首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that saltmarsh macrophytes have a significant influence on sediment biogeochemistry, both through radial release of oxygen from roots and also via primary production and release of labile organic exudates from roots. To assess the seasonal influence of the needle rush, Juncus roemarianus, on saltmarsh sediment geochemistry, pore waters and sediments were collected from the upper 50 cm of two adjacent sites, one unvegetated and the other vegetated by Juncus roemarianus, in a Georgia saltmarsh during winter and summer. Pore waters collected at 1- to 2-cm intervals were analyzed for pH, alkalinity, dissolved phosphate, ammonium, Fe(II), Fe(III), Mn(II), sulfide, sulfate, and organic carbon. Sediments were collected at 5-cm intervals and analyzed for iron distribution in the solid phase using a two-step sequential extraction. The upper 50 cm of the sediment pore waters are mostly sulfidic during both winter and summer. The pore water and sediment geochemistry suggest organic matter degradation is coupled mostly to Fe(III) and sulfate reduction. In summer, there is greater accumulation of alkalinity, sulfide, ammonium, and phosphate in the pore waters and lower levels of ascorbate extractable Fe, which is presumed to be comprised primarily of readily reducible Fe(III) oxides, in the sediments, consistent with higher organic matter degradation rates in summer compared to winter. Lower pH, alkalinity, ammonium, and sulfide concentrations in sediments with Juncus, compared to nearby unvegetated sediments, is consistent with release of oxygen into the Juncus rhizosphere, especially during summer.  相似文献   

2.
Enriched As in drinking water wells in south and Southeast Asia has increased the risk of cancer for nearly 100 million people. This enrichment is generally attributed to the reductive dissolution of Fe oxides; however, the complex expression of As enrichment in these areas is not yet well understood. Here, the coupled sedimentological and geochemical factors that contribute to the extent and spatial distribution of groundwater As concentrations in the Mekong River delta, Cambodia in an avulsed scroll bar sequence are examined. X-Ray absorption spectroscopy (XAS) was used to determine Fe and As speciation in redox preserved sediment collected from drilled cores. Dissolved As, Fe and S solution concentrations in existing and newly drilled wells (cores) differed considerably depending on their source sedimentology. The rapid burial of organic matter in the scroll bar sequence facilitated the development of extensive Fe-reducing conditions, and As release into the aquifer. In older features organic C levels are high enough to sustain extensive Fe reduction and provide ample SO4 which is reduced to sulfide. This S reduction impacts As levels; As is sequestered in sulfide minerals outside of the scrollbar sequence, decreasing pore water concentrations. In contrast, As is depleted in sediments from the scroll sequence, and associated with elevated pore water aqueous concentrations. The concentration and form of organic C in the scrollbar sequence is related to depositional environment, and can facilitate Fe and S mineral transformations, distinct sedimentary environments explain a portion of the inherent heterogeneity of aquifer As concentrations.  相似文献   

3.
A detailed geochemical and microbiological study of a ∼2 m sediment core from the inactive Alvin mounds within the TAG hydrothermal field was conducted to examine, for the first time, the role of prokaryotes in subsurface weathering of hydrothermal sediments. Results show that there has been substantial post-depositional remobilisation of metal species and diagenetic overprinting of the original high-temperature hydrothermal minerals, and aspects have involved prokaryotic processes. Prokaryotic enumeration demonstrates the presence of a population smaller than the average for deep sea sediments, probably due to the low organic carbon content, but not inhibited by (and hence adapted to) the metal rich environment. There was a small but significant increase in population size associated with the active redox boundary in an upper metal sulphide layer (50-70 cm) around which active metal remobilisation was concentrated (Cu, Au, Cd, Ag, U, Zn and Zn). Hence, subsurface prokaryotes were potentially obtaining energy from metal metabolism in this near surface zone. Close association of numbers of culturable Mn and Fe reducing prokaryotes with subsurface Fe2+ and Mn2+ pore water profiles suggested active prokaryotic metal reduction at depth in core CD102/43 (to ∼175 cm). In addition, a prokaryotic mechanism, which is associated with bacterial sulphate reduction, is invoked to explain the U enrichment on pyrite surfaces and Zn and Pb remobilisation in the upper sediment. Although prokaryotic populations are present throughout this metalliferous sediment, thermodynamic calculations indicated that the inferred low pH of pore waters and the suboxic/anoxic conditions limits the potential energy available from Fe(II) oxidation, which may restrict prokaryotic chemolithotrophic biomass. This suggests that intense prokaryotic Fe oxidation and weathering of seafloor massive sulphide deposits may be restricted to the upper portion of the deposit that is influenced by near neutral pH and oxic seawater unless there is significant subsurface fluid flow.  相似文献   

4.
The availability of particulate Fe(III) to iron reducing microbial communities in sediments and soils is generally inferred indirectly by performing chemical extractions. In this study, the bioavailability of mineral-bound Fe(III) in intertidal sediments of a eutrophic estuary is assessed directly by measuring the kinetics and extent of Fe(III) utilization by the iron reducing microorganism Shewanella putrefaciens, in the presence of excess electron donor. Microbial Fe(III) reduction is compared to chemical dissolution of iron from the same sediments in buffered ascorbate-citrate solution (pH 7.5), ascorbic acid (pH 2), and 1 M HCl. The results confirm that ascorbate at near-neutral pH selectively reduces the reactive Fe(III) pool, while the acid extractants mobilize additional Fe(II) and less reactive Fe(III) mineral phases. Furthermore, the maximum concentrations of Fe(III) reducible by S. putrefaciens correlate linearly with the iron concentrations extracted by buffered ascorbate-citrate solution, but not with those of the acid extractions. However, on average, only 65% of the Fe(III) reduced in buffered ascorbate-citrate solution can be utilized by S. putrefaciens, probably due to physical inaccessibility of the remaining fraction of reactive Fe(III) to the cells. While the microbial and abiotic reaction kinetics further indicate that reduction by ascorbate at near-neutral pH most closely resembles microbial reduction of the sediment Fe(III) pool by S. putrefaciens, the results also highlight fundamental differences between chemical reductive dissolution and microbial utilization of mineral-bound ferric iron.  相似文献   

5.
Schwertmannite (Fe8O8(OH)6SO4) is a common Fe(III)-oxyhydroxysulfate mineral in acid-sulfate systems, where its formation and fate strongly influence water quality. The present study examines transformation of schwertmannite to goethite (FeOOH), as catalyzed by interactions with Fe(II) in anoxic aquatic environments. This study also evaluates the role of the Fe(II) pathway in influencing the formation of iron-sulfide minerals in such environments. At pH > 5, the rates of Fe(II)-catalyzed schwertmannite transformation were several orders of magnitude faster than transformation in the absence of Fe(II). Complete transformation of schwertmannite occurred within only 3-5 h at pH > 6 and Fe(II)(aq) ? 5 mmol L−1. Model calculations indicate that the Fe(II)-catalyzed transformation of schwertmannite to goethite greatly decreases the reactivity of the Fe(III) pool, thereby favoring SO4-reduction and facilitating the formation of iron-sulfide minerals (particularly mackinawite, tetragonal FeS). Examination of in situ sediment geochemistry in an acid-sulfate system revealed that the rapid Fe(II)-catalyzed transformation was consistent with an abrupt shift from an acidic Fe(III)-reducing regime with abundant schwertmannite near the sediment surface, to a near-neutral mackinawite-forming regime where goethite was dominant. This study demonstrates that the Fe(II) pathway exerts a major influence on schwertmannite transformation and iron-sulfide formation in anoxic acid-sulfate systems. These findings have important implications for understanding acidity dynamics and trace element mobility in such systems.  相似文献   

6.
The development and application of geochemical techniques to identify redox conditions in modern and ancient aquatic environments has intensified over recent years. Iron (Fe) speciation has emerged as one of the most widely used procedures to distinguish different redox regimes in both the water column and sediments, and is the main technique used to identify oxic, ferruginous (anoxic, Fe(II) containing) and euxinic (anoxic, sulfidic) water column conditions. However, an international sediment reference material has never been developed. This has led to concern over the consistency of results published by the many laboratories that now utilise the technique. Here, we report an interlaboratory comparison of four Fe speciation reference materials for palaeoredox analysis, which span a range of compositions and reflect deposition under different redox conditions. We provide an update of extraction techniques used in Fe speciation and assess the effects of both test portion mass, and the use of different analytical procedures, on the quantification of different Fe fractions in sedimentary rocks. While atomic absorption spectroscopy and inductively coupled plasma‐optical emission spectrometry produced comparable Fe measurements for all extraction stages, the use of ferrozine consistently underestimated Fe in the extraction step targeting mixed ferrous–ferric minerals such as magnetite. We therefore suggest that the use of ferrozine is discontinued for this Fe pool. Finally, we report the combined data of four independent Fe speciation laboratories to characterise the Fe speciation composition of the reference materials. These reference materials are available to the community to provide an essential validation of in‐house Fe speciation measurements.  相似文献   

7.
Three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe. The speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques. The concentrations of dissolved major and trace elements (anions, cations, sulfides, dissolved organic C, Cd, Co, Fe, Mn, Ni, Pb and Zn) were used to calculate the thermodynamic equilibrium speciation in pore waters and to evaluate the saturation of minerals (Visual Minteq software). A sequential extraction procedure was applied on anoxic sediment particles in order to assess the main host phases of trace elements. Manganese was the most labile metal in pore waters and was mainly associated with carbonates in particles. In contrast, a weak affinity of Cd, Co, Ni, Pb and Zn with carbonates was established because: (1) a systematic under-saturation was noticed in pore waters and (2) less than 10% of these elements were extracted in the exchangeable and carbonate sedimentary fraction. In the studied anoxic sediments, the mobility and the lability of trace metals, apart from Mn, seemed to be controlled through the competition between sulfidic and organic ligands. In particular, the necessity of taking into account organic matter in the modelling of thermodynamic equilibrium was demonstrated for Cd, Ni, Zn and Pb, the latter element exhibiting the strongest affinity with humic substances. Consequently, dissolved organic matter could favour the stabilization of trace metals in the liquid phase. Conversely, sulfide minerals played a key role in the scavenging of trace metals in sediment particles. Finally, similar trace metal lability rankings were obtained for the liquid and solid phases.  相似文献   

8.
Bioreduced anthraquinone-2,6-disulfonate (AH2DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)aq (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH2DS oxidation coupled with Fe(III) reduction occurred within 0.13-1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant:oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. Phosphate inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r:o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)aq system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)] = 0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)aq system, while AQDS was more effective than Fe(II)aq in promoting magnetite formation. The mineral products of the direct AH2DS-driven reductive reaction are different from those observed in AH2DS-ferrihydite systems with metal reducing bacteria, particularly in presence of P.  相似文献   

9.
Solid phase and pore water chemical data collected in a sediment of the Haringvliet Lake are interpreted using a multi-component reactive transport model. This freshwater lake, which was formed as the result of a river impoundment along the southwestern coast of the Netherlands, is currently targeted for restoration of estuarine conditions. The model is used to assess the present-day biogeochemical dynamics in the sediment, and to forecast possible changes in organic carbon mineralization pathways and associated redox reactions upon salinization of the bottom waters. Model results indicate that oxic degradation (55%), denitrification (21%), and sulfate reduction (17%) are currently the main organic carbon degradation pathways in the upper 30 cm of sediment. Unlike in many other freshwater sediments, methanogenesis is a relatively minor carbon mineralization pathway (5%), because of significant supply of soluble electron acceptors from the well-mixed bottom waters. Although ascorbate-reducible Fe(III) mineral phases are present throughout the upper 30 cm of sediment, the contribution of dissimilatory iron reduction to overall sediment metabolism is negligible. Sensitivity analyses show that bioirrigation and bioturbation are important processes controlling the distribution of organic carbon degradation over the different pathways. Model simulations indicate that sulfate reduction would rapidly suppress methanogenesis upon seawater intrusion in the Haringvliet, and could lead to significant changes in the sediment’s solid-state iron speciation. The changes in Fe speciation would take place on time-scales of 20-100 years.  相似文献   

10.

Arsenic (As), iron (Fe), and manganese (Mn) contents were measured in sediment nodules and associated pore waters obtained from sediment cores collected from a salt marsh on Pólvora Island (southern Brazil). Sediment cores were obtained when brackish water dominated the estuary, at two different environments: an unvegetated mudflat colonized by crabs (Neohelice granulata), and a low intertidal stand vegetated by Spartina alterniflora. We determined the percentage of nodules in each depth interval of the cores, along with redox potential, and As, Fe, and Mn contents of the nodules. The mineralogy of the nodules was investigated, and results showed they are mainly composed by quartz, phyllosilicates, and amorphous Fe–Mn oxides/oxyhydroxides. Pore water results showed that bioturbation by local crabs supports oxygen penetration to depths of ca. 25 cm below the salt marsh surface, with lower Fe contents in pore water associated with the brackish period. However, S. alterniflora growth appears to have a greater impact on sediment geochemistry of Fe, Mn, and possibly As due to sulfate reduction and the associated decrease in pore water pH. Higher Fe concentrations were observed in the pore waters during the period of brackish water dominance, which also corresponded to the S. alterniflora growth season. The study demonstrates that differences in geochemical conditions (e.g., Fe content) that can develop in salt marsh sediments owing to different types of bioirrigation processes (i.e., bioirrigation driven by crabs versus that related to the growth of S. alterniflora) play important roles in the biogeochemical cycling of As.

  相似文献   

11.
《Applied Geochemistry》2000,15(6):785-790
The original ferrozine method has been modified to sequentially determine the Fe(II)/Fe(III) speciation in small volumes of fresh and marine water samples, at the submicromolar level. Spectrophotometric analyses of the Fe(II)–ferrozine complex are performed on a single aliquot before and after a reduction step with hydroxylamine. The procedure is calibrated using Fe(III) standards stable under normal conditions of analysis. It is shown also that the presence of high concentrations of dissolved NOM (natural organic matter) do not create any significant artifacts. The method was used to measure Fe(II) and Fe(III) depth distribution in salt marsh pore waters and in a stratified marine basin.  相似文献   

12.
Solid and colloidal iron oxides are commonly involved in early diagenesis. More readily available soluble Fe(III) should accelerate the cycling of iron (Fe) and sulfur (S) in sediments. Experiments with synthetic solutions (Taillefert et al. 2000) showed that soluble Fe(III) (i.e., <50 nm diameter) reacts at a mercury voltammetric electrode at circumneutral pH if it is complexed by an organic ligand. The reactivity of soluble organic-Fe(III) with sulfide is greatly increased compared to its solid equivalent (e.g., amorphous hydrous iron oxides or goethite). We report here data from two different creeks of the Hackensack Meadowlands District (New Jersey) collected with solid state Au/Hg voltammetric microelectrodes and other conventional techniques, which confirm the existence of soluble organic-Fe(III) in sediments and its interaction with sulfide. Chemical profiles in these two anoxic sediments show the interaction between iron and sulfur during early diagenesis. Soluble organic-Fe(III) and Fe(II) are dominant in a creek where sulfide is negligible. This dominance suggests that the reductive dissolution of iron oxides goes through the dissolution of solid Fe(III), then reduction to Fe(II), or that soluble organic-Fe(III) is formed by chemical or microbial oxidation of organic-Fe(II) complexes. In a creek sediment where sulfide occurs in significant concentration, the reductive dissolution of Fe(III) is followed by formation of FeS(aq), which further precipitates. Dissolved sulfide may influence the fate of soluble organic-Fe(III), but the pH may be the key variable behind this process. The high reactivity of soluble organic-Fe(III) and its mobility may result in the shifting of local reactions, at depths where other electron acceptors are used. These data also suggest that estuarine and coastal sediments may not always be at steady state.  相似文献   

13.
Trace metals (Mn, Fe, Mo, U, Cr, V) were studied in pore waters of an intertidal flat located in the German Wadden Sea. The study system is an example of a permeable tidal flat system where pore water exchange is affected by tidal driven pressure gradients besides diffusion. Permanently installed in situ samplers were used to extract pore waters down to 5 m depth throughout one year. The samplers were either located close to the tidal flat margin or in central parts of the tidal flat. Despite dynamic sedimentological and hydrological conditions, the general trends with depth in deep tidal flat pore waters are remarkably similar to those observed in deep sea environments. Rates of trace metal cycling must be comparably large in order to maintain the observed pore water profiles. Trace metals further show similar general trends with depth close to the margin and in central parts of the tidal flat. Seasonal sampling revealed that V and Cr vary concurrent with seasonal changes in dissolved organic carbon (DOC) concentration. This effect is most notable close to the tidal flat margin where sulphate, DOC, and nutrients vary with season down to some metres depth. Seasonal variations of Mn, Fe, Mo, and U are by contrast limited to the upper decimetres of the sediment. Their seasonal patterns depend on organic matter supply, redox stratification, and particulate matter deposited on sediment surfaces. Pore water sampling within one tidal cycle provides evidence for pore water advection in margin sediments. During low tide pore water flow towards the creekbank is generated by a hydraulic gradient suggesting that deep pore waters may be seeping out of creekbank sediments. Owing to the enrichment of specific elements like Mn in pore water compared to sea water, seeping pore waters may have an impact on the chemistry of the open water column. Mass balance calculations reveal that the impact of deep pore waters on the Mn budget in the open water column is below 4%. Mn deep pore water discharge of the whole Wadden Sea is estimated to be about 9% of the total dissolved riverine Mn input into the Southern North Sea.  相似文献   

14.

We examined the chemical reactions influencing dissolved concentrations, speciation, and transport of naturally occurring arsenic (As) in a shallow, sand and gravel aquifer with distinct geochemical zones resulting from land disposal of dilute sewage effluent. The principal geochemical zones were: (1) the uncontaminated zone above the sewage plume [350 μM dissolved oxygen (DO), pH 5.9]; (2) the suboxic zone (5 μM DO, pH 6.2, elevated concentrations of sewage-derived phosphate and nitrate); and (3) the anoxic zone [dissolved iron(II) 100–300 μM, pH 6.5–6.9, elevated concentrations of sewage-derived phosphate]. Sediments are comprised of greater than 90% quartz but the surfaces of quartz and other mineral grains are coated with nanometer-size iron (Fe) and aluminum (Al) oxides and/or silicates, which control the adsorption properties of the sediments. Uncontaminated groundwater with added phosphate (620 μM) was pumped into the uncontaminated zone while samples were collected 0.3 m above the injection point. Concentrations of As(V) increased from below detection (0.005 μM) to a maximum of 0.07 μM during breakthrough of phosphate at the sampling port; As(III) concentrations remained below detection. These results are consistent with the hypothesis that naturally occurring As(V) adsorbed to constituents of the coatings on grain surfaces was desorbed by phosphate in the injected groundwater. Also consistent with this hypothesis, vertical profiles of groundwater chemistry measured prior to the tracer test showed that dissolved As(V) concentrations increased along with dissolved phosphate from below detection in the uncontaminated zone to approximately 0.07 and 70 μM, respectively, in the suboxic zone. Concentrations of As(III) were below detection in both zones. The anoxic zone had approximately 0.07 μM As(V) but also had As(III) concentrations of 0.07–0.14 μM, suggesting that release of As bound to sediment grains occurred by desorption by phosphate, reductive dissolution of Fe oxides, and reduction of As(V) to As(III), which adsorbs only weakly to the Fe-oxide-depleted material in the coatings. Results of reductive extractions of the sediments suggest that As associated with the coatings was relatively uniformly distributed at approximately 1 nmol/g of sediment (equivalent to 0.075 ppm As) and comprised 20%-50% of the total As in the sediments, determined from oxidative extractions. Quartz sand aquifers provide high-quality drinking water but can become contaminated when naturally occurring arsenic bound to Fe and Al oxides or silicates on sediment surfaces is released by desorption and dissolution of Fe oxides in response to changing chemical conditions.

  相似文献   

15.
Rare earth elements in pore waters of marine sediments   总被引:2,自引:0,他引:2  
The rare earth elements (REEs) were measured in pore waters of the upper ∼25 cm of sediment from one site off Peru and three sites on the California margin. The pore water REE concentrations are higher than sea water and show systematic down core variations in both concentration and normalized pattern. From these analyses and from comparison to other chemical species measured (dissolved Fe, Mn, Ba, oxygen, nitrate, phosphate), it is suggested that pore water REEs can be grouped into three categories: those that are from an Fe-source, those that are from a POC-source, and cerium oxide. REEs from the Fe-source appear where anoxia is reached; they have a distinctive “middle-REE (MREE) enriched” pattern. The concentrations in this source are so elevated that they dominate REE trends in the Fe-oxide reduction zone. The net result of flux from the POC-source is relative enrichment of heavy-REEs (HREEs) over light-REEs (LREEs), reflecting remineralizing POC and complexation with DOC. A common “linear” REE pattern, seen in both oxic and anoxic sediments, is associated with this POC-source, as well as a “HREE enriched” pattern that is seen in surficial sediments at the Peru site. Overall, the pore water results indicate that Mn-oxides are not an important carrier of REEs in the oceans.A REE biogeochemical model is presented which attempts to reconcile REE behavior in the water and sediment columns of the oceans. The model proposes that POC, Fe-oxide and Ce-oxide sources can explain the REE concentration profiles and relative abundance patterns in environments ranging from oxic sea water to anoxic pore water. The model is also consistent with our observation that the “Ce-anomaly” of pore water does not exceed unity under any redox condition.  相似文献   

16.
The sediments of the Port Camargue marina (South of France) are highly polluted by Cu and As (Briant et al., 2013). The dynamics of these pollutants in pore waters was investigated using redox tracers (sulfides, Fe, Mn, U, Mo) to better constrain the redox conditions.In summer, pore water profiles showed a steep redox gradient in the top 24 cm with the reduction of Fe and Mn oxy-hydroxides at the sediment water interface (SWI) and of sulfate immediately below. Below a depth of 24 cm, the Fe, Mn, Mo and U profiles in pore waters reflected Fe and Mn reducing conditions and, unlike in the overlying levels, sulfidic conditions were not observed. This unusual redox zonation was attributed to the occurrence of two distinct sediment layers: an upper layer comprising muddy organic-rich sediments underlain by a layer of relatively sandy and organic-poor sediments. The sandy sediments were in place before the building of the marina, whereas the muddy layer was deposited later. In the muddy layer, large quantities of Fe and Mo were removed in summer linked to the formation of insoluble sulfide phases. Mn, which can adsorb on Fe-sulfides or precipitate with carbonates, was also removed from pore waters. Uranium was removed probably through reduction and adsorption onto particles. In winter, in the absence of detectable pore water sulfides, removal of Mo was moderate compared to summer.Cu was released into solution at the sediment water interface but was efficiently trapped by the muddy layer, probably by precipitation with sulfides. Due to efficient trapping, today the Cu sediment profile reflects the increase in its use as a biocide in antifouling paints over the last 40 years.In the sandy layer, Fe, Mn, Mo and As were released into solution and diffused toward the top of the profile. They precipitated at the boundary between the muddy and sandy layers. This precipitation accounts for the high (75 μg g−1) As concentrations measured in the sediments at a depth of 24 cm.  相似文献   

17.
A <2.0-mm fraction of a mineralogically complex subsurface sediment containing goethite and Fe(II)/Fe(III) phyllosilicates was incubated with Shewanella putrefaciens (strain CN32) and lactate at circumneutral pH under anoxic conditions to investigate electron acceptor preference and the nature of the resulting biogenic Fe(II) fraction. Anthraquinone-2,6-disulfonate (AQDS), an electron shuttle, was included in select treatments to enhance bioreduction and subsequent biomineralization. The sediment was highly aggregated and contained two distinct clast populations: (i) a highly weathered one with “sponge-like” internal porosity, large mineral crystallites, and Fe-containing micas, and (ii) a dense, compact one with fine-textured Fe-containing illite and nano-sized goethite, as revealed by various forms of electron microscopic analyses. Approximately 10-15% of the Fe(III)TOT was bioreduced by CN32 over 60 d in media without AQDS, whereas 24% and 35% of the Fe(III)TOT was bioreduced by CN32 after 40 and 95 d in media with AQDS. Little or no Fe2+, Mn, Si, Al, and Mg were evident in aqueous filtrates after reductive incubation. Mössbauer measurements on the bioreduced sediments indicated that both goethite and phyllosilicate Fe(III) were partly reduced without bacterial preference. Goethite was more extensively reduced in the presence of AQDS whereas phyllosilicate Fe(III) reduction was not influenced by AQDS. Biogenic Fe(II) resulting from phyllosilicate Fe(III) reduction remained in a layer-silicate environment that displayed enhanced solubility in weak acid. The mineralogic nature of the goethite biotransformation product was not determined. Chemical and cryogenic Mössbauer measurements, however, indicated that the transformation product was not siderite, green rust, magnetite, Fe(OH)2, or Fe(II) adsorbed on phyllosilicate or bacterial surfaces. Several lines of evidence suggested that biogenic Fe(II) existed as surface associated phase on the residual goethite, and/or as a Fe(II)-Al coprecipitate. Sediment aggregation and mineral physical and/or chemical factors were demonstrated to play a major role on the nature and location of the biotransformation reaction and its products.  相似文献   

18.
The Riogrande II reservoir in Colombia has a total storage capacity of 240 million m3 and lies 2,270 m above sea level. The reservoir is used for power generation, water supply and environmental improvement. Dissolved manganese (Mn) is removed from reservoir water dedicated to domestic use by purification processes. Removal of Mn, however, poses a major challenge to purification processes and warrants the study of ways to naturally reduce dissolved Mn levels in the reservoir. The source of Mn within the reservoir is not well understood, however, presumably arises from sediment mobilization initiated by variation in pH, redox potential (ORP or Eh), dissolved oxygen (O2) and ionic strength conditions. This study investigated conditions within the reservoir to further understand Mn transfer from the sediment into the water column. O2, pH, oxidation–reduction potential (ORP or Eh), organic matter content and electric conductivity were measured in water samples and sediment from the reservoir. Sequential extraction (SE) procedures were used to test the specific effects exerted by each of these conditions on Mn mobilization from the sediments. The European Community Bureau of Reference (BCR) sequential extraction procedure was used to quantify metals in sediment (referred to as the BCR extraction below). Statistical analysis of geochemical data from water samples (both water column and sediment pore water) and sediments demonstrated the conditions under which Mn can be released from sediments into the water column. The results indicated a primarily oxic water column and anoxic reducing conditions in the sediment (ORP or Eh ≤ ?80 mV). The pH of water in contact with bottom sediments varied from 7.6 to 6.8. The pH of sedimentary pore water varied from 6.8 to 4.7. The sediments contained significant amounts of organic matter (20 %). Chemical extractions showed that the exchangeable fraction contained over 50 % of the total Mn within sediments. Microscopic analysis using scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) indicated that Mn does not occur within well-crystallized mineral phases in the Riogrande II sediments. A large proportion of Mn exists instead as material adsorbed onto the surfaces of recently deposited sediment particles. Bacterial oxidation of organic matter may cause the observed anoxic conditions at the bottom of the reservoir. Mineralization of organic matter therefore contributes to reducing conditions within the sediments. Mobilization of Mn from the sediment into the water column may result from reductive dissolution of this fraction. Manganese release by this mechanism diminishes the water quality of the Riogrande II reservoir and warrants further study.  相似文献   

19.
 Sediment and its associated pore water were collected from a zoned, freshwater, riparian wetland, located in the Talladega National Forest, northeastern Hale County, Alabama, to study the porewater chemistry and its spatial changes within and between the wetland ecological zones. Obvious changes in pH, Eh and element concentrations were observed between the different wetland ecological zones. Major cations (Ca, Mg, and Na) and trace elements (B, Ba, Sr, and Mn) have very good spatial correlation with Fe and Mn distributions, both in the pore water and the sediment, suggesting that adsorption on, and desorption from, iron and manganese oxyhydroxides are important processes controlling the distributions of these elements in the wetland sediment. However, an equilibrium adsorption model is not able to explain the distribution of trace elements between the pore water and sediment. A redox kinetic model gives similar vertical profiles for iron and the correlated elements as those measured in the field and thus suggests that the relative rates of ferrous iron oxidation and the reductive dissolution of ferric iron in the sediment are important variables determining the distributions of these elements in the wetland pore waters. Received: 31 October 1996 · Accepted: 27 May 1997  相似文献   

20.
The potential release of metals from anoxic sediments exposed to oxygen was investigated by using a synthetic preparation of metal sulphides dominated by solid phase FeS. The technique of DGT (diffusive gradients in thin-films) was used to measure sulphide and Fe, Mn and Ni in the anoxic metal-sulphide slurry, which had a pH of 6.4. Speciation calculations based on these data showed there was moderate supersaturation with respect to amorphous FeS in the solution phase. Measurements made using DGT with a range of diffusion layer thicknesses showed that when Fe, Mn and Ni are removed from solution there is fairly rapid (minutes) release from the solid phase, that is reasonably well sustained. This presumed desorptive release will be responsible for elevated concentrations of some metals in solution when sediments are resuspended. Oxidation of the slurry by bubbling with air rapidly (hours) removed Fe, Mn and Ni from the pore water solution. While Fe concentrations in solution remained low after the removal, Mn and Ni were transiently released. These results were consistent with initial rapid oxidation of Fe(II) to oxyhydroxides, which remove Mn(II) and Ni by adsorption. The slower oxidation of FeS then releases Mn and Ni, but these too are eventually removed by adsorption to iron oxyhydroxides. These data suggest that oxidation of metal sulphides will contribute to the release of metals from sediment disturbed by dredging or remedial aeration, but it is likely to be short lived, with complete removal within a day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号