and the major branched GDGTs that is used as a tracer for soil-derived organic matter, substantially increases from 0.02 to 0.4. Split Flow Thin Cell (SPLITT) separation of turbidite sediments showed that the enhanced preservation of soil-derived carbon was a general phenomenon across the fine particle size ranges (<38 μm). Calculations reveal that, despite their relatively similar chemical structures, degradation rates of crenarchaeol are 2-fold higher than those of soil-derived branched GDGTs, suggesting preferential soil OM preservation possibly due to matrix protection.  相似文献   

14.
High sedimentation rates in Pleistocene active margin basins can provide a very detailed record of tectonic and climatic controls on sediment preservation. A 500 m thick, Pleistocene rock section exposed in northeastern North Island of New Zealand (Kidnappers Group), provides the opportunity to discuss these controls. The section is composed of conglomerate, sandstones, siltstones and minor shales, interbedded with tephra layers. The sediments were deposited in alluvial to shallow marine environments and preserved in stacks of depositional units decimetres to hundreds of metres thick as a result of base‐level changes through time. The correlation of base‐level changes in the section with the deep sea oxygen isotope stratigraphy shows that the sequences at 10 m and 80 m scales can correlate, respectively, to the 20 and 100 kyr changes in eustatic sea‐level, but that the 80‐m‐thick sequences correlate also to changes in tectonic uplift rates. A major change in the stratigraphical architecture occurs at the Mid‐Pleistocene Transition (MPT) when the 40 kyr ice volume variations shifted to a dominant 100 kyr variation. This change includes an increase in the amplitude of the shifts in depositional environments and an overall simplification of the stacking pattern of the depositional units through the MPT. This study illustrates that active margin basins can record orbitally forced sedimentary cycles and points to a possible leading influence of eustasy on the pattern of sediment preservation in tectonically active areas. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Deltas are important coastal sediment accumulation zones in both marine and lacustrine settings. However, currents derived from tides, waves or rivers can transfer that sediment into distal, deep environments, connecting terrestrial and deep marine depozones. The sediment transfer system of the Rhone River in Lake Geneva is composed of a sublacustrine delta, a deeply incised canyon and a distal lobe, which resembles, at a smaller scale, deep‐sea fan systems fed by high discharge rivers. From the comparison of two bathymetric datasets, collected in 1891 and 2014, a sediment budget was calculated for eastern Lake Geneva, based on which sediment distribution patterns were defined. During the past 125 years, sediment deposition occurred mostly in three high sedimentation rate areas: the proximal delta front, the canyon‐levée system and the distal lobe. Mean sedimentation rates in these areas vary from 0·0246 m year?1 (distal lobe) to 0·0737 m year?1 (delta front). Although the delta front–levées–distal lobe complex only comprises 17·0% of the analysed area, it stored 74·9% of the total deposited sediment. Results show that 52·5% of the total sediment stored in this complex was transported toward distal locations through the sublacustrine canyon. Namely, the canyon–levée complex stored 15·9% of the total sediment, while 36·6% was deposited in the distal lobe. The results thus show that in deltaic systems where density currents can occur regularly, a significant proportion of riverine sediment input may be transferred to the canyon‐lobe systems leading to important distal sediment accumulation zones.  相似文献   

17.
We analyzed D/H ratios of common terrestrial leaf wax lipids in a 1400 year sediment core from the Santa Barbara Basin (SBB) to test whether they accurately record terrestrial climate in Southern California. The D/H ratios of long chain n-alkanes vary substantially with depth, but are poorly correlated with other terrestrial climate proxies. Interference from fossil hydrocarbons may be at least partly responsible. Long chain n-alkanoic acids exhibit nearly constant downcore D/H ratio values. This constancy in the face of known climatic shifts presumably reflects a substantial residence time for leaf wax compounds in terrestrial soil and/or on the basin flanks. Alternatively, the isotopic composition of meteoric waters in Southern California may not covary with climate, particularly aridity. However, the δD values of n-C22 and n-C24 fatty acids, commonly attributed to terrestrial aquatic sources, are partially correlated with Southern California winter Palmer Drought Severity Index, a tree ring-based climatic proxy (R2 0.25; < 0.01) on multi-centennial scales with an inferred ca. 215 year time lag. The improved correlation of these biomarkers can be explained by the fact that they are not stored in terrestrial soil nor are subject to interference from fossil hydrocarbons. Our study indicates that the SBB is unlikely to preserve high resolution leaf wax D/H records that can serve as quantitative paleoclimate proxies, though some qualitative information may be retained. More generally, the sources of lipids in marginal marine basins need to be carefully evaluated prior to attempting paleoclimate reconstruction based on the leaf wax D/H proxy.  相似文献   

18.
《Quaternary Science Reviews》2004,23(3-4):261-281
The organic carbon content of marine sediments is commonly used as a proxy for export production. However, in continental margin sediments a large fraction of the organic matter may be of terrestrial origin, and it is necessary to correct the total organic carbon data accordingly. Radiocarbon dating of bulk organic carbon, organic geochemistry and isotope data (δ13C and δ15N) are used here to characterize the type of organic matter present in Core JT96-09 collected at a water depth of 920 m on the slope off Western Canada. The quantities of marine and terrestrial organic carbon are then estimated using the δ13C data. The 16 kyr record obtained from Core JT96-09 suggests that accumulation of total organic carbon was highest during the late glacial and deglacial, but geochemical data indicate that as much as 70% of this carbon is terrestrial in origin. When the palaeo-record is corrected for this terrigenous input it is observed that accumulation of marine organic matter, and presumably marine export production, increased at the end of the last glacial contemporaneous with the Bølling, and that it peaked during the Allerød. Data from other palaeoproductivity proxies (i.e., bio-barium, opal and alkenones) also indicate relatively high productivity during the deglacial. These results indicate a return to modern upwelling conditions and high marine export production at ∼14.3 calendar kyr BP and a period of enhanced upwelling, relative to the present, during the Allerød.  相似文献   

19.
Organic C (OC) and total N (TN) concentrations, and stable isotope ratios (δ13C) in muddy deposit sediments of the Northern and Southern Portuguese continental shelf were used to identify sources of fine-sized organic matter (<63 μm) during the Holocene period. Sedimentary columns off the Guadiana (core CRIDA 05), Tagus (core MD 992332) and Douro (core KSGX 57) estuaries are characterised by elemental and isotopic values that reflect distinct sources of organic matter (OC/TN and δ13C ranging, respectively, from 8.5 to 21 and from −22.4‰ to −27‰). Intense supplies to the Guadiana continental shelf of fine terrigenous particles during the Younger-Dryas Event are closely linked with higher OC/TN values and lower δ13C ratios. During the postglacial transgression phase, an increasing contribution of marine supplies (up to 80%) occurred. Higher δ13C (up to −22.4‰) values and low OC/TN ratios (down to 8.5) are found as the sea level approaches the current one. The Upper Holocene records emphasize the return to enhanced terrestrial supplies except for the Little Climatic Optimum between the 11th and 15th centuries AD. This climatic event is especially obvious in the three cores as a return to marine production and a decrease in terrestrial sediment supply to the continental shelf. The return to a cooling event, the Little Ice Age, between the 15th and 19th centuries AD, is mirrored by decreased terrigenous supplies in core KSGX 57. Gradually increasing sedimentation in estuaries, as well as formation of coastal dune fields, have been hypothesized on the basis of increasing δ13C and decreasing OC, TN and OC/TN values.  相似文献   

20.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号