首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A mixing of metal-loaded acid mine drainage with shallow groundwater or surface waters usually initiates oxidation and/or hydrolysis of dissolved metals such as iron (Fe) and aluminum (Al). Colloidal particles may appear and agglomerate with increasing pH. Likewise chemical conditions may occur while flooding abandoned uranium mines. Here, the risk assessment of hazards requires reliable knowledge on the mobility of uranium (U). A flooding process was simulated at mesocosm scale by mixing U-contaminated acid mine water with near-neutral groundwater under oxic conditions. The mechanism of U-uptake by fresh precipitates and the molecular structure of U bonding were determined to estimate the mobility of U(VI). Analytical and spectroscopic methods such as Extended X-ray Absorption Fine-Structure (EXAFS) spectroscopy at the Fe K-edge and the U LIII-edge, and Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy were employed. The freshly formed precipitate was identified as colloidal two-line ferrihydrite. It removed U(VI) from solution by sorption processes, while surface precipitation or structural incorporation of U was not observed. EXAFS data suggest a mononuclear inner-sphere, edge-sharing complex of U(VI) with ferrihydrite in the absence of dissolved carbonate. By employing a novel EXAFS analysis method, Monte Carlo Target Transformation Factor Analysis, we could for the first time ascertain a 3-D configuration of this sorption complex without the necessity to invoke formation of a ternary complex. The configuration suggests a slightly tilted position of the adsorbed unit relative to the edge-sharing Fe(O, OH)6 octahedra. In the presence of dissolved carbonate and at pH ∼8.0, a distal carbonate O-atom at ∼4.3 Å supports formation of ternary U(VI)-carbonato surface complexes. The occurrence of these complexes was also confirmed by ATR-FTIR. However, in slightly acidic conditions (pH 5-6) in equilibrium with atmospheric CO2, the U(VI) sorption on ferrihydrite was dominated by the binary complex species Fe(O)2UO2, whereas ternary U(VI)-carbonato surface complexes were of minor relevance. While sulfate and silicate were also present in the mine water, they had no detectable influence on U(VI) surface complexation. Our experiments demonstrate that U(VI) forms stable inner-sphere sorption complexes even in the presence of carbonate and at slightly alkaline pH, conditions which previously have been assumed to greatly accelerate the mobility of U(VI) in aqueous environments. Depending on the concentrations of U(VI) and carbonate, the type of surface complexes may change from binary uranyl-ferrihydrite to ternary carbonato-uranyl-ferrihydrite complexes. These different binding mechanisms are likely to influence the binding stability and retention of U(VI) at the macroscopic level.  相似文献   

2.
3.
Reduction of U(VI) under iron reducing conditions was studied in a model system containing the dissimilatory metal-reducing bacterium Shewanella putrefaciens and colloidal hematite. We focused on the competition between direct enzymatic uranium reduction and abiotic reduction of U(VI) by Fe(II), catalyzed by the hematite surface, at relatively low U(VI) concentrations (< 0.5 μM) compared to the concentrations of ferric iron (> 10 mM). Under these conditions surface catalyzed reduction by Fe(II), which was produced by dissimilatory iron reduction, was the dominant pathway for uranium reduction. Reduction kinetics of U(VI) were identical to those in abiotic controls to which soluble Fe(II) was added. Strong adsorption of U(VI) at the hematite surface apparently favored the abiotic pathway by reducing the availability of U(VI) to the bacteria. In control experiments, lacking either hematite or bacteria, the addition of 45 mM dissolved bicarbonate markedly slowed down U(VI) reduction. The inhibition of enzymatic U(VI) reduction and abiotic, surface catalyzed U(VI) reduction by the bicarbonate amendments is consistent with the formation of aqueous uranyl-carbonate complexes. Surprisingly, however, more U(VI) was reduced when dissolved bicarbonate was added to experimental systems containing both bacteria and hematite. The enhanced U(VI) reduction was attributed to the formation of magnetite, which was observed in experiments. Biogenic magnetite produced as a result of dissimilatory iron reduction may be an important agent of uranium immobilization in natural environments.  相似文献   

4.
A quantitative study was performed to understand how Fe(III) site occupancy controls Fe(III) bioreduction in nontronite by Shewanella putrefaciens CN32. NAu-1 and NAu-2 were nontronites and contained Fe(III) in different structural sites with 16 and 23% total iron (w/w), respectively, with almost all iron as Fe(III). Mössbauer spectroscopy showed that Fe(III) was present in the octahedral site in NAu-1 (with a small amount of goethite), but in both the tetrahedral and the octahedral sites in NAu-2. Mössbauer data further showed that the octahedral Fe(III) in NAu-2 existed in at least two environments- trans (M1) and cis (M2) sites. The microbial Fe(III) reduction in NAu-1 and NAu-2 was studied in batch cultures at a nontronite concentration of 5 mg/mL in bicarbonate buffer with lactate as the electron donor. The unreduced and bioreduced nontronites were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy, and transmission electron microscopy (TEM). In the presence of an electron shuttle, anthraquinone-2,6-disulfonate (AQDS), the extent of bioreduction was 11%-16% for NAu-1 but 28%-32% for NAu-2. The extent of reduction in the absence of AQDS was only 5%-7% for NAu-1 but 14%-18% for NAu-2. The control experiments with heat killed cells and without cells did not show any appreciable reduction (<2%). The extent of reduction in experiments performed with a dialysis membrane to separate cells from clays (without AQDS) was 2%-3% for NAu-1 but 5%-7% for NAu-2, suggesting that cells probably released an electron shuttling compound and/or Fe(III) chelator. The reduction rate was also faster in NAu-2 than that in NAu-1. Mössbauer data of the bioreduced nontronite materials indicated that the Fe(III) reduction in NAu-1 was mostly from the presence of goethite, whereas the reduction in NAu-2 was due to the presence of the tetrahedral and trans-octahedral Fe(III) in the structure. The measured aqueous Fe(II) was negligible. As a result of bioreduction, the average nontronite particle thickness remained nearly the same (from 2.1 to 2.5 nm) for NAu-1, but decreased significantly from 6 to 3.5 nm for NAu-2 with a concomitant change in crystal size distribution. The decrease in crystal size suggests reductive dissolution of nontronite NAu-2, which was supported by aqueous solution chemistry (i.e., aqueous Si). These data suggest that the more extensive Fe(III) bioreduction in NAu-2 was due to the presence of the tetrahedral and the trans-octahedral Fe(III), which was presumed to be more reducible. The biogenic Fe(II) was not associated with biogenic solids or in the aqueous solution. We infer that it may be either adsorbed onto surfaces of nontronite particles/bacteria or in the structure of nontronite. Furthermore, we have demonstrated that natural nontronite clays were capable of supporting cell growth even in medium without added nutrients, possibly due to presence of naturally existing nutrients in the nontronite clays. These results suggest that crystal chemical environment of Fe(III) is an important determinant in controlling the rate and extent of microbial reduction of Fe(III) in nontronite.  相似文献   

5.
Reaction-based modeling of quinone-mediated bacterial iron(III) reduction   总被引:1,自引:0,他引:1  
This paper presents and validates a new paradigm for modeling complex biogeochemical systems using a diagonalized reaction-based approach. The bioreduction kinetics of hematite (α-Fe2O3) by the dissimilatory metal-reducing bacterium (DMRB) Shewanella putrefaciens strain CN32 in the presence of the soluble electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) is used for presentation/validation purposes. Experiments were conducted under nongrowth conditions with H2 as the electron donor. In the presence of AQDS, both direct biological reduction and indirect chemical reduction of hematite by bioreduced anthrahydroquinone-2,6-disulfonate (AH2DS) can produce Fe(II). Separate experiments were performed to describe the bioreduction of hematite, bioreduction of AQDS, chemical reduction of hematite by AH2DS, Fe(II) sorption to hematite, and Fe(II) biosorption to DMRB. The independently determined rate parameters and equilibrium constants were then used to simulate the parallel kinetic reactions of Fe(II) production in the hematite-with-AQDS experiments. Previously determined rate formulations/parameters for the bioreduction of hematite and Fe(II) sorption to hematite were systematically tested by conducting experiments with different initial conditions. As a result, the rate formulation/parameter for hematite bioreduction was not modified, but the rate parameters for Fe(II) sorption to hematite were modified slightly. The hematite bioreduction rate formulation was first-order with respect to hematite ”free“ surface sites and zero-order with respect to DMRB based on experiments conducted with variable concentrations of hematite and DMRB. The AQDS bioreduction rate formulation was first-order with respect to AQDS and first-order with respect to DMRB based on experiments conducted with variable concentrations of AQDS and DMRB. The chemical reduction of hematite by AH2DS was fast and considered to be an equilibrium reaction. The simulations of hematite-with-AQDS experiments were very sensitive to the equilibrium constant for the hematite-AH2DS reaction. The model simulated the hematite-with-AQDS experiments well if it was assumed that the ferric oxide “surface” phase was more disordered than pure hematite. This is the first reported study where a diagonalized reaction-based model was used to simulate parallel kinetic reactions based on rate formulations/parameters independently obtained from segregated experiments.  相似文献   

6.
曾强  董海良  汪丹 《岩石学报》2019,35(1):193-203
粘土矿物在地表环境中广泛存在,并且与环境中的有机质紧密结合在一起。前人的研究发现,粘土矿物的可膨胀层间域可以有效地保存有机质,防止其在微生物诱导的氧化还原环境的波动的环境中被矿化。然而这一过程在高温条件下是否同样成立尚属未知。本文选取一种代表性有机质12-氨基十二酸(ALA)与典型含铁粘土矿物绿脱石(NAu-2)合成有机质-粘土矿物复合体,在两株高温-超高温铁还原细菌的作用后,通过多种水化学和矿物学的表征手段,研究其矿物结构的变化、有机质的结合稳定性和脱附情况。结果发现细菌对绿脱石结构铁的还原过程中造成的矿物结构的破坏(还原性溶解)是控制ALA从NAu-2中脱附的主要原因。高温条件也会略微促进ALA从NAu-2的层间域中脱附出来。总体来说,受限于微生物对结构铁的还原程度(30%),最终在结构铁还原反应结束后还是有相当大量的ALA在层间保存了下来。这一结果证明了粘土矿物的层间域在高温条件下同样也能够作为有机质保存的有效场所。  相似文献   

7.
Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved226Ra from uranium mill tailings.  相似文献   

8.
9.
Microbial reduction of Fe(III) in clay minerals is an important process that affects properties of clay-rich materials and iron biogeochemical cycling in natural environments. Microbial reduction often ceases before all Fe(III) in clay minerals is exhausted. The factors causing the cessation are, however, not well understood. The objective of this study was to assess the role of biogenic Fe(II) in microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Bioreduction experiments were performed in batch systems, where lactate was used as the sole electron donor, Fe(III) in clay minerals as the sole electron acceptor, and Shewanella putrefaciens CN32 as the mediator with and without an electron shuttle (AQDS). Our results showed that bioreduction activity ceased within two weeks with variable extents of bioreduction of structural Fe(III) in clay minerals. When fresh CN32 cells were added to old cultures (6 months), bioreduction resumed, and extents increased. Thus, cessation of Fe(III) bioreduction was not necessarily due to exhaustion of bioavailable Fe(III) in the mineral structure, but changes in cell physiology or solution chemistry, such as Fe(II) production during microbial reduction, may have inhibited the extent of bioreduction. To investigate the effect of Fe(II) inhibition on CN 32 reduction activity, a typical bioreduction process (consisting of lactate, clay, cells, and AQDS in a single tube) was separated into two steps: (1) AQDS was reduced by cells in the absence of clay; (2) Fe(III) in clays was reduced by biogenic AH2DS in the absence of cells. With this method, the extent of Fe(III) reduction increased by 45-233%, depending on the clay mineral involved. Transmission electron microscopy observation revealed a thick halo surrounding cell surfaces that most likely resulted from Fe(II) sorption/precipitation. Similarly, the inhibitory effect of Fe(II) sorbed onto clay surfaces was assessed by presorbing a certain amount of Fe(II) onto clay surfaces followed by AH2DS reduction of Fe(III). The reduction extent consistently decreased with an increasing amount of presorbed Fe(II). The relative reduction extent [i.e., the reduction extent normalized to that when the amount of presorbed Fe(II) was zero] was similar for all clay minerals studied and showed a systematic decrease with an increasing clay-presorbed Fe(II) concentration. These results suggest a similar inhibitory effect of clay-sorbed Fe(II) for different clay minerals. An equilibrium thermodynamic model was constructed with independently estimated parameters to evaluate whether the observed cessation of Fe(III) reduction by AH2DS was due to exhaustion of reaction free energy. Model-calculated reduction extents were, however, over 50% higher than experimentally measured, indicating that other factors, such as blockage of the electron transfer chain and mineralogy, restricted the reduction extent. Another important result of this study was the relative reducibility of Fe(III) in different clays: nontronite > chlorite > illite. This order was qualitatively consistent with the differences in the crystal structure and layer charge of these minerals.  相似文献   

10.
The mechanism and kinetics of superoxide-mediated reduction of a variety of organic iron(III) complexes has been investigated over the pH range 7-9. Our experimental results show that the rate of iron(II) formation is a function of pH, ligand type and ligand concentration with the measured rate varying between 0.44 ± 0.07 and 39.25 ± 1.77 pM s−1 in the systems investigated. Additionally, our results show that the presence of competing cations such as Ca2+ have a significant impact on iron(II) formation if the organic ligand is strongly complexed by Ca2+. Formation of iron(II) occurs by either (or, in some instances, both) reaction of superoxide with inorganic iron(III) after its dissociation from the complex (dissociative reduction) or by direct reaction of superoxide with the complex (non-dissociative reduction). In the presence of weak ligands, dissociative reduction (DR) dominates; however non-dissociative reduction (NDR) becomes important in the presence of either strongly binding ligands or high concentrations of weakly binding ligands. The major factors contributing to the pH dependence of the iron(II) formation rate are the complexation kinetics of inorganic iron(III) (which controls the DR contribution) and the reduction kinetics of the iron(III) complex (which controls the NDR contribution). The relative NDR contribution increases with increasing superoxide and ligand concentration and decreasing pH for all ligands examined. Since iron(II) formation occurring via NDR results in a significantly larger increase in the proportion of iron in free aquated form than does DR, this non-dissociative pathway of superoxide-mediated iron(III) reduction is particularly effective in increasing the lability of iron in aquatic systems.  相似文献   

11.
Clay minerals and methanogens are ubiquitous and co-exist in anoxic environments, yet it is unclear whether methanogens are able to reduce structural Fe(III) in clay minerals. In this study, the ability of methanogen Methanosarcina barkeri to reduce structural Fe(III) in iron-rich smectite (nontronite NAu-2) and the relationship between iron reduction and methanogenesis were investigated. Bioreduction experiments were conducted in growth medium using three types of substrate: H2/CO2, methanol, and acetate. Time course methane production and hydrogen consumption were measured by gas chromatography. M. barkeri was able to reduce structural Fe(III) in NAu-2 with H2/CO2 and methanol as substrate, but not with acetate. The extent of bioreduction, as measured by the 1,10-phenanthroline method, was 7-13% with H2/CO2 as substrate, depending on nontronite concentration (5-10 g/L). The extent was higher when methanol was used as a substrate, reaching 25-33%. Methanogenesis was inhibited by Fe(III) reduction in the H2/CO2 culture, but enhanced when methanol was used. High charge smectite and biogenic silica formed as a result of bioreduction. Our results suggest that methanogens may play an important role in biogeochemical cycling of iron in clay minerals and may have important implications for the global methane budget.  相似文献   

12.
An iron (III)-impregnated sorbent was prepared from sugarcane bagasse and ferric chloride solution via carbonization/activation in a muffle furnace at 500?°C for 4?h. The adsorption removal of chromium (VI) from aqueous solution by the iron (III)-impregnated sorbent was then studied in a batch system. With increasing initial chromium (VI) concentration from 25 to 130?mg/L at an adsorbent dose of 300?mg/50?mL, the amount of adsorbed chromium (VI) increased from 4.15 to 12.20?mg/g at 20?°C, from 4.16 to 12.50?mg/g at 30?°C, and from 4.16 to 13.72?mg/g at 40?°C. The dynamical data fit very well with the pseudo-second-order kinetic model, and the calculated adsorption capacities of 4.16, 8.37, and 13.37?mg/g were equal to the actual values of the experiments at the initial chromium (VI) concentrations of 25, 50, and 100?mg/L, respectively. The Langmuir isotherm could yield better fits than the Freundlich isotherm. The calculated isotherm parameters confirmed the favorable adsorption of chromium (VI) on the iron (III)-impregnated sorbent.  相似文献   

13.
The potential for Mn oxides to modify the biogeochemical behavior of U during reduction by the subsurface bacterium Shewanella putrefaciens strain CN32 was investigated using synthetic Mn(III/IV) oxides (pyrolusite [β-MnO2], bixbyite [Mn2O3] and K+-birnessite [K4Mn14O27 · 8H2O]). In the absence of bacteria, pyrolusite and bixbyite oxidized biogenic uraninite (UO2[s]) to soluble U(VI) species, with bixbyite being the most rapid oxidant. The Mn(III/IV) oxides lowered the bioreduction rate of U(VI) relative to rates in their absence or in the presence of gibbsite (Al[OH]3) added as a non-redox-reactive surface. Evolved Mn(II) increased with increasing initial U(VI) concentration in the biotic experiments, indicating that valence cycling of U facilitated the reduction of Mn(III/IV). Despite an excess of the Mn oxide, 43 to 100% of the initial U was bioreduced after extended incubation. Analysis of thin sections of bacterial Mn oxide suspensions revealed that the reduced U resided in the periplasmic space of the bacterial cells. However, in the absence of Mn(III/IV) oxides, UO2(s) accumulated as copious fine-grained particles external to the cell. These results indicate that the presence of Mn(III/IV) oxides may impede the biological reduction of U(VI) in subsoils and sediments. However, the accumulation of U(IV) in the cell periplasm may physically protect reduced U from oxidation, promoting at least a temporal state of redox disequilibria.  相似文献   

14.
Rates of reduction of Fe(III) oxyhydroxides by the bacterium Shewanella putrefaciens were measured as a function of the bacterial density and the Fe(III) substrate concentration. The results show that an earlier reported positive correlation between the solubility products (*Kso) and the maximum cell-specific reduction rates (vmax) of predominantly poorly crystalline Fe(III) oxyhydroxides also applies to insoluble and crystalline Fe(III) oxyhydroxides. The mineral solubilities were measured by a dialysis bag technique under acidic conditions (pH 1 up to 2.5) at 25 °C. Initial iron reduction rates by S. putrefaciens were determined in the presence of excess lactate as electron donor. In all cases, the microbial reduction rate exhibited saturation behavior with respect to the Fe(III) oxyhydroxide concentration. On a double logarithmic scale, the maximum rates vmax and the solubility products defined a single linear free energy relationship (LFER) for all the Fe(III) oxyhydroxides considered. The solubility provided a better predictor of vmax than the specific surface area of the mineral phase. A rate limitation by the electron transfer between an iron reductase and a Fe(III) center, or by the subsequent desorption of Fe2+ from the iron oxide mineral surface, are both consistent with the observed LFER.  相似文献   

15.
Although direct microbial reduction of Cr(VI) and U(VI) is known, few studies have examined the kinetics and the underlying mechanisms of the reduction of these contaminants by different natural organic matter (NOM) fractions in the presence or absence of microorganisms. In this study, NOM was found to chemically reduce Cr(VI) at pH 3, but the reduction rates were negligible at pH ∼7. The abiotic reduction of U(VI) by NOM was not observed, possibly because of the presence of small amounts of nitrate in the reactant solution. However, all NOM fractions, particularly the soil humic acid (HA), enhanced the bioreduction of Cr(VI) or U(VI) in the presence of Shewanella putrefaciens CN32. The reduction rates varied greatly among NOM fractions with different chemical and structural properties: the polyphenolic-rich NOM-PP fraction appeared to be the most reactive in abiotically reducing Cr(VI) at a low pH, but soil HA was more effective in mediating the microbial reduction of Cr(VI) and U(VI) under anaerobic, circumneutral pH conditions. These observations are attributed to an increased solubility and conformational changes of the soil HA with pH and, more importantly, its relatively high contents of polycondensed and conjugated aromatic organic moieties. An important implication of this study is that, depending on chemical and structural properties, different NOM components may play different roles in enhancing the bioreduction of Cr(VI) and U(VI) by microorganisms. Polycondensed aromatic humic materials may be particularly useful in mediating the bioreduction and rapid immobilization of these contaminant metals in soil.  相似文献   

16.
We measured the kinetics of U(VI) reduction by Shewanella oneidensis MR-1 under anaerobic conditions in the presence of variable concentrations of either EDTA or dissolved Ca. We measured both total dissolved U and U(VI) concentrations in solution as a function of time. In separate experiments, we also measured the extent of U(VI) adsorption onto S. oneidensis in order to quantify the thermodynamic stabilities of the important U(VI)-bacterial surface complexes. In the EDTA experiments, the rate of U(IV) production increased with increasing EDTA concentration. However, the total dissolved U concentrations remained constant and identical to the initial U concentrations during the course of the experiments for all EDTA-bearing systems. Additionally, the U(VI) reduction rate in the EDTA experiments exhibited a strong correlation to the concentration of the aqueous U4+-EDTA complex. We conclude that the U(VI) reduction rate increases with increasing EDTA concentration, likely due to U4+-EDTA aqueous complexation which removes U(IV) from the cell surface and prevents UO2 precipitation.In the Ca experiments, the U(VI) reduction rate decreased as Ca concentration increased. Our thermodynamic modeling results based on the U(VI) adsorption data demonstrate that U(VI) was adsorbed onto the bacterial surface in the form of a Ca-uranyl-carbonate complex in addition to a number of other Ca-free uranyl complexes. The observed U(VI) reduction rates in the presence of Ca exhibit a strong negative correlation to the concentration of the Ca-uranyl-carbonate bacterial surface complex, but a strong positive correlation to the total concentration of all the other Ca-free uranyl surface complexes. Thus, the concentration of these Ca-free uranyl surface complexes appears to control the rate of U(VI) reduction by S. oneidensis in the presence of dissolved Ca. Our results demonstrate that U speciation, both of U(VI) before reduction and of U(IV) after reduction, affects the reduction kinetics, and that thermodynamic modeling of the U speciation may be useful in the prediction of reduction kinetics in realistic geologic settings.  相似文献   

17.
The sorption of ferrous iron to a clay mineral, nontronite (NAu-2, a ferruginous smectite), was investigated under strictly anoxic conditions as a function of pH (3-10), Fe2+ concentration (0.01-50 mM), equilibration time (1-35 days), and ionic strength (0.01-0.5 M NaClO4). The surface properties of NAu-2 were independently characterized to determine its fixed charge and amphoteric site density in order to interpret the Fe2+ sorption data. Fe2+ sorption to NAu-2 was strongly dependent on pH and ionic strength, reflecting the coupled effects of Fe2+ sorption through ion exchange and surface complexation reactions. Fe2+ sorption to NAu-2 increased with increasing pH from pH 2.5 to 4.5, remained constant from pH 4.5 to 7.0, increased again with further increase of pH from pH 7.0 to 8.5, and reached a maximum above pH 8.5. The Fe2+ sorption below pH 7.0 increased with decreasing ionic strength. The differences of Fe2+ sorption at different ionic strengths, however, diminished with increasing equilibration time. The Fe2+ sorption from pH 4.5 to 7.0 increased with increasing equilibration time up to 35 days and showed stronger kinetic behavior in higher ionic strength solutions. The kinetic uptake of Fe2+ onto NAu-2 is consistent with a surface precipitation mechanism although our measurements were not able to identify secondary precipitates. An equilibrium model that integrates ion exchange, surface complexation and aqueous speciation reactions reasonably well describes the Fe2+ sorption data as a function of pH, ionic strength, and Fe2+ concentration measured at 24 h of equilibration. Model calculations show that the species Fe(OH)+ was required to describe Fe2+ sorption above pH 8.0 satisfactorily. Overall, this study demonstrated that Fe2+ sorption to NAu-2 is affected by complex equilibrium and kinetic processes, likely caused by surface precipitation reactions.  相似文献   

18.
《Applied Geochemistry》2002,17(4):399-408
The sorption of U(VI) onto the surface of olivine has been experimentally investigated at 25 °C under an air atmosphere as a function of pH, solid surface to volume ratio and total U concentration. Sorption has been observed to decrease as the extent of carbonate complexation of U(VI) in solution increases, which is attributed to the competition between aqueous and solid ligands for the coordination of U. The experimental results have been interpreted by means of two different approaches: (1)a semi-empirical model, exemplified by the application of a Langmuir isotherm and (2) a non-electrostatic thermodynamic surface complexation model which includes the formation of the surface species: >SO–UO2+ and >SO–UO2(OH). The following stability constants for these species have been determined from the thermodynamic analysis: K(>SO–UO2+)=289±71 and K(>SO–UO2(OH))=(3.4±0.4)×10−6. The comparison of the sorption of U onto olivine with granites of different origin indicate that the use of this mineral as additive to the backfill of deep high level nuclear waste repositories could retard the migration of U from the repository to the geosphere.  相似文献   

19.
A new spectrophotometric method for the microdetermination of uranium(VI) from phosphorites in the presence of commonly occurring metal ions has been developed. Uranium is extracted from chloroform solution of N-phenyl-2-naphtho-hydroxamic acid (N-P-2-NHA) at pH 4.0–4.5. The orange-red extract has the maximum absorption at 515 nm. The extraction was quantitative and obeys Beer's law at 515 nm.  相似文献   

20.
Structural Fe(II) has been shown to reduce several oxidized environmental contaminants, including NO3, chlorinated solvents, Cr(VI), and U(VI). Studies investigating reduction of U(VI) by soils and sediments, however, suggest that abiotic reduction of U(VI) by Fe(II) is not significant, and that direct enzymatic reduction of U(VI) by metal-reducing bacteria is required for U(VI) immobilization as U(IV). Here evidence is presented for abiotic reduction and immobilization of U(VI) by structural Fe(II) in a redoximorphic soil collected from a hillside spring in Iowa. Oxidation of Fe(II) in the soil after reaction with U(VI) was demonstrated by Mössbauer spectroscopy and reduction of U(VI) by the pasteurized soil using U LIII-edge X-ray absorption spectroscopy (XAS). XAS indicates that both reduced U(IV) and oxidized U(VI) or U(V) are present after U(VI) interaction with the Fe(II) containing soil. The EXAFS data show the presence of a non-uraninite U(IV) phase and evidence of the oxidized U(V) or U(VI) fraction being present as a non-uranyl species. Little U(VI) reduction is observed by soil that has been exposed to air and oxidation of Fe(II) to goethite has occurred. Soil characterization based on chemical extractions, Mössbauer spectroscopy, and Fe K-edge XAS indicate that the majority of Fe(II) in the soil is structural in nature, existing in clay minerals and possibly a green rust-like phase. These data provide compelling evidence for abiotic reduction of U(VI) by structural Fe(II) from soil near Fe-rich oxic–anoxic boundaries in natural environments. The work highlights the potential for abiotic reduction of U(VI) by Fe(II) in reduced, Fe-rich environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号