首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A diffusion-diagenesis model of the sulfur cycle is developed to calculate theoretical distributions of stable sulfur isotopes in marine sediments. The model describes the depth variation in δ34S of dissolved sulfate and H2S. and of pyrite. The effects of sulfate reduction, sulfate and H2S diffusion. and of sedimentation are considered as well as the bacterial isotope fractionation and the degree of pyrite formation. Under open system conditions of sulfur diagenesis the isotopic difference, ΔSO2?4 — H2S, tends to increase with depth being smaller than the bacterial fractionation factor near the sediment surface and larger in deeper layers. The two isotopes in SO2?4 or in H2S do not diffuse in the same proportion as they occur in the porewater. This explains why sulfur, which is incorporated from seawater sulfate by diffusion and precipitation as pyrite, can be enriched in 32S relative to the seawater sulfate. The model calculations demonstrate the importance of taking the whole dynamic sulfur cycle into account before drawing conclusions about sulfur diagenesis from the stable isotope distribution.  相似文献   

2.
The vertical distribution of iodine, bromine and organic carbon has been examined in sediment cores from a range of environments on the Namibian shelf. The relationship between Br and C org. is linear, and that between I and C org. is variable, for all surface sediments; I/C org. ratios show a decrease of about one order of magnitude between the outer shelf oxidising sediments (250 × 10?4) and the organic-rich inner shelf sediments (20 × 10?4). The contrasting behaviour of the halogens in surface sediments is explained by differences in the amount of halogen absorbed by living organisms within the euphotic zone and on seston on the seabed. It is suggested that sorption by seston occurs only in oxidising sediment where free O2 is available. Hence, iodine is sorbed by seston in the outer shelf environment, but is not sorbed by the reducing sediments of the inner shelf. Here the iodine in the sediment represents only that taken up by plankton. On the outer shelf, 50–80% of the total iodine in the organic matter is sorbed by seston. The principal site of Br uptake is not known.The distribution of C org. in subsurface sediments broadly reflects that found at the surface, although there is a slight decrease with depth in the outer shelf cores due to dilution by terrigenous materials. In the inner shelf cores, there is no change in the relationship of iodine and bromine to organic carbon at depth. Those from the mid shelf, and especially the outer shelf, on the other hand, show decreases in both I/C org. and Br/C org. ratios, reaching values at about 70 cm depth that are similar to those in surface reduced sediments from the inner shelf. Over this depth interval I/C org. ratios decrease by a factor of five while Br/C org. ratios show a two fold decrease. These changes in the ratios at depth imply that diagenesis within the reducing cores is negligible compared with that of oxidised sediments. The implications of diagenesis with regard to halogen recycling in sediments are briefly discussed.  相似文献   

3.
4.
5.
Clastic injection and surface expression of subsurface sediment remobilization is a phenomenon which is becoming increasingly recognized. However, understanding of the physical mechanisms that control these features remains limited, dominated by inference from outcrop and seismic studies. Here, this limitation is addressed through a set of experiments focused on the development and evolution of fluidization features in non‐cohesive bedded sequences. Fluidization and the onset of piping are shown to occur progressively through a sequence of discrete phases, with initial void formation, development of infiltration horizons, rupture and finally pipe formation. Critically, the style of piping, the stability of piping and the temporal evolution of venting are shown to exhibit considerable variability. In particular, pipes may either be stable or very mobile, migrating laterally over large distances; these produce deposits that are typically interpreted in outcrop as being the product of en masse liquefaction rather than localized, dynamic fluidization. These differing elements are synthesized to produce a model of sand extrudites. In addition, the implications of this model are explored.  相似文献   

6.
7.
Sulfur isotope composition (δ34S) profiles in sediment pore waters often show an offset between sulfate and sulfide much greater in magnitude than S isotope fractionations observed in pure cultures. A number of workers have invoked an additional reaction, microbial disproportionation of sulfur intermediates, to explain the offset between experimental and natural systems. Here, we present an alternative explanation based on modeling of pore water sulfate and sulfide concentrations and stable isotope data from the Cariaco Basin (ODP Leg 165, Site 1002B). The use of unique diffusion coefficients for and , based on their unequal molecular masses, resulted in an increase in the computed fractionation by almost 10‰, when compared to the common assumption of equal diffusion coefficients for the two species. These small differences in diffusion coefficients yield calculated isotopic offsets between coeval sediment pore water sulfate and sulfide without disproportionation (up to 53.4‰) that exceed the largest fractionations observed in experimental cultures. Furthermore, the diffusion of sulfide within sediment pore waters leads to values that are even greater than those predicted by our model for sulfate reduction with unique diffusion coefficients. These diffusive effects on the sulfur isotope composition of pore water sulfate and sulfide can impact our interpretations of geologic records of sulfate and sulfide minerals, and should be considered in future studies.  相似文献   

8.
蒋明镜  刘俊  周卫  奚邦禄 《岩土力学》2018,39(4):1153-1158
天然气水合物赋存在低温高压环境中,会在土颗粒间形成胶结从而增大深海能源土抗剪强度。基于损伤力学理论,将结构性砂土本构模型推广应用于深海能源土分析中,模拟计算了三轴固结排水剪切试验,再根据应力-应变曲线关系定量反演初始屈服系数与水合物饱和度之间的函数关系,并修正了原有的结构性砂土破损规律,建立了深海能源土弹塑性本构模型。另外,根据该模型模拟了另外一组深海能源土三轴剪切试验和等向固结压缩试验。计算结果表明:新建立的深海能源土本构模型可以有效模拟深海能源土剪切强度随水合物饱和度之间的增长关系;随着水合物饱和度的增加,三轴压缩试验中深海能源土峰值强度及割线模量(E50)逐渐增加,等向固结压缩试验中屈服强度增加,与试验结果有较好的一致性,表明了该模型的合理性。  相似文献   

9.
We present a model of bacterial sulfate reduction that includes equations describing the fractionation relationship between the sulfur and the oxygen isotope composition of residual sulfate (δ34SSO4_residual, δ18OSO4_residual) and the amount of residual sulfate. The model is based exclusively on oxygen isotope exchange between cell-internal sulfur compounds and ambient water as the dominating mechanism controlling oxygen isotope fractionation processes. We show that our model explains δ34SSO4_residual vs. δ18OSO4_residual patterns observed from natural environments and from laboratory experiments, whereas other models, favoring kinetic isotope fractionation processes as dominant process, fail to explain many (but not all) observed δ34SSO4_residual vs. δ18OSO4_residual patterns. Moreover, we show that a “typical” δ34SSO4_residual vs. δ18OSO4_residual slope does not exist. We postulate that measurements of δ34SSO4_residual and δ18OSO4_residual can be used as a tool to determine cell-specific sulfate reduction rates, oxygen isotope exchange rates, and equilibrium oxygen isotope exchange factors. Data from culture experiments are used to determine the range of sulfur isotope fractionation factors in which a simplified set of equations can be used. Numerical examples demonstrate the application of the equations. We postulate that, during denitrification, the oxygen isotope effects in residual nitrate are also the result of oxygen isotope exchange with ambient water. Consequently, the equations for the relationship between δ34SSO4_residual, δ18OSO4_residual, and the amount of residual sulfate could be modified and used to calculate the fractionation-relationship between δ15NNO3_residual, δ18ONO3_residual, and the amount of residual nitrate during denitrification.  相似文献   

10.
有机硫是海洋沉积物重要的硫形态,与有机质保存及多种元素的地球化学循环密切相关。利用硫的K边XANES谱从分子水平研究了东海内陆架沉积物中腐殖酸硫(HA-S)、富里酸硫(FA-S)以及铬不可还原有机硫(non-CROS)的形态及相对含量。结果表明,HA-S和FA-S总体上均以氧化态有机硫为主,其相对平均含量分别为56%和69%,而non-CROS则以还原态有机硫为主(86%)。HA-S和FA-S的强还原态硫为还原态有机硫的主要组成,磺酸盐和硫酸酯为HA-S中氧化态有机硫的主要组分,硫酸酯为FA-S中氧化态有机硫的主要组分。FA-S的强还原态有机硫为硫化成因,HA-S的强还原态硫可能与硫化和生物成因有关,而non-CROS的强还原态有机硫则主要为生物成因。如non-CROS能近似代表海洋沉积物中的有机硫总量,则表明该沉积物中总有机硫以还原态硫为主;而腐殖质硫(HA-S+FA-S)较高比例的氧化态硫则表明腐殖质硫不能全面反映沉积物中有机硫的组成和来源。  相似文献   

11.
Calculation of sulfur isotope fractionation in sulfides   总被引:3,自引:0,他引:3  
The increment method has been successfully applied to calculate thermodynamic isotope fractionation factors of oxygen in silicates, oxides, carbonates, and sulfates. In this paper, we modified the increment method to calculate thermodynamic isotope fractionation factors of sulfur in sulfides, based on chemical features of sulfur-metal bonds and crystal features of sulfide minerals. To approximate the bond strength of sulfides, a new constant, known as the Madelung constant, was introduced. The increment method was then extended to calculate the reduced partition function ratios of sphalerite, chalcopyrite, galena, pyrrhotite, greenockite, bornite, cubanite, sulvanite, and violarite, as well as the isotope fractionation factors between them over the temperature range from 0 to 1000 °C. The order of 34S enrichment in these nine minerals is pyrrhotite > greenockite > sphalerite > chalcopyrite > cubanite > sulvanite > bornite > violarite > galena. Our improved method constitutes another model for calculating the thermodynamic isotope fractionation factors of sulfur in sulfides of geochemical interest.  相似文献   

12.
The sulfur isotope composition of tholeiitic basalts, olivine alkali basalts and alkalirich undersaturated basalts were investigated. A method of preparation was devised
  1. for the extraction of the small amounts of sulfur contained in the rock samples (about 100 ppm S),
  2. for the separation of sulfide- and sulfate-sulfur.
Tholeiitic and olivine alkali basalts show a predominance of sulfide-sulfur. Alkali-rich undersaturated basalts show sulfide- and sulfate-sulfur. The oxidation potential of the magma is reflected in the proportions of sulfide- and sulfate-sulfur. Differences in the conditions of oxidation are also the cause of the sulfur isotope fractionation observed. The mean in the isotope composition of the sulfur in the olivine alkali basalts (with the exception of two samples which show extreme deviation) is δ 34S= +1.3 per mil. The values for the olivine alkali basalts are concentrated around this mean in a remarkable way, showing only small deviation for the individual samples. When the tholeiitic basalts deviate from this mean, it is only with a relative enrichment in the 32S isotope. With a pronounced variation of the individual values, the mean for the sulfide-sulfur is δ 34S=?0.3 per mil. The few sulfate values of both types of basalt are without significance for the discussion of their origin. However, this does not apply to the alkali-rich undersaturated basalts. Due to the higher water content, this basaltic magma had a higher oxygen partial pressure which favoured the formation of SO2 and SO 4 2? besides H2S while pressure was released during the ascent of the magma. The sulfur isotope fractionation connected with this oxidation led to a total enrichment of 34S in the rock, (δ 34S for total sulfur: +3.1 per mil) with particular favouring the sulfate (δ 34S=+4.2 per mil). It is accepted that the sulfur of all three types of basalts derives directly from the mantle. The olivine alkali basalts show the least deviation from the mantle value, which, in the place of origin of the basalts from the region investigated, would probably have been δ 34S=+1.3(±0.5) per mil. From this it may be concluded that the olivine alkali basalts — the most frequent type of basalt in this region — had their origin in the partial melting of the mantle without further differentiation. From the sulfur isotope data we concluded that the primary isotope composition of the continental tholeiitic basalts probably corresponds to that of the olivine-alkali basalts, and to that of the mantle. However, due to degasing in the layers near to the surface, some samples lost 34S, which may be related to the formation of SO2 during the release of pressure. There is no positive indication of a differentiation in shallow depths (<15 km — in the sense of Green and Ringwood, 1967). The reason for the obvious isotopic fractionation of the alkali-rich undersaturated basalts may be seen in their higher primary water content. This is a pronounced indication of the origin of this type of magma. Bultitude and Green (1968) proved by experiment, that the formation of alkali-rich undersaturated basaltic magma is possible in the mantle in the presence of water. Only a small amount of water is available for the formation of magma in the mantle. With a water content higher than normal for basalts, only small amounts of magma can be formed, but at lower temperatures this would allow the melting of a larger fraction of mantle material. By reaction with the wall rock, these magmas could be enriched in those components of mantle minerals which have the lowest melting point. This may help to explain their geochemical characteristics.  相似文献   

13.
Lein  A. Yu.  Rusanov  I. I.  Zakharova  E. E.  Flint  M. V.  Ivanov  M. V. 《Doklady Earth Sciences》2010,432(1):687-689
Within the mass of recent (unit-I) and ancient Black Sea (unit-II) sediments on the outer shelf of the Russian sector of the Black Sea, the rates of anoxic processes participating in diagenetic transformations of carbon and sulfur compounds were first measured using 35S and 14C radioactive tracers. The main energy source for biogeochemical processes in (unit-I) sediments is the organic matter (OM) supplied to the bottom from the water mass. In (unit-II) sediments, this is methane in a migratory form proved by the excess of its oxidation rate over that of its generation. In recent silt, the primary microbial process is sulfate reduction; in unit-II, this is methane anoxic oxidation by the consortium of archeides and sulfate reductants. The organic matter produced in methane oxidation, in turn, acts as an energy source for the community of anaerobic heterotrophic microorganisms in the bottom sediments, which are remote from the water-sediment interface.  相似文献   

14.
The origin of friable sediments blanketing the Barents Sea shelf is considered. It is shown that their characteristic seismoacoustic record patterns reflect low degree of diagenetic transformations and indicates continuous sedimentation. According to traditional views, this single sedimentary complex also includes diamicton, and the section is interpreted as a three-unit structure: diamicton, which is considered a till; the overlying friable sediments accumulated under different conditions of deglaciation in glaciomarine settings; and the postglacial marine sediments. It is demonstrated that such views are inconsistent with geomorphologic features (datings by physical methods included) indicating a prolonged hiatus that separates epochs of the diamicton accumulation and formation of friable sediments. The analysis revealed that the composition, vertical succession, and lateral distribution of different lithological types of friable sediments are related to the regular spatiotemporal replacements of different facies settings in the transgressing Arctic sea rather than by the glacial process. This inference is confirmed by the composition of foraminiferal assemblages.  相似文献   

15.
Glauconite segregations in Oligocene–Miocene shelf sediments of Western Kamchatka (Kakert and Gakkha horizons) are studied. Glauconite occurs in the studied samples as morphologically different grains, finely dispersed cement, and pseudomorphoses after organogenic structures (siliceous sponge spicules, diatom algae frustules, and others). In addition, samples of the clasts of bryozoans, volcanic glass, and terrigenous grains revealed for the first time traces of the boring algae similar to recent species of genus Hyella and, possibly, Dalmatella, whose tubules are sometimes filled with the finely dispersed glauconite. Our data based on the detailed petrographic studies and SEM investigations confirm and supplement the opinion of several researchers about an important role of microbiota on the glauconite formation. The paper discusses different stages of the glauconite formation in sediments of the Kakert and Gakkha horizons and the possible setting of glauconite infilling in the algal borer trails and holes.  相似文献   

16.
Four new sulfur isotope ratios of native volcanic sulfur are given and it is shown that isotope distributions are best presented with histograms.Possible causes governing the isotope compositions of native volcanic sulfur are briefly discussed.With 1 Figure  相似文献   

17.
The continental shelf benthic iron flux and its isotope composition   总被引:1,自引:0,他引:1  
Benthic iron fluxes from sites along the Oregon-California continental shelf determined using in situ benthic chambers, range from less than 10 μmol m−2 d−1 to values in excess of ∼300 μmol m−2 d−1. These fluxes are generally greater than previously published iron fluxes for continental shelves contiguous with the open ocean (as opposed to marginal seas, bays, or estuaries) with the highest fluxes measured in the regions around the high-sediment discharge Eel River and the Umpqua River. These benthic iron fluxes do not covary with organic carbon oxidation rates in any systematic fashion, but rather seem to respond to variations in bottom water oxygen and benthic oxygen demand. We hypothesize that the highest rates of benthic iron efflux are driven, in part, by the greater availability of reactive iron deposited along these river systems as compared to other more typical continental margin settings. Bioirrigation likely plays an important role in the benthic Fe flux in these systems as well. However, the influence of bottom water oxygen concentrations on the iron flux is significant, and there appears to be a threshold in dissolved oxygen (∼60-80 μM), below which sediment-ocean iron exchange is enhanced. The isotope composition of this shelf-derived benthic iron is enriched in the lighter isotopes, and appears to change by ∼3‰ (δ56Fe) during the course of a benthic chamber experiment with a mean isotope composition of −2.7 ± 1.1‰ (2 SD, n = 9) by the end of the experiment. This average value is slightly heavier than those from two high benthic Fe flux restricted basins from the California Borderland region where δ56Fe is −3.4 ± 0.4‰ (2 SD, n = 3). These light iron isotope compositions support previous ideas, based on sediment porewater analyses, suggesting that sedimentary iron reduction fractionates iron isotopes and produces an isotopically light iron pool that is transferred to the ocean water column. In sum, our data suggest that continental shelves may export a higher efflux of iron than previously hypothesized, with the likelihood that along river-dominated margins, the benthic iron flux could well be orders of magnitude larger than non-river dominated shelves. The close proximity of the continental shelf benthos to the productive surface ocean means that this flux is likely to be essential for maintaining ecosystem micronutrient supply.  相似文献   

18.
Karstization in/at the Gaurdak dome develops mainly in the ore-controlling tectonic disturbances, with the accompanying oxidation of sulfur ores, their replacement by gypsum, degradation, and accumulation of carbonate-clayey sediments in karat cavities. Such sediments often contain accumulations of crypto-crystalline sulfur, products of reduction of sulfates by hydrogen sulfide which migrates outwards from the underlying aquifer, along the tectonically weakened zones. Anomalous karstization, in this case, may be taken as a prospecting indication of native sulfur. —V.P. Sokoloff.  相似文献   

19.
坦桑尼亚姆瓦莫拉金矿综合找矿模式   总被引:3,自引:0,他引:3       下载免费PDF全文
坦桑尼亚Mwamola金矿位于坦桑尼亚环维多利亚湖区域的太古宙卡哈马(Kahama)绿岩带,是典型的铁建造(BIF)型金矿,为一大型隐伏矿床,因此建立Mwamola金矿床综合找矿模式,对寻找同类型矿床具有重要意义。太古宙卡哈马绿岩带是坦桑尼亚重要的成矿带,已发现金矿床和矿点多处,Mwamola金矿是代表性矿床之一,矿体呈层状、似层状,受地层和剪切带双重控制,矿化作用局限于条带状铁建造地层和岩性单元。地面高精度磁测高强度负异常能有效地识别控矿地层—条带状含铁建造带或矿化带,激发极化测深显示的"低阻高极化"异常可对条带状含铁建造和金矿体进行空间定位。岩石地球化学测量表明矿体上Au、As、Sb具强富集特性,且Au与As、Sb具有明显的相关性。本文根据地质、地球物理和地球化学信息,建立了Mwamola金矿地质、物化探综合找矿模式,提出了一套有效的找矿方法组合,为该绿岩带铁建造型金矿的勘查和评价提供指导。  相似文献   

20.
《China Geology》2019,2(4):407-421
The Nyasirori gold deposit, located in the middle-western end of the Musoma-Mara Archean greenstone belt in Tanzania, is a tectonic altered rock type gold deposit controlled by shear tectonic zone. This work conducted high-precision ground magnetic measurements to delineate fault structures and favorable prospecting targets, utilized induced polarization (IP) intermediate gradient to roughly determine the distribution and extension of the tectonic altered zone and gold ore (mineralized) bodies, and further carried out IP sounding and magnetotelluric sounding to locate the tectonic altered zone and gold ore (mineralized) bodies. The anomalous gradient belt of the combination of positive and negative micromagnetic measurements reflects the detail of shallow surface tectonic alteration zone and gold mineralization body. Micromagnetic profile anomalies indicate the spatial location and occurrence of concealed tectonic alteration zone and gold (mineralized) ore bodies. Soil geochemical measurements indicate that the ore-forming element Au correlates well with As and Sb, and As and Sb anomalies have a good indication to gold orebodies. Based on the multi-source geological-geophysical-geochemical information of the Nyasirori gold deposit, this work established an integrated prospecting model and proposed a set of geophysical and geochemical methods for optimizing prospecting targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号