首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The mineralogy and bulk compositions of the matrices of the CR chondrites MET 00426 and QUE 99177 have been studied using a combination of SEM, EPMA, and TEM techniques. The matrices of these two chondrites are texturally, chemically, and mineralogically similar and are characterized by significant FeO-enrichments with respect to other CR chondrite matrices, nearly flat refractory lithophile patterns, variable volatile element patterns, and a simple mineral assemblage dominated by amorphous silicate material and Fe,Ni sulfides. Fine-grained, crystalline silicate phases such as olivine and pyroxene appear to be extremely rare in the matrices of both meteorites. Instead, the mineralogy of matrices and fine-grained rims of both meteorites consists of abundant amorphous FeO-rich silicate material, containing nanoparticles of Fe,Ni sulfides (troilite, pyrrhotite, and pentlandite). Secondary alteration minerals that are characteristic of other CR chondrites (e.g., Renazzo and Al Rais), such as phyllosilicates, magnetite, and calcite are also rare. The texture and mineralogy of the matrices of MET 00426 and QUE 99177 share many features with matrices in the primitive carbonaceous chondrites ALH A77307 (CO3.0) and Acfer 094 (unique). These observations show that MET 00426 and QUE 99177 are very low petrologic type 3 chondrites that have escaped the effects of aqueous alteration, unlike other CR chondrites, which are typically classified as petrologic type 2. We suggest that these meteorites represent additional samples of highly primitive, but extremely rare carbonaceous chondrites of petrologic type 3.00, according to the classification scheme of Grossman and Brearley (2005). The highly pristine nature of MET 00426 and QUE 99177 provides important additional insights into the origins of fine-grained materials in carbonaceous chondrites. Based on our new observations, we infer that the amorphous silicate material and nanosulfide particles that dominate the matrices of these meteorites formed in the solar nebula by rapid condensation of material following high-temperature events, such as those that formed chondrules.  相似文献   

2.
To better understand the role of aqueous alteration on the CR chondrite parent asteroid, a whole-rock oxygen isotopic study of 20 meteorites classified as Renazzo-like carbonaceous chondrites (CR) was conducted. The CR chondrites analyzed for their oxygen isotopes were Dhofar 1432, Elephant Moraine (EET) 87770, EET 92042, EET 96259, Gao-Guenie (b), Graves Nunataks (GRA) 95229, GRA 06100, Grosvenor Mountains (GRO) 95577, GRO 03116, LaPaz Ice Field (LAP) 02342, LAP 04720, Meteorite Hills (MET) 00426, North West Africa (NWA) 801, Pecora Escarpment (PCA) 91082, Queen Alexandra Range (QUE) 94603, QUE 99177, and Yamato-793495 (Y-793495). Three of the meteorites, Asuka-881595 (A-881595), GRA 98025, and MET 01017, were found not to be CR chondrites. The remaining samples concur petrographically and with the well-established oxygen-isotope mixing line for the CR chondrites. Their position along this mixing line is controlled both by the primary oxygen-isotopic composition of their individual components and their relative degree of aqueous alteration. Combined with literature data and that of this study, we recommend the slope for the CR-mixing line to be 0.70 ± 0.04 (2σ), with a δ17O-intercept of −2.23 ± 0.14 (2σ).Thin sections of Al Rais, Shi?r 033, Renazzo, and all but 3 samples analyzed for oxygen isotopes were studied petrographically. The abundance of individual components is heterogeneous among the CR chondrites, but FeO-poor chondrules and matrix are the most abundant constituents and therefore, dominate the whole-rock isotopic composition. The potential accreted ice abundance, physico-chemical conditions of aqueous alteration (e.g. temperature and composition of the fluid) and its duration control the degree of alteration of individual CR chondrites. Combined with literature data, we suggest that LAP 02342 was exposed to lower temperature fluid during alteration than GRA 95229. With only two falls, terrestrial alteration of the CR chondrites complicates the interpretation of their whole rock isotopic composition, particularly in the most aqueously altered samples, and those with relatively higher matrix abundances. We report that QUE 99177 is the isotopically lightest whole rock CR chondrite known (δ18O = −2.29‰, δ17O = −4.08‰), possibly due to isotopically light unaltered matrix; which shows that the anhydrous component of the CR chondrites is isotopically lighter than previously thought. Although it experienced aqueous alteration, QUE 99177 provides the best approximation of the pristine CR-chondrite parent body’s oxygen-isotopic composition, before aqueous alteration took place. Using this value as a new upper limit on the anhydrous component of the CR chondrites, water/rock ratios were recalculated and found to be higher than previously thought; ratios now range from 0.281 to 1.157. We also find that, according to their oxygen isotopes, a large number of CR chondrites appear to be minimally aqueously altered; although sample heterogeneity complicates this interpretation.  相似文献   

3.
Noble gases were measured both in bulk samples (stepped pyrolysis and total extraction) and in a HF/HCl residue (stepped pyrolysis and combustion) from the Klein Glacier (KLE) 98300 EH3 chondrite. Like the bulk meteorite and as seen in previous studies of bulk type 3 E chondrites (“sub-Q”), the acid residue contains elementally fractionated primordial noble gases. As we show here, isotopically these are like those in phase-Q of primitive meteorites, but elementally they are heavily fractionated relative to these. The observed noble gases are different from “normal” Q noble gases also with respect to release patterns, which are similar to those of Ar-rich noble gases in anhydrous carbonaceous chondrites and unequilibrated ordinary chondrites (with also similar isotopic compositions). While we cannot completely rule out a role for parent body processes such as thermal and shock metamorphism (including a later thermal event) in creating the fractionated elemental compositions, parent body processes in general seem not be able to account for the distinct release patterns from those of normal Q noble gases. The fractionated gases may have originated from ion implantation from a nebular plasma as has been suggested for other types of primordial noble gases, including Q, Ar-rich, and ureilite noble gases. With solar starting composition, the corresponding effective electron temperature is about 5000 K. This is lower than inferred for other primordial noble gases (10,000-6000 K). Thus, if ion implantation from a solar composition reservoir was a common process for the acquisition of primordial gas, electron temperatures in the early solar system must have varied spatially or temporally between 10,000 and 5000 K.Neon and xenon isotopic ratios of the residue suggest the presence of presolar silicon carbide and diamond in abundances lower than in the Qingzhen EH3 and Indarch EH4 chondrites. Parent body processes including thermal and shock metamorphism and a late thermal event also cannot be responsible for the low abundances of presolar grains. KLE 98300 may have started out with smaller amounts of presolar grains than Qingzhen and Indarch.  相似文献   

4.
We have determined abundances of presolar diamond, silicon carbide, graphite, and Xe-P1 (Q-Xe) in eight carbonaceous chondrites by measuring the abundances of noble gas tracers in acid residues. The meteorites studied were Murchison (CM2), Murray (CM2), Renazzo (CR2), ALHA77307 (CO3.0), Colony (CO3.0), Mokoia (CV3ox), Axtell (CV3ox), and Acfer 214 (CH). These data and data obtained previously by Huss and Lewis (1995) provide the first reasonably comprehensive database of presolar-grain abundances in carbonaceous chondrites. Evidence is presented for a currently unrecognized Ne-E(H) carrier in CI and CM2 chondrites.After accounting for parent-body metamorphism, abundances and characteristics of presolar components still show large variations across the classes of carbonaceous chondrites. These variations correlate with the bulk compositions of the host meteorites and imply that the same thermal processing that was responsible for generating the compositional differences between the various chondrite groups also modified the initial presolar-grain assemblages. The CI chondrites and CM2 matrix have the least fractionated bulk compositions relative to the sun and the highest abundances of most types of presolar material, particularly the most fragile types, and thus are probably most representative of the material inherited from the sun's parent molecular cloud. The other classes can be understood as the products of various degrees of heating of bulk molecular cloud material in the solar nebula, removing the volatile elements and destroying the most fragile presolar components, followed by chondrule formation, metal-silicate fractionation in some cases, further nebula processing in some cases, accretion, and parent body processing. If the bulk compositions and the characteristics of the presolar-grain assemblages in various chondrite classes reflect the same processes, as seems likely, then differential condensation from a nebula of solar composition is ruled out as the mechanism for producing the chondrite classes. Presolar grains would have been destroyed if the nebula had been completely vaporized. Our analysis shows that carbonaceous chondrites reflect all stages of nebular processing and thus are no more closely related to one another than they are to ordinary and enstatite chondrites.  相似文献   

5.
Study on presolar grains including diamond,silicon carbide,graphite,silicon nitrite(Si3N4),coundum and spinel isolated from meteorites is summarized in this paper.Except for nanometer-sized diamond,the other grains are micrometers to submicrometers in size.The presolar grains survived mainly in the fine-grained matrix of primitive chondrites and were isolated by chemical treatments.Diamond contains Xe isotopes(Xe-HL),typically produced in p-and r-processes,probably formed in supernovae.Mainstream silicon carbides are enriched in ^29,30Si and ^13C,but depleted in ^15N.They also contain various s-process products,consistent with calculations of AGB stars.Other silicon carbides exhibit much larger isotopic anomalies and are classified as groups X,Y,Z and AB.Among them,group X of SiC is characterized by enrichment of ^28Si and daughter isotopes of various short-lived nuclides,suggesting an origin from supernovae.Graphite can be divided into four density fractions with distince isotopic compositions.They may form in AGB stars,novae and supernovae,respctively,Si3N4 is similar to X-SiC in isotopic composition.Corundum is classified as four groups based on theid oxygen isotopic compositions.AGB and red giang stare are possible sources for the oxide.More comprehensive study of presolar grains,especially discovery of the other types of oxides and silicates,isotopic analyses of individual submicrometer-sized grains and distribution of presolar grains among various chemical groups and petropaphic types of chondrites will provide new information on nucleosynthesis,stellar evolution and formation of the solar nebula.  相似文献   

6.
We have detected 138 presolar silicate, 20 presolar oxide and three presolar complex grains within the carbonaceous chondrite Acfer 094 by NanoSIMS oxygen isotope mapping. These grains were further investigated by scanning electron microscopy (SEM) and Auger electron spectroscopy for morphological and chemical details and their distribution within the meteorite matrix. The three complex grains consist of Al-rich oxides (grossite and hibonite) attached to non-stoichiometric Si-rich silicates. Refractory Al-rich oxides therefore serve as seed nuclei for silicates to condense onto, which is proposed by condensation theory and astronomical observations. However, in the majority of presolar silicates we did not find any indications for large subgrains. Most of the grains (80%) belong to O isotope Group I (17O-enriched) and come from 1 to 2.5 M asymptotic giant branch (AGB) stars of close-to-solar or slightly lower-than-solar metallicity. About 60% of these grains are irregular in shape; 40% display elliptical morphologies together with smooth, platy surfaces. Three grains with large 17O enrichments (17O/16O > 3 × 10−3) have highly irregular shapes and are very small (<250 nm); these grains may have formed in binary star systems or around higher mass () AGB stars. About 10% of the presolar silicates in this study can be assigned to the O isotope Group IV, which most likely originate from type II supernovae (SNeII). These grains are also generally smaller than 300 nm and are often irregular in shape (88%), consistent with the SNII origin scenario. The presolar grains are generally evenly distributed within the matrix on an mm scale, although in one case a statistically significant clustering of five grains in one 10 × 10 μm2 sized field is observed. This could be an important hint that the distribution of presolar material in the parental molecular cloud was heterogeneous on a very fine scale. The matrix-normalized abundance of silicate stardust in Acfer 094 is 163 ± 14 ppm, which is among the highest abundance of O-rich stardust in primitive meteorites. Oxide stardust comprises 26 ± 6 ppm of the matrix. Auger Nanoprobe measurements of 69 presolar silicates and oxides (30 on a quantitative, 39 on a qualitative basis) indicate that most of the grains are Fe-rich (Mg/(Mg + Fe) of 0.82 and lower), which is either due to non-equilibrium condensation, secondary alteration, or both. (Mg + Fe)/Si ratios of the silicates are mostly non-stoichiometric and scatter around pyroxene-like rather than olivine-like compositions, which is consistent with recent Auger and transmission electron microscopy observations and astrophysical predictions. Mg-rich grains (Mg/(Mg + Fe) > 0.5) more likely exhibit elliptical, smooth surfaces (14 out of 18 grains), which is an indication that these grains have not been strongly altered since their circumstellar condensation. We identified only one grain similar to the “glass with embedded metal and sulfides” (GEMS) with a statistically significant sulfur content (>2–3 at.%). It remains unclear why the typical high-sulfur GEMS grains are only found in interplanetary dust particles, but have not yet been unequivocally identified in primitive meteorites.  相似文献   

7.
Within 5 million years after formation of calcium aluminium rich inclusions (CAI), high temperature anhydrous phases were transformed to hydrous phyllosilicates, mostly serpentines, which dominate the matrices of the most primitive carbonaceous chondrites. CMs are the largest group of meteorites to provide samples of this material. To understand the nature of the availability, and role of H2O in the early solar system - as well as the settings of aqueous alteration - defining CM petrogenesis is critical. By Position Sensitive Detector X-ray Diffraction (PSD-XRD), we determine the modal abundance of crystalline phases present in volumes >1% for a suite of CMs - extending Part 1 of this work that dealt only with CM2 falls (Howard et al., 2009) to now include CM2 and CM1 finds. CM2 samples contain 13-31% Fe,Mg silicates (olivine + pyroxene) and from 67% to 82% total phyllosilicate (mean 75% ± 1.3 2σ). CM1 samples contain 6-10% olivine + pyroxene and 86-88% total phyllosilicate. Magnetite (0.6-5.2%), sulphide (0.6-3.9%), calcite (0-1.9%) and gypsum (0-0.8%) are minor phases across all samples. Since phyllosilicate forms from hydration of anhydrous Fe,Mg silicates (olivine + pyroxene), the ratio of total phyllosilicate to total anhydrous Fe,Mg silicate defines the degree of hydration and the following sequence results (in order of increasing hydration): QUE 97990 < Y 791198 < Murchison < Murray < Mighei < ALHA 81002 < Nogoya ? Cold Bokkeveld ? Essebi < QUE 93005 < ALH 83100 < MET 01070 < SCO 06043. High activities of Al (mostly from reactive mesostasis) and Si help to explain the composition and structure of CM serpentines that are distinct from terrestrial standards. Our data allows inference as to CM mineralogy at the point of accretion and challenges the conceptual validity of progressive alteration sequences. Modal mineralogy also provides new insights into CM petrogenesis and hints at a component of aqueous alteration occurring in the nebula, in addition to on the CM parent body(ies).  相似文献   

8.
到目前为止从陨石中分离出的太阳系外物质有金刚石、碳化硅、石墨、Si3N4、刚玉及尖晶石等。除金刚石为纳米级大小外,其他为微米和次微米级颗粒。这些太阳系外物质主要存在于原始的球粒陨石的基质中,并通过化学分离的方法获得。金刚石携带分别由p-过程和r-过程产生的Xe同位素组分(Xe-HL),其源区可能提超新星。绝大部分碳化硅相对于太阳系物质富^29.30Si和^13C,贫^15N,并携带s-过程产生的各  相似文献   

9.
A systematic NanoSIMS isotope imaging study of sub-micrometer phases in interplanetary dust particles (IDPs) has led to the discovery of two presolar grain types that previously were observed only in primitive meteorites. A 350 × 600 nm2 Al2O3 grain has a large 17O enrichment and a slight 18O depletion, as well as a 26Mg excess due to the decay of extinct 26Al. Because of its relatively large size and prominent location within the IDP, this presolar Al2O3 grain is well characterized by SEM-EDX analyses. A second, much smaller presolar grain has a diameter of 150 nm and a 13C enrichment of more than 300%. Isotopic anomalies in C are rarely found in IDPs and the magnitude of this anomaly is unprecedented. This grain also has a 15N-rich composition and its isotopic makeup as well as its secondary ion yields identify it as a SiC grain. The discovery of presolar Al2O3 and SiC in IDPs seamlessly complements earlier notions of interplanetary dust particles as the most primitive extraterrestrial material currently available for laboratory analysis. Both Al2O3 and SiC are common presolar grain types in primitive meteorites, but they appeared conspicuously absent from the presolar grain inventory in interplanetary dust particles, which is dominated by silicate stardust. Not finding these presolar grain types in interplanetary dust would have been difficult to explain. Abundance estimates of the new presolar grain types in IDPs are hampered by limited statistics, but both Al2O3 and SiC are less common than presolar silicates which have been found at relatively high abundances in IDPs. The particle in which these presolar grains have been found belongs to the ‘isotopically primitive subgroup’ of IDPs, yet does not contain any presolar silicates.  相似文献   

10.
Siderophile element distributions within individual metal grains in two CH chondrites, Allan Hills 85085 and Pecora Escarpment 91467, were measured by laser ablation inductively coupled plasma mass spectrometry. Those metal grains that are zoned in Ni were also found to be zoned in other refractory siderophile elements, such as Ru, but not in Pd, which is not refractory but is highly siderophile. This pattern is consistent with an origin by condensation from a gas of approximately solar composition, but not with an origin by redox processes or fractional crystallization. The unzoned metal grains in CH chondrites were found to be frequently depleted in Ru but not in Pd, consistent with later stage condensation from a solar gas after removal of the zoned metal. Gold is inversely correlated with Ni in the unzoned metal grains, and mean Au abundances in zoned metal are always low. Both zoned and unzoned metal in CH chondrites could plausibly be produced from a thermostatically regulated nebula, followed by rapid removal of the zoned metal, and slower removal of the unzoned metal, both at temperatures near or above the condensation temperature of Au (∼1250 K). This is also consistent with the isolation temperatures inferred from silicate grains in CH chondrites by previous workers based on their volatile element inventories. The volatile siderophile Cu is enriched in the rims relative to the interiors of both zoned and unzoned grains, and is interpreted as the product of diffusion during low-grade thermal processing. The similarity of Cu distributions, and degree of kamacite/taenite exsolution, between zoned and unzoned metal in CH chondrites suggests that the two populations of metal experienced modest thermal metamorphism after they were brought together in the same environment, probably on the CH parent body. Fragmentation and size-sorting of the metal must have post-dated the Cu zoning, and may have occurred in a regolith on the CH parent body. The compositions of CH metal, like that of metal from QUE 94411 and HH 237, are consistent with a nebular origin, and may be the most primitive nebular materials (as distinct from presolar grains) sampled by chondrites.  相似文献   

11.
With a new type of ion microprobe, the NanoSIMS, we determined the oxygen isotopic compositions of small (<1μm) oxide grains in chemical separates from two CM2 carbonaceous meteorites, Murray and Murchison. Among 628 grains from Murray separate CF (mean diameter 0.15 μm) we discovered 15 presolar spinel and 3 presolar corundum grains, among 753 grains from Murray separate CG (mean diameter 0.45 μm) 9 presolar spinel grains, and among 473 grains from Murchison separate KIE (mean diameter 0.5 μm) 2 presolar spinel and 4 presolar corundum grains. The abundance of presolar spinel is highest (2.4%) in the smallest size fraction. The total abundance in the whole meteorite is at least 1 ppm, which makes spinel the third-most abundant presolar grain species after nanodiamonds (if indeed a significant fraction of them are presolar) and silicon carbide. The O-isotopic distribution of the spinel grains is very similar to that of presolar corundum, the only statistically significant difference being that there is a larger fraction of corundum grains with large 17O excesses (17O/16O > 1.5 × 10−3), which indicates parent stars with masses between 1.8 and 4.5 M.  相似文献   

12.
It has been recently suggested that (1) CH chondrites and the CBb/CH-like chondrite Isheyevo contain two populations of chondrules formed by different processes: (i) magnesian non-porphyritic (cryptocrystalline and barred) chondrules, which are similar to those in the CB chondrites and formed in an impact-generated plume of melt and gas resulted from large-scale asteroidal collision, and (ii) porphyritic chondrules formed by melting of solid precursors in the solar nebula. (2) Porphyritic chondrules in Isheyevo and CH chondrites are different from porphyritic chondrules in other carbonaceous chondrites ( [Krot et al., 2005], [Krot et al., 2008a] and [Krot et al., 2008b]). In order to test these hypotheses, we measured in situ oxygen isotopic compositions of porphyritic (magnesian, Type I and ferroan, Type II) and non-porphyritic (magnesian and ferroan cryptocrystalline) chondrules from Isheyevo and CBb chondrites MAC 02675 and QUE 94627, paired with QUE 94611, using a Cameca ims-1280 ion microprobe.On a three-isotope oxygen diagram (δ17O vs. δ18O), compositions of chondrules measured follow approximately slope-1 line. Data for 19 magnesian cryptocrystalline chondrules from Isheyevo, 24 magnesian cryptocrystalline chondrules and 6 magnesian cryptocrystalline silicate inclusions inside chemically-zoned Fe,Ni-metal condensates from CBb chondrites have nearly identical compositions: Δ17O = −2.2 ± 0.9‰, −2.3 ± 0.6‰ and −2.2 ± 1.0‰ (2σ), respectively. These observations and isotopically light magnesium compositions of cryptocrystalline magnesian chondrules in CBb chondrites (Gounelle et al., 2007) are consistent with their single-stage origin, possibly as gas-melt condensates in an impact-generated plume. In contrast, Δ17O values for 11 Type I and 9 Type II chondrules from Isheyevo range from −5‰ to +4‰ and from −17‰ to +3‰, respectively. In contrast to typical chondrules from carbonaceous chondrites, seven out of 11 Type I chondrules from Isheyevo plot above the terrestrial fractionation line. We conclude that (i) porphyritic chondrules in Isheyevo belong to a unique population of objects, suggesting formation either in a different nebular region or at a different time than chondrules from other carbonaceous chondrites; (ii) Isheyevo, CB and CH chondrites are genetically related meteorites: they contain non-porphyritic chondrules produced during the same highly-energetic event, probably large-scale asteroidal collision; (iii) the differences in mineralogy, petrography, chemical and whole-rock oxygen isotopic compositions between CH and CB chondrites are due to various proportions of the nebular and the impact-produced materials.  相似文献   

13.
Barium isotopic compositions of chemical leachates from six carbonaceous chondrites, Orgueil (CI), Mighei (CM2), Murray (CM2), Efremovka (CV3), Kainsaz (CO3), and Karoonda (CK4), were determined using thermal ionization mass spectrometry in order to assess the chemical evolution in the early solar system.The Ba isotopic data from most of the leachates show variable 135Ba excesses correlated with 137Ba excesses, suggesting the presence and heterogeneity of additional nucleosynthetic components for s- and r-processes in the solar system. The isotopic deviations observed in this study were generally small (−1 < ε < +1) except in the case of the acid residues of CI and CM meteorites. Large deviations of 135Ba (ε = −13.5 to −5.0) and 137Ba (ε = −6.2∼−1.2) observed in the acid residues from one CI and two CM meteorites show significant evidence for the enrichment of s-process isotopes derived from presolar grains. Two models were proposed to estimate the 135Cs isotopic abundances by subtraction of the s- and r-isotopic components from the total Ba isotopic abundances in the three CM meteorites, Mighei, Murchison (measured in a previous study), and Murray. The data points show individual linear trends between 135Cs/136Ba ratios and 135Ba isotopic deviations for the three samples. Considering the different trends observed in the three CM meteorites, the Ba isotopic composition of the CM meteorite parent body was heterogeneous at its formation. Chronological information is unclear in the data for Murchison and Murray because of large analytical uncertainties imposed by error propagation. Only the Mighei meteorite data indicate the possible existence of presently extinct 135Cs (135Cs/133Cs = (2.7 ± 1.6) × 10−4) in the early solar system. Another explanation of the data for the three CM meteorite is mixing of at least three components with different Ba isotopic compositions, although this is model-dependent.  相似文献   

14.
CM chondrites are aqueously altered rocks that contain ∼9 wt% H2O+ (i.e., indigenous water) bound in phyllosilicates; also present are clumps of serpentine-tochilinite intergrowths (previously called “poorly characterized phases” or PCP), pentlandite and Ni-bearing pyrrhotite. We studied 11 CM chondrites that span the known range from least altered to most altered. We used various petrologic properties (many previously identified) that provide information regarding the degree of aqueous alteration. There are no known unaltered or slightly altered CM chondrites (e.g., rocks containing numerous chondrules with primary igneous glass). Some CM properties result from processes associated with early and intermediate stages of the alteration sequence (i.e., hydration of matrix, alteration of chondrule glass, and production of large PCP clumps). Other petrologic properties reflect processes active throughout the alteration sequence; these include oxidation of metallic Fe-Ni, alteration of chondrule phenocrysts, changes in PCP composition (reflecting an increase in the phyllosilicate/sulfide ratio), and changes in carbonate mineralogy (reflecting the development of dolomite and complex carbonates at the expense of Ca carbonate).On the basis of these parameters, we propose a numerical alteration sequence for CM chondrites. Because there are no known CM samples that display only incipient alteration, the least altered sample was arbitrarily assigned to subtype 2.6. The most altered CM chondrites, currently classified CM1, are assigned to subtype 2.0. These highly altered rocks have essentially no mafic silicates; they contain chondrule pseudomorphs composed mainly of phyllosilicate. However, their bulk compositions are CM-like, and they are closer in texture to other C2 chondrites than to CI1 chondrites (which lack chondrule pseudomorphs). Using several diagnostic criteria, we assigned petrologic subtypes (±0.1) to every CM chondrite in our study: QUE 97990, CM2.6; Murchison, CM2.5; Kivesvaara, CM2.5; Murray, CM2.4/2.5; Y 791198, CM2.4; QUE 99355, CM2.3; Nogoya, CM2.2; Cold Bokkeveld, CM2.2; QUE 93005, CM2.1; LAP 02277, CM2.0; MET 01070, CM2.0.The proposed CM numerical alteration sequence improves upon the existing scheme of Browning et al. (1996) in that it does not require a complicated algorithm applied to electron-microprobe data to determine the average matrix phyllosilicate composition. The new sequence is more comprehensive and employs petrologic subtypes that are easier to use and remember than mineralogic alteration index values.New neutron-activation analyses of QUE 97990, QUE 93005, MET 01070, Murchison and Crescent, together with literature data, confirm the compositional uniformity of the CM group; different degrees of alteration among CM chondrites do not lead to resolvable bulk compositional differences. This suggests that the textural differences among individual CM chondrites reflect progressive alteration of similar hypothetical CM3.0 starting materials in different regions of the same parent body, with minimal aqueous transport of materials over appreciable (e.g., meters) distances.  相似文献   

15.
陨石矿物种类的研究进展和矿物表   总被引:3,自引:0,他引:3  
早在约 2 0 0年前 ,科学家就在铁陨石中鉴定出了两种陨石矿物——陨硫铁和金属铁—镍。到了 1 9世纪 80年代 ,陨石矿物的数量增加到 1 6种。 2 0世纪 60年代以来 ,随着显微镜的广泛应用 ,以及许多新的测试技术如 X射线衍射、电子探针、扫描电镜和透射电镜的应用 ,使更多的陨石矿物能被发现。1 967年 ( Mason列出 60种陨石矿物 )至 1 987年( Yudin和 Kolomenskiy列出了 2 0 0种陨石矿物 )的2 0年间陨石矿物种数增加到原来的 3倍多。1 991年Ulyanov完成了陨石、星际尘粒和玻璃陨石共 350种矿物的列表。Rubin〔1〕在前人工作的基础上 ,去掉…  相似文献   

16.
We have carried out a comprehensive survey of the isotopic compositions (H, B, C, N, O, and S) of a suite of interplanetary dust particles (IDPs), including both cluster and individual particles. Isotopic imaging with the NanoSIMS shows the presence of numerous discrete hotspots that are strongly enriched in 15N, up to ∼1300‰. A number of the IDPs also contain larger regions with more modest enrichments in 15N, leading to average bulk N isotopic compositions that are 15N-enriched in these IDPs. Although C isotopic compositions are normal in most of the IDPs, two 15N-rich hotspots have correlated 13C anomalies. CN/C ratios suggest that most of the 15N-rich hotspots are associated with relatively N-poor carbonaceous matter, although specific carriers have not been determined. H isotopic distributions are similar to those of N: D anomalies are present both as distinct D-rich hotspots and as larger regions with more modest enrichments. Nevertheless, H and N isotopic anomalies are not directly correlated, consistent with results from previous studies. Oxygen isotopic imaging shows the presence of abundant presolar silicate grains in some of the IDPs. The O isotopic compositions of the grains are similar to those of presolar oxide and silicate grains from primitive meteorites. Most of the silicate grains in the IDPs have isotopic ratios consistent with meteoritic Group 1 oxide grains, indicating origins in oxygen-rich red giant and asymptotic giant branch stars, but several presolar silicates exhibit the 17O and 18O enrichments of Group 4 oxide grains, whose origin is less well understood. Based on their N isotopic compositions, the IDPs studied here can be divided into two groups. One group is characterized as being “isotopically primitive” and consists of those IDPs that have anomalous bulk N isotopic compositions. These particles typically also contain numerous 15N-rich hotspots, occasional C isotopic anomalies, and abundant presolar silicate grains. In contrast, the other “isotopically normal” IDPs have normal bulk N isotopic compositions and, although some contain 15N-rich hotspots, none exhibit C isotopic anomalies and none contain presolar silicate or oxide grains. Thus, isotopically interesting IDPs can be identified and selected on the basis of their bulk N isotopic compositions for further study. However, this distinction does not appear to extend to H isotopic compositions. Although both H and N anomalies are frequently attributed to the survival of molecular cloud material in IDPs and, thus, should be more common in IDPs with anomalous bulk N compositions, D anomalies are as common in normal IDPs as they are in those characterized as isotopically primitive, based on their N isotopes.  相似文献   

17.
Group IVA is a large magmatic group of iron meteorites. The mean Δ17O (=δ17O − 0.52·δ18O) of the silicates is ∼+1.2‰, similar to the highest values in L chondrites and the lowest values in LL chondrites; δ18O values are also in the L/LL range. This strongly suggests that IVA irons formed by melting L-LL parental material, but the mean Ni content of IVA irons (83 mg/g) is much lower than that of a presumed L-LL parent (∼170 mg/g) and the low-Ca pyroxene present in two IVA meteorites is Fs13, much lower than the Fs20-29 values in L and LL chondrites. Thus, formation from L-LL precursors requires extensive addition of metallic Fe, probably produced by reduction of FeS and FeO. Group IVA also has S/Ni, Ga/Ni, and Ge/Ni ratios that are much lower than those in L-LL chondrites or any chondrite group that preserves nebular compositions, implying loss of these volatile elements during asteroidal processing. We suggest that these reduction and loss processes occurred near the surface of the asteroid during impact heating, and resulted partly from reduction by C, and partly from the thermal dissociation of FeS and FeO with loss of O and S. The hot (∼1770 K) low-viscosity melt quickly moved through channels in the porous asteroid to form a core. Two members of the IVA group, São João Nepomuceno (hereafter, SJN) and Steinbach, contain moderate amounts of orthopyroxene and silica, and minor amounts of low-Ca clinopyroxene. Even though SJN formed after ∼26% crystallization and Steinbach formed after ∼77% crystallization of the IVA core, both could have originated within several tens of meters of the core-mantle interface if 99% of the crystallization occurred from the center outwards. Two other members of the group (Gibeon and Bishop Canyon) contain tabular tridymite, which we infer to have initially formed as veins deposited from a cooling SiO-rich vapor. The silicates were clearly introduced into IVA irons after the initial magma crystallized. Because the γ-iron crystals in SJN are typically about 5 cm across, an order of magnitude smaller than in IVA irons that do not contain massive silicates, we infer that the metal was in the γ-iron field when the silicates were injected. The SJN and Steinbach silicate compositions are near the low-Ca-pyroxene/silica eutectic compositions. We suggest that a tectonic event produced a eutectic-like liquid and injected it together with unmelted pyroxene grains into fissures in the solid metal core. Published estimates of IVA metallographic cooling rates range from 20 to 3000 K/Ma, leading to a hypothesized breakup of the core during a major impact followed by scrambling of the core and mantle debris [Haack, H., Scott, E.R.D., Love, S.G., Brearley, A. 1996. Thermal histories of IVA stony-iron and iron meteorites: evidence for asteroid fragmentation and reaccretion. Geochim. Cosmochim. Acta60, 3103-3113]. This scrambling model is physically implausible and cannot explain the strong correlation of estimated cooling rates with metal composition. Previous workers concluded that the low-Ca clinopyroxene in SJN and Steinbach formed from protopyroxene by quenching at a cooling rate of 1012 K/Ma, and suggested that this also supported an impact-scrambling model. This implausible spike in cooling rate by a factor of 1010 can be avoided if the low-Ca clinopyroxene were formed by a late shock event that converted orthopyroxene to clinopyroxene followed by minimal growth in the clinopyroxene field, probably because melt was also produced. We suggest that metallographic cooling-rate estimates (e.g., based on island taenite) giving similar values throughout the metal compositional range are more plausible, and that the IVA parent asteroid can be modeled by monotonic cooling followed by a high-temperature impact event that introduced silicates into the metal and a low-temperature impact event that partially converted orthopyroxene into low-Ca clinopyroxene.  相似文献   

18.
From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation.We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the chemical compositions of GEMS grains are extremely heterogeneous and seem to rule out this possibility. Based on their solar isotopic compositions and their non-solar elemental compositions we propose that most GEMS grains formed in the nebula as late-stage non-equilibrium condensates.  相似文献   

19.
Enstatite meteorites include the undifferentiated enstatite chondrites and the differentiated enstatite achondrites (aubrites). They are the most reduced group of all meteorites. The oxygen isotope compositions of both enstatite chondrites and aubrites plot along the terrestrial mass fractionation line, which suggests some genetic links between these meteorites and the Earth as well.For this study, we measured the Zn isotopic composition of 25 samples from the following groups: aubrites (main group and Shallowater), EL chondrites, EH chondrites and Happy Canyon (impact-melt breccia). We also analyzed the Zn isotopic composition and elemental abundance in separated phases (metal, silicates, and sulfides) of the EH4, EL3, and EL6 chondrites. The different groups of meteorites are isotopically distinct and give the following values (‰): aubrite main group (−7.08 < δ66Zn < −0.37); EH3 chondrites (0.15 < δ66Zn < 0.31); EH4 chondrites (0.15 < δ66Zn < 0.27); EH5 chondrites (δ66Zn = 0.27 ± 0.09; n = 1); EL3 chondrites (0.01 < δ66Zn < 0.63); the Shallowater aubrite (1.48 < δ66Zn < 2.36); EL6 chondrites (2.26 < δ66Zn < 7.35); and the impact-melt enstatite chondrite Happy Canyon (δ66Zn = 0.37).The aubrite Peña Blanca Spring (δ66Zn = −7.04‰) and the EL6 North West Forrest (δ66Zn = 7.35‰) are the isotopically lightest and heaviest samples, respectively, known so far in the Solar System. In comparison, the range of Zn isotopic composition of chondrites and terrestrial samples (−1.5 < δ66Zn < 1‰) is much smaller ( [Luck et al., 2005] and [Herzog et al., 2009]).EH and EL3 chondrites have the same Zn isotopic composition as the Earth, which is another example of the isotopic similarity between Earth and enstatite chondrites. The Zn isotopic composition and abundance strongly support that the origin of the volatile element depletion between EL3 and EL6 chondrites is due to volatilization, probably during thermal metamorphism. Aubrites show strong elemental depletion in Zn compared to both EH and EL chondrites and they are enriched in light isotopes (δ66Zn down to −7.04‰). This is the opposite of what would be expected if Zn elemental depletion was due to evaporation, assuming the aubrites started with an enstatite chondrite-like Zn isotopic composition. Evaporation is therefore not responsible for volatile loss from aubrites. On Earth, Zn isotopes fractionate very little during igneous processes, while differentiated meteorites show only minimal Zn isotopic variability. It is therefore very unlikely that igneous processes can account for the large isotopic fractionation of Zn in aubrites. Condensation of an isotopically light vapor best explains Zn depletion and isotopically light Zn in these puzzling rocks. Mass balance suggests that this isotopically light vapor carries Zn lost by the EL6 parent body during thermal metamorphism and that aubrites evolved from an EL6-like parent body. Finally, Zn isotopes suggest that Shallowater and aubrites originate from distinct parent bodies.  相似文献   

20.
CM chondrites contain carbonates and other secondary minerals such as phyllosilicates, sulfides, sulfates, oxides and hydroxides that are believed to have formed by aqueous alteration reactions on their parent asteroid. We report in situ Mn-Cr isotope measurements in the highly aqueously altered CM2.1 chondrites QUE 93005 and ALH 83100 using secondary ion mass spectrometry (Cameca ims-1270 ion microprobe). The 53Cr excesses are correlated with the 53Mn/55Mn ratio and result from the in situ decay of 53Mn, a short-lived radioisotope with a half-life of 3.7 Ma. If we assume that carbonate grains in samples QUE 93005 and ALH 83100 are cogenetic, then the excesses define initial 53Mn/55Mn ratios ((53Mn/55Mn)0) of (4.1 ± 1.2) × 10−6 and (5.1 ± 1.7) × 10−6, respectively. These values are comparable to those in carbonates from other CM chondrites as reported in the literature. Initial 53Mn/55Mn ratios for calculated model isochrones for individual carbonate grains range from (3.8 ± 1.4) × 10−6 to (4.8 ± 2.1) × 10−6 for QUE 93005 and from (3.1 ± 1.6) × 10−6 to (1.3 ± 0.5) × 10−5 for ALH 83100. A possible interpretation for the ranges in (53Mn/55Mn)0 could be that alteration in individual CM chondrites was episodic and occurred over an extended period of time. However, isochrones based on the entire set of carbonate grains in each of the CM chondrites imply that the degree of aqueous alteration is roughly correlated with the age of carbonate formation in CM chondrites of different subtypes and that alteration on the CM parent asteroid started contemporaneously with or shortly after CAI formation and lasted at least 4 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号