首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The well-studied Paleozoic Cooma metamorphic complex in southeastern Australia is characterized by a uniform siliciclastic protolith, of uniform age, with a continuous range of metamorphic grade from subgreenschist- to upper amphibolite-facies, and migmatite-grade in an annular pattern around the Cooma granodiorite. Those conditions are optimal for investigating variations of N concentrations and δ15N values during progressive metamorphism. Nitrogen concentrations decrease and δ15N increases with increasing metamorphic grade (sub-chlorite zone: 120 ppm N, δ15N = 2.3‰; chlorite zone: 110 ppm N, δ15N = 3.0‰; biotite and andalusite zone: 85 ppm N, δ15N = 3.8 ‰; sillimanite and migmatite zones: 40 ppm N, δ15N = 10.7‰). Covariation of K and N contents is consistent with N substituting for K as NH4+ in micas. Observed trends of increasing δ15N values with decreasing nitrogen concentrations can be explained by a continuous release of nitrogen depleted in 15N with progressive metamorphism, which causes an enrichment of 15N in the residual nitrogen of the rock. Equilibrium models for Rayleigh distillation and batch volatilisation for data of the greenschist and amphibolite facies metasedimentary rocks can be explained by N2-NH4+ exchange at temperatures of 300-600 °C, whereas observed large fractionations for the upper amphibolite-facies and melt products in the migmatite-grade samples may be interpreted as NH3-NH4+ exchanges at temperature of 650-730 °C. Lower values in the highest grade zones may also stem in part from input of 15N-depleted fluids from the granodiorite.The magnitude of isotope fractionation of nitrogen is about 1-2‰ during progressive metamorphism of metasedimentary rocks from sub-chlorite zone to biotite-andalusite zone, which is consistent with previous studies. Consequently, the large spread of δ15N values in Archean greenschist-facies metasedimentary rocks of −6‰ to 30‰ can be accounted for by variable mixtures of mantle plume-dominated volatiles with a δ15N of −5‰, and a 15N-enriched marine sedimentary kerogen component inherited from a CI chondrite veneer having δ15N of 30‰ to 42‰.  相似文献   

2.
This paper provides the first measurements of the nitrogen (N) concentrations and isotopic compositions of high- and ultrahigh-pressure mafic eclogites, aimed at characterizing the subduction input flux of N in deeply subducting altered oceanic crust (AOC). The samples that were studied are from the Raspas Complex (Ecuador), Lago di Cignana (Italy), the Zambezi Belt (Zambia) and Cabo Ortegal (Spain), together representing subduction to 50-90 km depths. The eclogites contain 2-20 ppm N with δ15Nair values ranging from −1 to +8‰. These values overlap those of altered oceanic crust, but are distinct from values for fresh MORB (for the latter, ∼1.1 ppm N and δ15Nair ∼ −4‰). Based on N data in combination with other trace element data, the eclogite suites can be subdivided into those that are indistinguishable from their likely protolith, AOC, with or without superimposed effects of devolatilization (Lago di Cignana, Cabo Ortegal), and those that have experienced metasomatic additions during subduction-zone metamorphism (Zambezi Belt, Raspas). For the former group, the lack of a detectable loss of N in the eclogites, compared to various altered MORB compositions, suggests the retention of N in deeply subducted oceanic crust. The metasomatic effects affecting the latter group can be best explained by mixing with a (meta)sedimentary component, resulting in correlated enrichments of N and other trace elements (in particular, Ba and Pb) thought to be mobilized during HP/UHP metamorphism. Serpentinized and high-pressure metamorphosed peridotites, associated with the eclogites at Raspas and Cabo Ortegal, contain 3-15 ppm N with δ15Nair values ranging from +3 to +6‰, significantly higher than the generally accepted values for the MORB mantle (δ15Nair ∼ −5‰). Based on their relatively high N contents and their homogeneous and positive δ15N values, admixing of sedimentary N is also indicated for the serpentinized peridotites.One possible pathway for the addition of sediment-derived N into eclogites and peridotites involves mixing with fluids along the slab-mantle wedge interface. Alternatively, sedimentary N could be incorporated into peridotites during serpentinization at bending-related faults at the outer rise and, during later deserpentinization, released into fluids that then infiltrate overlying rocks. Deep retention of N in subducting oceanic crust should be considered in any attempt to balance subduction inputs with outputs in the form of arc volcanic gases. If materials such as these eclogites and serpentinized peridotites are eventually subducted to beyond sub-arc depths into the deeper mantle, containing some fraction of their forearc-subarc N inventory (documented here), they could deliver isotopically heavy N into the mantle to potentially be sampled by plume-related magmas.  相似文献   

3.
Temporal variations in the concentration and N isotopic ratios of inorganic N (NH4– and NO3–N) as affected by the soil temperature regime together with the input of bird excreta were analyzed in a sedentary soil under a dense colony (1.6 nests/m2) of breeding Black-tailed Gulls (Laruscrassirostris: a ground-nesting seabird). Surface soil samples were taken monthly from mid-March to late July 2005 from Kabushima Island, Hachinohe, northeastern Japan. The spatial concentration of inorganic N in the soils varied considerably on all sampling dates. There may be a statistically significant trend, showing increased NH4–N content from settlement up to early June when the input of fecal N attains its maximum, and then decreases towards the end of breeding activity (early August). Abundant NO3–N was observed in all soils, particularly in the later stage of breeding (up to 3800 mg-N/kg dry soil), refuting earlier claims that nitrification is unimportant in the soils. δ15N values of NH4 in the soils showed unusually high values up to +51‰, reflecting N isotope fractionation due to volatilization of NH3 during the mineralization. Mean δ15N values of the monthly collected totals of NH4 and NO3 were not significantly different at the 5% level based on ANOVA and significant differences were observed only among the three means of NO3–N collected in mid-March (settlement of colony: δ15N = −0.2 ± 3.5‰) and late July (later stages of breeding: δ15N = +22.1 ± 7.0‰, +23.3 ± 7.8‰) at the 1% and 5% levels by t-test, respectively. Such an observation of significantly increased δ15N values for NO3–N in soils from the fledgling stage indicates the integration of denitrification coupled with nitrification under a limited supply of fecal N.  相似文献   

4.
Pollen grains from grasses using the C3 and C4 photosynthetic pathways have distinct ranges of δ13C values that may be used to estimate their relative abundance in paleorecords. We evaluated a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer (SWiM-IRMS) for δ13C analysis of individual grass-pollen grains. Pollen from four C3 and four C4 grass species was isolated through micromanipulation and analyzed as single grains suspended in water. A carbon yield greater than the 2σ range of the carbon content of blanks containing only water was used to distinguish samples containing pollen (“pollen present”) from those not containing pollen. This criterion resulted in the exclusion of ∼45% of the 946 samples applied to the wire. The average δ13C values (±1σ) of the remaining samples were −26.9‰ (±6.3‰) and −11.5‰ (±9.6‰) for C3 grasses and C4 grasses, respectively, after blank-correcting the δ13C data. These results suggest that the SWiM-IRMS system can be used to distinguish C3 from C4 grass pollen. The high variability in measured δ13C values is likely caused by a combination of factors. These include natural isotopic variability among individual pollen grains; the relatively poor precision that can be obtained when determining δ13C values of such small samples; and the uncertainty in the magnitude, isotopic composition, and stability of the analytical blank. Nonetheless, high percentages of individual pollen grains were correctly classified as being of either C3 or C4 origin. On average, 90% (range = 78-100%) of pollen grains from C3 grasses had δ13C values more negative than the cutoff threshold of −19.2‰; while 84% (range = 77-90%) of pollen grains from C4 grasses had δ13C values more positive than −19.2‰. Compared with analysis using an elemental analyzer interfaced with an IRMS (EA-IRMS), the number of pollen grains required for δ13C-based evaluation of C3/C4 grass composition is many times lower with the SWiM-IRMS. Additionally, δ13C data from the SWiM-IRMS does not need to be incorporated into a mixing model to derive estimates of the abundance of C3 and C4 grass pollen. Carbon-isotopic analysis of individual grass-pollen grains using the SWiM-IRMS system may help improve our understanding of the evolutionary and ecological significance of grass taxa in the paleorecord.  相似文献   

5.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

6.
Goethite (Ax-2) from Axel Heiberg Island (∼80°N) on the margin of the Arctic Ocean is the dominant mineral in a sample of “petrified” Eocene wood, but U, Th, and He measurements suggest that the goethite (α-FeOOH) crystallized in the latest Miocene/Pliocene (ca. 5.5 to 2.8 Ma). Measured δD and δ18O values of Ax-2 are −221 (±6)‰ and −9.6 (±0.5)‰, respectively. The inferred δD and δ18O values of the ancient water were about −139‰ and −18.6‰, respectively, with a calculated temperature of crystallization of 3 (±5)°C, which compares with the modern summer (J-J-A) temperature of 3 °C and contrasts with a modern MAT of −19 °C. Published results from various biological proxies on nearby Ellesmere Island indicate a Pliocene (∼4 Ma) MAT of either −6 or −0.4 °C and corresponding seasonal amplitudes of about 18 or 13 °C. A conductive heat flow model suggests that a temperature of 3 °C could represent goethite crystallization at depths of ∼100-200 cm (for MAT = −6 °C) or ∼250-450 cm (for MAT = −0.4 °C) over seasonally restricted intervals of time.The δ18O value of the Ax-2 water (−18.6‰) is more positive than the modern J-J-A precipitation (−22‰). In combination, the paleotemperatures and δ18O values of ancient waters (from Ax-2 and published results from three Eocene or Pliocene proxy sites on Axel Heiberg and Ellesmere Islands) are consistent with a warm season bias in those isotopic proxies. The results are also consistent with higher proportions of J-J-A precipitation in the annual total. If so, this emphasizes the importance of seasonality at high latitudes even in times of warmer global climates, and suggests that the Arctic hydrologic cycle, as expressed in the seasonal distribution and isotopic composition of precipitation (perhaps modified by a warmer Arctic Ocean), differed from modern.The δ13C value of the Fe(CO3)OH component in the Ax-2 goethite is +6.6‰, which is much more positive than expected if crystallizing goethite incorporated CO2 derived primarily from oxidation of relict Eocene wood with δ13C values of about −24‰. This apparent paradox may be resolved if the goethite is a product of oxidation of 13C-rich siderite, which had previously replaced wood in an Eocene methanogenic burial environment. Thus, the goethite retains a carbon isotope “memory” of a diagenetic Eocene event, but a δD and δ18O record of the latest Miocene/Pliocene Arctic climate.  相似文献   

7.
Tissue N contents and δ15N signatures in 175 epilithic mosses were investigated from urban to rural sites in Guiyang (SW China) to determine atmospheric N deposition. Moss N contents (0.85–2.97%) showed a significant decrease from the urban area (mean = 2.24 ± 0.32%, 0–5 km) to the rural area (mean = 1.27 ± 0.13%, 20–25 km), indicating that the level of N deposition decreased away from the urban environment, while slightly higher N contents re-occurred at sites beyond 30 km, suggesting higher N deposition in more remote rural areas. Moss δ15N ranged from −12.50‰ to −1.39‰ and showed a clear bimodal distribution (−12‰ to −6‰ and −5‰ to −2‰), suggesting that there are two main sources for N deposition in the Guiyang area. More negative δ15N (mean = −8.87 ± 1.65‰) of urban mosses mainly indicated NH3 released from excretory wastes and sewage, while the less negative δ15N (from −3.83 ± 0.82‰ to −2.48 ± 0.95‰) of rural mosses were mainly influenced by agricultural NH3. With more negative values in the urban area than in the rural area, the pattern of moss δ15N variation in Guiyang was found to be opposite to cities where N deposition is dominated by NOx–N. Therefore, NHx–N is the dominant N form deposited in the Guiyang area, which is supported by higher NHx–N than NOx–N in local atmospheric deposition. From the data showing that moss is responding to NHx–N/NOx–N in deposition it can be further demonstrated that the variation of moss δ15N from the Guiyang urban to rural area was more likely controlled by the ratio of urban-NHx/agriculture-NHx than the ratio of NHx–N/NOx–N. The results of this study have extended knowledge of atmospheric N sources in city areas, showing that urban sewage discharge could be important in cities co-generic to Guiyang.  相似文献   

8.
Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of εpor suggests that values of εpor could be useful for determining the fractional burial of eukaryotic vs. cyanobacterial organic matter in the sedimentary record.  相似文献   

9.
From July to November 2009, concentrations of CO2 in 78 samples of ambient air collected in 18 different interior spaces on a university campus in Dallas, Texas (USA) ranged from 386 to 1980 ppm. Corresponding δ13C values varied from −8.9‰ to −19.4‰. The CO2 from 22 samples of outdoor air (also collected on campus) had a more limited range of concentrations from 385 to 447 ppm (avg. = 408 ppm), while δ13C values varied from −10.1‰ to −8.4‰ (avg.=-9.0‰). In contrast to ambient indoor and outdoor air, the concentrations of CO2 exhaled by 38 different individuals ranged from 38,300 to 76,200 ppm (avg. = 55,100 ppm), while δ13C values ranged from −24.8‰ to −17.7‰ (avg. = −21.8‰). The residence times of the total air in the interior spaces of this study appear to have been on the order of 10 min with relatively rapid approaches (∼30 min) to steady-state concentrations of ambient CO2 gas. Collectively, the δ13C values of the indoor CO2 samples were linearly correlated with the reciprocal of CO2 concentration, exhibiting an intercept of −21.8‰, with r2 = 0.99 and p < 0.001 (n = 78). This high degree of linearity for CO2 data representing 18 interior spaces (with varying numbers of occupants), and the coincidence of the intercept (−21.8‰) with the average δ13C value for human-exhaled CO2 demonstrates simple mixing between two inputs: (1) outdoor CO2 introduced to the interior spaces by ventilation systems, and (2) CO2 exhaled by human occupants of those spaces. If such simple binary mixing is a common feature of interior spaces, it suggests that the intercept of a mixing line defined by two data points (CO2 input from the local ventilation system and CO2 in the ambient air of the room) could be a reasonable estimate of the average δ13C value of the CO2 exhaled by the human occupants. Thus, such indoor spaces appear to constitute effective “sample vessels” for collection of CO2 that can be used to determine the average proportions of C3 and C4-derived C in the diets of the occupants. For the various groups occupying the rooms sampled in this study, C4-derived C appears to have constituted ∼40% of the average diet.  相似文献   

10.
A Late Paleocene (∼60 Ma BP) lateritic soil from Northern Ireland (the Antrim paleosol, herein referred to as Nire) contains coexisting goethite, gibbsite, phyllosilicate, and hematite. The Fe(III) oxides exhibit pisolitic and Liesegang-type morphologies that are mutually exclusive in hand specimens. X-ray diffraction (XRD) measurements of Al substituted for Fe in goethite indicate two populations: (1) low-Al, Liesegang-type goethites (∼0 mol% Al) and (2) high-Al, pisolitic goethites (∼9 to ∼24 mol% Al). Selective dissolution and incremental vacuum dehydration-decarbonation were used to determine the concentration and δ13C values of CO2 occluded in the respective structures of the goethites and gibbsites in this complex mixture of Nire lateritic minerals. The Fe(CO3)OH component in the high-Al goethites appears to retain a proxy carbon isotopic record of vadose zone CO2 in the ancient soil. The δ13C values of CO2 occluded in coexisting goethites and gibbsites indicate that these minerals did not form in equilibrium with the same environmental CO2.The measured mole fractions (X) of Fe(CO3)OH in the high-Al goethites range from 0.0059 (±0.0005) to 0.0077 (±0.0006) and correspond to soil CO2 concentrations of ∼28,000 to ∼37,000 ppmV. The average values of X and δ13C for the four high-Al goethites are 0.0067 ± 0.0007 and −20.1 ± 0.5‰, respectively. The δ13C value of the organic matter undergoing oxidation in this midlatitude (∼55°N) Late Paleocene soil appears to have been ∼ −28.2‰. Taken together, these data indicate an atmospheric CO2 concentration of ∼2400 ppmV (± ∼1200 ppmV) at ∼60 Ma BP. The inferred high concentration of atmospheric CO2 would have been coincident with the warm global climate of the Late Paleocene and is consistent with the idea that CO2 plays an important role in climate variation.  相似文献   

11.
We present high-precision measurements of Mg and Fe isotopic compositions of olivine, orthopyroxene (opx), and clinopyroxene (cpx) for 18 lherzolite xenoliths from east central China and provide the first combined Fe and Mg isotopic study of the upper mantle. δ56Fe in olivines varies from 0.18‰ to −0.22‰ with an average of −0.01 ± 0.18‰ (2SD, n = 18), opx from 0.24‰ to −0.22‰ with an average of 0.04 ± 0.20‰, and cpx from 0.24‰ to −0.16‰ with an average of 0.10 ± 0.19‰. δ26Mg of olivines varies from −0.25‰ to −0.42‰ with an average of −0.34 ± 0.10‰ (2SD, n = 18), opx from −0.19‰ to −0.34‰ with an average of −0.25 ± 0.10‰, and cpx from −0.09‰ to −0.43‰ with an average of −0.24 ± 0.18‰. Although current precision (∼±0.06‰ for δ56Fe; ±0.10‰ for δ26Mg, 2SD) limits the ability to analytically distinguish inter-mineral isotopic fractionations, systematic behavior of inter-mineral fractionation for both Fe and Mg is statistically observed: Δ56Feol-cpx = −0.10 ± 0.12‰ (2SD, n = 18); Δ56Feol-opx = −0.05 ± 0.11‰; Δ26Mgol-opx = −0.09 ± 0.12‰; Δ26Mgol-cpx = −0.10 ± 0.15‰. Fe and Mg isotopic composition of bulk rocks were calculated based on the modes of olivine, opx, and cpx. The average δ56Fe of peridotites in this study is 0.01 ± 0.17‰ (2SD, n = 18), similar to the values of chondrites but slightly lower than mid-ocean ridge basalts (MORB) and oceanic island basalts (OIB). The average δ26Mg is −0.30 ± 0.09‰, indistinguishable from chondrites, MORB, and OIB. Our data support the conclusion that the bulk silicate Earth (BSE) has chondritic δ56Fe and δ26Mg.The origin of inter-mineral fractionations of Fe and Mg isotopic ratios remains debated. δ56Fe between the main peridotite minerals shows positive linear correlations with slopes within error of unity, strongly suggesting intra-sample mineral-mineral Fe and Mg isotopic equilibrium. Because inter-mineral isotopic equilibrium should be reached earlier than major element equilibrium via chemical diffusion at mantle temperatures, Fe and Mg isotope ratios of coexisting minerals could be useful tools for justifying mineral thermometry and barometry on the basis of chemical equilibrium between minerals. Although most peridotites in this study exhibit a narrow range in δ56Fe, the larger deviations from average δ56Fe for three samples likely indicate changes due to metasomatic processes. Two samples show heavy δ56Fe relative to the average and they also have high La/Yb and total Fe content, consistent with metasomatic reaction between peridotite and Fe-rich and isotopically heavy melt. The other sample has light δ56Fe and slightly heavy δ26Mg, which may reflect Fe-Mg inter-diffusion between peridotite and percolating melt.  相似文献   

12.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

13.
Nitrogen and carbon isotopic compositions, together with mineralogy and trace element geochemistry, were studied in a few kerogen-rich Paleoarchean cherts, a barite and a dolomitic stromatolite belonging to the eastern (Dixon Island Formation) and western (Dresser and Strelley Pool Chert Formations; North Pole Dome and Marble Bar) terranes of Pilbara Craton, Western Australia. The aim of the study was to search for 15N-depleted isotopic signatures, often found in kerogens of this period, and explain the origin of these anomalies. Trace elements suggest silica precipitation by hydrothermal fluids as the main process of chert formation with a contamination from volcanoclastic detritus. This is supported by the occurrence of hydrothermal-derived minerals in the studied samples indicating precipitation temperatures up to 350 °C. Only a dolomitic stromatolite from Strelley Pool shows a superchondritic Y/Ho ratio of 72 and a positive Eu/Eu* anomaly of 1.8, characteristic of chemical precipitates from the Archean seawater. The bulk δ13C vs. δ15N values measured in the cherts show a roughly positive co-variation, except for one sample from the North Pole (PI-85-00). The progressive enrichment in 15N and 13C from a pristine source having δ13C ? −36‰ and δ15N ? −4‰ is correlated with a progressive depletion in N content and to variations in Ba/La and Co/As ratios. These trends have been interpreted as a progressive hydrothermal alteration of the cherts by metamorphic fluids. Isotopic exchange at 350 °C between NH4+(rock) and N2(fluid) may explain the isotopic and elemental composition of N in the studied cherts. However, we need to assume isotopic exchange at 350 °C between carbonate C and graphite to explain the large 13C enrichment recorded. Only sample PI-85-00 shows a large N loss (90%) with a positive δ15N value (+11‰), while C (up to 120 ppm and δ13C −38‰) seems to be unaffected. This pattern has been interpreted as the result of devolatilization and alteration (oxidation) of graphite by low-temperature fluids. The 15N-13C-depleted pristine source has δ 15N values from −7‰ to −4‰ and 40Ar/36Ar ratios from 30,000 to 60,000, compatible with an inorganic mantle N source, although the elemental abundance ratios N/C and 40Ar/C are not exactly the same with the mantle source. The component alternatively could be explained by elemental fractionation from metabolic activity of chemolithoautotrophs and methanogens at the proximity to the hydrothermal vents. However, ambiguities between mantle vs organic sources of N subsist and need further experimental work to be fully elucidated.  相似文献   

14.
This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species (Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH4+ as an N source, and H2PO4 as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H2O-CO2-CaCO3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H2CO3 generated by dissolution of atmospheric CO2 (H2CO3 + CaCO3 → Ca2+ + 2HCO3) and H+ released during NH4+ uptake (H+ + CaCO3 → Ca2+ + HCO3). Reaction with H2CO3 and H+ supplied ∼45% and 55% of the total Ca2+ and ∼60% and 40% of the total HCO3, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH4+ was ∼2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H2CO3. In lactate bearing reactors, most H+ generated by NH4+ uptake reacted with HCO3 produced by lactate oxidation to yield CO2 and H2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H2CO3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.  相似文献   

15.
The Western Slope of the Songliao Basin is rich in heavy oil resources (>70 × 108 bbl), around which there are shallow gas reservoirs (∼1.0 × 1012 m3). The gas is dominated by methane with a dryness over 0.99, and the non-hydrocarbon component being overwelmingly nitrogen. Carbon isotope composition of methane and its homologs is depleted in 13C, with δ13C1 values being in the range of −55‰ to −75‰, δ13C2 being in the range of −40‰ to −53‰ and δ13C3 being in the range of −30‰ to −42‰, respectively. These values differ significantly from those solution gases source in the Daqing oilfield. This study concludes that heavy oils along the Western Slope were derived from mature source rocks in the Qijia-Gulong Depression, that were biodegraded. The low reservoir temperature (30–50 °C) and low salinity of formation water with neutral to alkaline pH (NaHCO3) appeared ideal for microbial activity and thus biodegradation. Natural gas along the Western Slope appears mainly to have originated from biodegradation and the formation of heavy oil. This origin is suggested by the heavy δ13C of CO2 (−18.78‰ to 0.95‰) which suggests that the methane was produced via fermentation as the terminal decomposition stage of the oil.  相似文献   

16.
A mid-Cretaceous (∼95 Ma) laterite in southwestern Minnesota contains pisolites that consist primarily of gibbsite, quartz, and kaolinite with smaller amounts of goethite (α-FeOOH) and hematite. The presence of minor berthierine (an Fe(II) sheet silicate) suggests that this Cenomanian laterite experienced some degree of low temperature reductive diagenesis during its burial history. The prospects for extracting useful paleoenvironmental information from the pisolitic goethite were explored by studying measured mole fraction (Xm) and δ13Cm values of the Fe(CO3)OH component in solid solution in the goethite using the method of incremental vacuum dehydration-decarbonation.Data arrays that occupy distinctly different domains in plots of δ13Cm vs. 1/Xm suggest the existence of two generations of goethite in the pisolites. The apparently younger generation of goethite (“generation 2”) evolves CO2 at 170 °C, while the older generation (“generation 1”) evolves CO2 at 220 °C. The distribution of the data suggests that generation 2 goethite is a proxy for mixing of CO2 from three distinct CO2 sources in an oxidative environment which post-dated the reductive diagenesis. The small amount of generation 1 goethite seems to have persisted through the reductive diagenesis, and nine of the generation 1 goethite data appear to define a proxy, two-endmember, soil CO2 mixing line. Such two-component mixing is consistent with expectations for a highly evolved, carbonate-free laterite (i.e., the pre-diagenetic Cenomanian weathering system). The δ13Cm values of these nine data points range from −23.1‰ to −13.7‰, whereas Xm values range from 0.0007 to 0.0222. Linear regression of these nine data yields a slope of 0.0064, which corresponds to an ancient tropospheric CO2 concentration of about 1900 ppmV.Isotopic data from pisolitic kaolinite indicate a paleotemperature of about 24 °C at a paleolatitude of ∼40°N. This is substantially warmer than modern continental temperatures at such latitudes and is consistent with published indications of a generally warmer mid-Cretaceous climate. Moreover, the correspondence of a warmer mid-Cretaceous climate with the inferred, relatively high concentration of Cenomanian tropospheric CO2 (∼1900 ppmV) is consistent with the idea that variations of atmospheric CO2 have a relation to climate change. The results of this study emphasize the importance of careful evaluation of incremental dehydration-decarbonation data from natural goethites to assess the possibility that more than one generation of goethite is present in a sample. However, the results also indicate that the carbon isotope information recorded in admixed goethite generations may be sorted out and used in paleoenvironmental interpretations.  相似文献   

17.
Banded iron formations (BIFs) are chemical marine sediments dominantly composed of alternating iron-rich (oxide, carbonate, sulfide) and silicon-rich (chert, jasper) layers. Isotope ratios of iron, carbon, and sulfur in BIF iron-bearing minerals are biosignatures that reflect microbial cycling for these elements in BIFs. While much attention has focused on iron, banded iron formations are equally banded silica formations. Thus, silicon isotope ratios for quartz can provide insight on the sources and cycling of silicon in BIFs. BIFs are banded by definition, and microlaminae, or sub-mm banding, are characteristic of many BIFs. In situ microanalysis including secondary ion mass spectrometry is well-suited for analyzing such small features. In this study we used a CAMECA IMS-1280 ion microprobe to obtain highly accurate (±0.3‰) and spatially resolved (∼10 μm spot size) analyses of silicon and oxygen isotope ratios for quartz from several well known BIFs: Isua, southwest Greenland (∼3.8 Ga); Hamersley Group, Western Australia (∼2.5 Ga); Transvaal Group, South Africa (∼2.5 Ga); and Biwabik Iron Formation, Minnesota, USA (∼1.9 Ga). Values of δ18O range from +7.9‰ to +27.5‰ and include the highest reported δ18O values for BIF quartz. Values of δ30Si have a range of ∼5‰ from −3.7‰ to +1.2‰ and extend to the lowest δ30Si values for Precambrian cherts. Isua BIF samples are homogeneous in δ18O to ±0.3‰ at mm- to cm-scale, but are heterogeneous in δ30Si up to 3‰, similar to the range in δ30Si found in BIFs that have not experienced high temperature metamorphism (up to 300 °C). Values of δ30Si for quartz are homogeneous to ±0.3‰ in individual sub-mm laminae, but vary by up to 3‰ between multiple laminae over mm-to-cm of vertical banding. The scale of exchange for Si in quartz in BIFs is thus limited to the size of microlaminae, or less than ∼1 mm. We interpret differences in δ30Si between microlaminae as preserved from primary deposition. Silicon in BIF quartz is mostly of marine hydrothermal origin (δ30Si < −0.5‰) but silicon from continental weathering (δ30Si ∼ 1‰) was an important source as early as 3.8 Ga.  相似文献   

18.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

19.
Pedogenic goethites in each of two Early Permian paleosols appear to record mixing of two isotopically distinct CO2 components—atmospheric CO2 and CO2 from in situ oxidation of organic matter. The δ13C values measured for the Fe(CO3)OH component in solid solution in these Permian goethites are −13.5‰ for the Lower Leonardian (∼283 Ma BP) paleosol (MCGoeth) and −13.9‰ for the Upper Leonardian (∼270 Ma BP) paleosol (SAP). These goethites contain the most 13C-rich Fe(CO3)OH measured to date for pedogenic goethites crystallized in soils exhibiting mixing of the two aforementioned CO2 components. δ13C measured for 43 organic matter samples in the Lower Leonardian (Waggoner Ranch Fm.) has an average value of −20.3 ± 1.1‰ (1s). The average value yields a calculated Early Permian atmospheric Pco2 value of about 1 × PAL, but the scatter in the measured δ13C values of organic matter permits a calculated maximum Pco2 of 11 × PAL (PAL = present atmospheric level). Measured values of the mole fraction of Fe(CO3)OH in MCGoeth and SAP correspond to soil CO2 concentrations in the Early Permian paleosol profiles of 54,000 and 50,000 ppmV, respectively. Such high soil CO2 concentrations are similar to modern soils in warm, wet environments.The average δ13C values of pedogenic calcite from 9 paleosol profiles stratigraphically associated with MCGoeth (Waggoner Ranch Fm.) range from −6.5‰ to −4.4‰, with a mean δ13C value for all profiles of −5.4‰. Thus, the value of Δ13C between the pedogenic calcite data set and MCGoeth is 8.1 (±0.9)‰, which is in reasonable accord with the value of 7.7‰ expected if atmospheric Pco2 and organic matter δ13C values were the same for both paleosol types. Furthermore, the atmospheric Pco2 calculated for the Early Permian from the average measured carbon isotopic compositions of the paleosol calcite and organic matter is also analytically indistinguishable from 1 × PAL, with a maximum calculated atmospheric Pco2 (permitted by one standard deviation of the organic matter δ13C value) of ∼5 × PAL.If, however, measured average δ13C values of the plant organic matter are more positive than the original soil organic matter as a result of diagenetic loss of 13C-depleted, labile organic compounds, calculated Permian atmospheric Pco2 using these 13C-enriched organic values would underestimate the actual atmospheric Pco2 using either goethite or calcite. This is the first stratigraphically constrained, intrabasinal study to compare ancient atmospheric CO2 concentrations calculated from pedogenic goethite and calcite. These results demonstrate that the two different proxies record the same information about atmospheric CO2.The Fe(CO3)OH component in pedogenic goethite from a Triassic paleosol in Utah is significantly enriched in 13C relative to Fe(CO3)OH in goethites from soils in which there are mixtures of two isotopic CO2 components. Field-relationships and the δ13C value (−1.9‰) of the Triassic goethite indicate that this ancient paleosol profile experienced mixing of three isotopically distinct CO2 components at the time of goethite crystallization. The three components were probably atmospheric CO2, CO2 from in situ oxidation of organic matter and CO2 from in situ dissolution of preexisting calcite. Although mixing of three isotopically distinct CO2 components, as recorded by Fe(CO3)OH in goethite, has been described in modern soil, this is the first example from a documented paleosol. Its preservation affirms the need for careful, case-by-case assessment of ancient paleosols to establish that goethite in any particular soil is likely to be a valid proxy of atmospheric Pco2.  相似文献   

20.
Kaolinite, gibbsite and quartz are the dominant minerals in samples collected from two outcrops of a Cenomanian (∼95 Ma) laterite in southwestern Minnesota. A combination of measured yields and isotope ratios permitted mass balance calculations of the δD and δ18O values of the kaolinite in these samples. These calculations yielded kaolinite δD values of about −73‰ and δ18O values of about +18.7‰. The δD and δ18O values appear to preserve information on the ancient weathering system.If formed in hydrogen and oxygen isotope equilibrium with water characterized by the global meteoric water line (GMWL), the kaolinite δD and δ18O values indicate a crystallization temperature of 22 (±5) °C. A nominal paleotemperature of 22 °C implies a δ18O value for the corresponding water of −6.3‰. The combination of temperature and meteoric water δ18O values is consistent with relatively intense rainfall at that mid-paleolatitude location (∼40°N) on the eastern shore of the North American Western Interior Seaway. The inferred Cenomanian paleosol temperature of ∼22 °C is in general accord with published mid-Cretaceous continental mean annual temperatures (MAT) estimated from leaf margin analyses of fossil plants.When compared with results from a published GCM-based Cenomanian climate simulation which specifies a latitudinal sea surface temperature (SST) gradient that was either near modern or smaller-than-modern, the kaolinite paleotemperature of 22 °C is closer to the GCM-predicted MAT for a smaller equator-to-pole temperature difference in the mid-Cretaceous. Moreover, the warm, kaolinite-derived, mid-paleolatitude temperature of 22 °C is associated with proxy estimates of high concentrations of atmospheric CO2 in the Cenomanian. The overall similarity of proxy and model results suggests that the general features of Cenomanian continental climate in that North American locale are probably being revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号