首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We evaluate the impact of exceptionally sparse plant cover (0-20%) and rainfall (2-114 mm/yr) on the stable carbon and oxygen composition of soil carbonate along elevation transects in what is among the driest places on the planet, the Atacama Desert in northern Chile. δ13C and δ18O values of carbonates from the Atacama are the highest of any desert in the world. δ13C (VPDB) values from soil carbonate range from −8.2‰ at the wettest sites to +7.9‰ at the driest. We measured plant composition and modeled respiration rates required to form these carbonate isotopic values using a modified version of the soil diffusion model of [Cerling (1984) Earth Planet. Sci. Lett.71, 229-240], in which we assumed an exponential form of the soil CO2 production function, and relatively shallow (20-30 cm) average production depths. Overall, we find that respiration rates are the main predictor of the δ13C value of soil carbonate in the Atacama, whereas the fraction C3 to C4 biomass at individual sites has a subordinate influence. The high average δ13C value (+4.1‰) of carbonate from the driest study sites indicates it formed—perhaps abiotically—in the presence of pure atmospheric CO218O (VPDB) values from soil carbonate range from −5.9‰ at the wettest sites to +7.3‰ at the driest and show much less regular variation with elevation change than δ13C values. δ18O values for soil carbonate predicted from local temperature and δ18O values of rainfall values suggest that extreme (>80% in some cases) soil dewatering by evaporation occurs at most sites prior to carbonate formation. The effects of evaporation compromise the use of δ18O values from ancient soil carbonate to reconstruct paleoelevation in such arid settings.  相似文献   

2.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

3.
Diamonds from high- and low-MgO groups of eclogite xenoliths from the Jericho kimberlite, Slave Craton, Canada were analyzed for carbon isotope compositions and nitrogen contents. Diamonds extracted from the two groups show remarkably different nitrogen abundances and δ13C values. While diamonds from high-MgO eclogites have low nitrogen contents (5-82 ppm) and extremely low δ13C values clustering at ∼−40‰, diamonds from the low-MgO eclogites have high nitrogen contents (>1200 ppm) and δ13C values from −3.5‰ to −5.3‰.Coupled cathodoluminescence (CL) imaging and SIMS analysis of the Jericho diamonds provides insight into diamond growth processes. Diamonds from the high-MgO eclogites display little CL structure and generally have constant δ13C values and nitrogen contents. Some of these diamonds have secondary rims with increasing δ13C values from −40‰ to ∼−34‰, which suggests secondary diamond growth occurred from an oxidized growth medium. The extreme negative δ13C values of the high-MgO eclogite diamonds cannot be produced by Rayleigh isotopic fractionation of average mantle-derived carbon (−5‰) or carbon derived from typical organic matter (∼−25‰). However, excursions in δ13C values to −60‰ are known in the organic sedimentary record at ca. 2.7 and 2.0 Ga, such that diamonds from the high-MgO eclogites could have formed from similar organic matter brought into the Slave lithospheric mantle by subduction.SIMS analyses of a diamond from a low-MgO eclogite show an outer core with systematic rimwards increases in δ13C values coupled with decreases in nitrogen contents, and a rim with pronounced alternating growth zones. The coupled δ13C-nitrogen data suggest that the diamond precipitated during fractional crystallization from an oxidized fluid/melt from which nitrogen was progressively depleted during growth. Model calculations of the co-variation of δ13C-N yielded a partition coefficient (KN) value of 5, indicating that nitrogen is strongly compatible in diamond relative to the growth medium. δ13C values of diamond cores (−4‰) dictate the growth medium had higher δ13C values than primary mantle-derived carbon. Therefore, possible carbon sources for the low-MgO eclogite diamonds include oxidized mantle-derived (e.g. protokimberlite or carbonatite) fluids/melts that underwent some fractionation during migration or, devolatilized subducted carbonates.  相似文献   

4.
The distribution of archaeal lipids, including archaeol and glycerol dibiphytanyl glycerol tetraethers (GDGTs), in dolomite concretions and surrounding sediment from the Monterey Formation (Miocene) and the Sisquoc Formation (Miocene-Pliocene) were examined to distinguish planktic from benthic contributions. For this purpose, dolomites with positive δ13C values (+7‰ to +13‰) were chosen; such highly positive values point to pronounced methanogenesis of benthic archaea in the sedimentary column. At first glance, distributions and relative abundances of GDGTs in both dolomites and background sediment were similar, resembling patterns of marine planktic crenarchaea. A contribution of benthic euryarchaea to the GDGT pool became evident only from variations in the δ13C values of different biphytanes obtained after ether cleavage of GDGTs. Whereas bi- and tricyclic biphytanes had an isotopic signal typical of planktic archaea (δ13C −23.6‰ to −20.5‰ and −23.4‰ to −21.2‰, respectively) for both dolomite and background sediment, acyclic and monocyclic biphytanes showed lower values for dolomite samples (−25.1‰ to −22.6‰ and −27.6‰ to −24.7‰, respectively), indicating a contribution of lipids from benthic archaea. The isoprenoid diether archaeol (δ13C −23.9‰ to −22.9‰), assigned to euryarchaea, was only detected in dolomite samples, also reflecting additional input from sedimentary archaea, probably autotrophic methanogens. The occurrence of lipids derived from methanogenic archaea agrees with the strong 13C-enrichment of dolomites and with mineral formation taking place in the zone of archaeal methanogenesis. This implies that the lipid biomarker inventory of sedimentary strata needs to be interpreted carefully, as it is often not straightforward to discriminate between input from the water column and sedimentary microbial activity.  相似文献   

5.
High molecular weight dissolved organic matter (HMW-DOM) represents an important component of dissolved organic carbon (DOC) in seawater and fresh-waters. In this paper, we report measurements of stable carbon (δ13C) isotopic compositions in total lipid, total hydrolyzable amino acid (THAA), total carbohydrate (TCHO) and acid-insoluble “uncharacterized” organic fractions separated from fourteen HMW-DOM samples collected from four U.S. estuaries. In addition, C/N ratio, δ13C and stable nitrogen (δ15N) isotopic compositions were also measured for the bulk HMW-DOM samples. Our results indicate that TCHO and THAA are the dominant organic compound classes, contributing 33-46% and 13-20% of the organic carbon in HMW-DOM while total lipid accounts for only <2% of the organic carbon in the samples. In all samples, a significant fraction (35-49%) of HMW-DOM was included in the acid-insoluble fraction. Distinct differences in isotopic compositions exist among bulk samples, the compound classes and the acid-insoluble fractions. Values of δ13C and δ15N measured for bulk HMW-DOM varied from −22.1 to −30.1‰ and 2.8 to 8.9‰, respectively and varied among the four estuaries studied as well. Among the compound classes, TCHO was more enriched in 13C (δ13C = −18.5 to −22.8‰) compared with THAA (δ13C = −20.0 to −29.6‰) and total lipid (δ13C = −25.7 to −30.7‰). The acid-insoluble organic fractions, in general, had depleted 13C values (δ13C = −23.0 to −34.4‰). Our results indicate that the observed differences in both δ13C and δ15N were mainly due to the differences in sources of organic matter and nitrogen inputs to these estuaries in addition to the microbial processes responsible for isotopic fractionation among the compound classes. Both terrestrial sources and local sewage inputs contribute significantly to the HMW-DOM pool in the estuaries studied and thus had a strong influence on its isotopic signatures.  相似文献   

6.
Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with δD values from −64‰ to −25‰. All samples are enriched in water relative to fresh basalts. The δD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with δ13C values from −14.9‰ to −26.6‰. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with δ13C = −4.5‰ and (2) an organic compound with δ13C = −26.6‰. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when “fresh” oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ∼ −4.7‰, similar to the δ13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 × 1012 molC/yr.  相似文献   

7.
Large shifts in the isotopic compositions of organic matter (OM) in lake sediments, over the last few hundred years, are commonly interpreted as representing changes in photosynthetic productivity corresponding to eutrophication or in the input of terrestrial OM due to human disturbances. Based on multiple-proxy data (C:N ratio, δ13C and δ15N of OM, δ13C of calcite, lithology and fossil pollen) from a 700-year sediment core at White Lake, New Jersey (USA), we propose a new explanation that relates these large shifts in OM δ13C and δ15N to human-induced changes in aquatic OM producers. Combined records of geochronology, fossil pollen and lithology from White Lake reveal that the upland forest was cleared by European settlers for farmland beginning around 1745 A.D. and has gradually reforested since 1930 after the abandonment of the farmlands. For the pre-agricultural period, OM had relatively constant but extremely low δ13CVPDB (−35.8 to −34.5‰) and δ15NAir (−3.5 to −2.5‰) and high atomic C:N ratios (13.7 to 16.7), indicating a stable anoxic lake environment with prominent microbial producers. Following the human disturbance (since 1745), high OM mass accumulation rates and abundances of the green alga Pediastrum indicate an increase in aquatic photosynthetic productivity due to enhanced nutrient input from disturbed uplands. However, carbonate δ13C remains constant or even decreases during this period, implying that increasing productivity did not elevate the δ13C of dissolved inorganic carbon and thus cannot explain the observed large increase in OM δ13C (7.4‰) and δ15N (5.8‰) over this period. Instead, δ13C, δ15N and C:N ratios of OM and differences in δ13C between calcite and OM suggest that the large increase in OM δ13C and δ15N can be attributed to a human-induced ecological shift in the predominant organic source from anaerobic bacteria to autotrophic phytoplankton. During the post-agricultural period, mass accumulation rates of OM, carbonate and silicate, and the δ13C of OM and calcite all decreased significantly, corresponding to stabilization of the uplands. However, over the last 70 years, an intensifying aquatic stress from the deposition of 15N-enriched industrial pollutants has resulted in a steady increase of 1.9‰ in δ15N. Proxy records for lake (δ13C and δ15N of OM) and upland conditions (pollen and silicates) at White Lake show complex trajectories of the aquatic and terrestrial ecosystems in response to past human disturbances.  相似文献   

8.
The presence of modern methane seeps at Hydrate Ridge, offshore Oregon, provide an opportunity to study the influence of methane seeps on the ecology and geochemistry of living foraminifera. A series of cores were collected from the southern summit of Hydrate Ridge in 2002. Samples were preserved and stained to determine the δ13C composition of three species of live (stained) and dead benthic foraminifera: Uvigerina peregrina, Cibicidoides mckannai, and Globobulimina auriculata. Specimens were examined under light and Scanning Electron Microscopy (SEM) and exhibit no evidence of diagenesis or authigenic carbonate precipitation. Individual living foraminifera from seep sites recorded δ13C values from −0.4‰ to −21.2‰, indicating the isotopic influence of high methane concentrations. Average δ13C values (calculated from single specimens) range from −1.28 to −5.64‰ at seep sites, and −0.81 to −0.85‰ at a control (off seep) site.Two distinct seep environments, distinguished by the presence of microbial mats or clam fields, were studied to determine environmental influences on δ13C values. Individual foraminifera from microbial mat sites exhibited more depleted δ13C values than those from clam field sites. We interpret these differences as an effect of food source and/or symbiotic microbes on foraminiferal carbon isotopic values, acting to magnify the negative δ13C values recorded via the DIC pool. No statistical difference was found between δ13C values of live vs. dead specimens. This suggests that authigenic carbonate precipitation did not play a dominant role in the observed isotopic compositions. However, a few dead specimens with extremely negative δ13C composition (<-12‰) do indicate potential evidence for an authigenic influence on the recorded δ13C composition.  相似文献   

9.
MIS 11 is often considered to be the best climatic analogue for the Holocene. Many studies have suggested, however, that it is a period of extreme climate warmth comparable in temperatures to the Middle and Late Pliocene. In Britain deposits of the Hoxnian interglacial are correlated to MIS 11 and multi-proxy techniques can be used to reconstruct the climate of this interglacial. Soil, groundwater and freshwater carbonates are common in Hoxnian deposits and the stable isotopic composition of these precipitates can be used to increase our understanding of MIS 11 environments in Britain. Carbonates from Marks Tey, Clacton, Swanscombe, Elveden and West Stow are studied, the stratigraphic context of which indicates that their formation is broadly synchronous (in the mid-Hoxnian, pollen zones Ho II to Ho III). The carbon isotopic composition of groundwater and pedogenic carbonates is typically depleted with respect to δ13C (ca −9 to −8‰ VPDB) reflecting uptake of plant respired CO2 during water migration/recharge. The carbon isotopic composition of lacustrine carbonate is more enriched with respect to δ13C (ca 0-1‰VPDB) reflecting the equilibration of lake waters with atmospheric CO2. The δ18O of groundwater and pedogenic carbonates is slightly more enriched than modern soil carbonates but not as enriched as soil carbonates formed under interglacials that were warmer than the Holocene (i.e. the Cromerian). The stable isotopic composition of Hoxnian carbonates does not, therefore, indicate that this interglacial was characterised by uniquely warm climates in the context of other Middle Pleistocene interglacials and the Holocene. This is contrary to many marine and littoral records from around the world but consistent with environmental records from Britain and Europe.  相似文献   

10.
In-situ ion microprobe measurements of carbon isotopic compositions of graphite were made in seven metasediments and two carbonate rocks from the ca. 3.8 Ga Isua supracrustal belt, West Greenland. The δ13C values of micron-scale graphite globules in the metasediments and the carbonate rocks vary from -18 to +2‰ and from -7 to -3‰, respectively. The maximum δ13C value of graphite globules in the metasediment rises from -14 to -5‰, as the metamorphic grade increases from epidote-amphibolite to upper amphibolite facies. In a single hand specimen, the δ13C values of graphite inclusions in garnet are ∼7‰ lower on average than those outside garnet. Similarly, graphite armored by quartz apparently shows a few permil lower δ13C values than those on grain boundaries between noncarbonate minerals. The fact that early crystallized minerals include relatively 13C-depleted graphite indicates that the regional metamorphism increased the δ13C values of the Isua graphite. This is consistent with the regional trend of 13C-enrichment accompanied by the increase of metamorphic grade. The minimum fractionation between graphite and carbonate is consistent with the equilibrium fractionation at about 400 to 550 °C. These observations indicate that isotopic exchange with isotopically heavy carbonate caused 13C-enrichment of Isua graphite. The δ13C values of graphite reported here (δ13C > -18‰) were produced either as a metamorphic modification of organic carbon with initially much lower δ13C values, or as an abiological reaction such as decomposition of carbonate. If the isotopic exchange between carbonate and graphite during regional metamorphism controlled the 13C-enrichment of Isua graphite, previously reported large 13C-depletion of graphite, especially armored by apatite (Mojzsis et al., 1996) was probably premetamorphic in origin. This supports the existence of life at Isua time (ca. 3.8 Ga).  相似文献   

11.
Microorganisms are ubiquitous in deep subsurface environments, but their role in the global carbon cycle is not well-understood. The natural abundance δ13C and Δ14C values of microbial membrane phospholipid fatty acids (PLFAs) were measured and used to assess the carbon sources of bacteria in sedimentary and granitic groundwaters sampled from three boreholes in the vicinity of the Tono Uranium Mine, Gifu, Japan. Sample storage experiments were performed and drill waters analyzed to characterize potential sources of microbial contamination. The most abundant PLFA structures in all waters sampled were 16:0, 16:1ω7c, cy17:0, and 18:1ω7c. A PLFA biomarker for type II methanotrophs, 18:1ω8c, comprised 3% and 18% of total PLFAs in anoxic sedimentary and granitic waters, respectively, sampled from the KNA-6 borehole. The presence of this biomarker was unexpected given that type II methanotrophs are considered obligate aerobes. However, a bacterium that grows aerobically with CH4 as the sole energy source and which also produces 56% of its total PLFAs as 18:1ω8c was isolated from both waters, providing additional evidence for the presence of type II methanotrophs. The Δ14C values determined for type II methanotroph PLFAs in the sedimentary (−861‰) and granite (−867‰) waters were very similar to the Δ14C values of dissolved inorganic carbon (DIC) in each water (∼−850‰). This suggests that type II methanotrophs ultimately derive all their carbon from inorganic sources, whether directly from DIC and/or from CH4 produced by the reduction of DIC. In contrast, δ13C values of type II PLFAs in the sedimentary (−93‰) and granite (−60‰) waters indicate that these organisms use different carbon assimilation schemes in each environment despite very similar δ13CCH4 values (∼−95‰) for each water. The δ13CPLFA values (−28‰ to −45‰) of non-methanotrophic bacteria in the KNA-6 LTL water do not clearly distinguish between heterotrophic and autotrophic metabolisms, but Δ14CPLFA values indicate that >65% of total bacteria filtered from the KNA-6 LTL water are heterotrophs. Ancient Δ14C values (∼−1000‰) of some PLFAs suggest that many heterotrophs utilize ancient organic matter, perhaps from lignite seams within the sedimentary rocks. The more negative range of δ13CPLFA values determined for the KNA-6 granitic water (−42‰ to −66‰) are likely the result of a microbial ecosystem dominated by chemolithoautotrophy, perhaps fuelled by abiogenic H2. Results of sample storage experiments showed substantial shifts in microbial community composition and δ13CPLFA values (as much as 5‰) during 2-4 days of dark, refrigerated, aseptic storage. However, water samples collected and immediately filtered back in the lab from freshly drilled MSB-2 borehole appeared to maintain the same relative relationships between δ13CPLFA values for sedimentary and granitic host rocks as observed for samples directly filtered under artesian flow from the KNA-6 borehole of the Tono Uranium Mine.  相似文献   

12.
More than 600 specimens of ∼3.5 Ga-old hydrothermal silica dikes from the North Pole area, Pilbara craton, Western Australia, have been studied petrographically. The kerogens in 44 samples have been analyzed isotopically (C and N) and chemically (C, N, and H). The silica dikes are composed mainly of fine-grained silica (modal abundance: >97%) and are classified into two types by minor mineral assemblages: B(black)-type and G(gray)-type. The B-type silica dikes contain kerogen (0.37 to 6.72 mgC/g; average 2.44 mgC/g, n = 21) and disseminated sulfides, dominantly pyrite and Fe-poor sphalerite. In some cases, carbonate and apatite are also present. Their silica-dominated and sulfide-poor mineral assemblages suggest precipitation from low-temperature reducing hydrothermal fluid (likely 100-200°C). On the other hand, the G-type silica dikes are sulfide-free and concentrations of kerogen are relatively low (0.05 to 0.41 mgC/g; average 0.17 mgC/g, n = 13). They typically contain Fe-oxide (mainly hematite) which commonly replaces cubic pyrite and rhombic carbonate. Some G-types occur along secondary quartz veins. These textures indicate that the G-type silica dikes were formed by postdepositional metasomatism (oxidation) of the B-types, and that the B-types probably possess premetasomatic signatures. The δ13C values of kerogen in the B-types are −38.1 to −33.1‰ (average −35.9‰, n = 21), which are ∼4‰ lower than those of the G-types (−34.5 to −30.0‰; average −32.2‰, n = 19), and ∼6‰ lower than bedded chert (−31.2 to −29.4‰; average −30.5‰, n = 4). This indicates the preferential loss of 12C during the metasomatism (estimated fractionation factor: 0.9985). Considering the metasomatic effect on carbon isotopes with probably minor diagenetic and metamorphic overprints, we conclude that the original δ13C values of the kerogen in the silica dikes would have been heterogeneous (∼5‰) and at least some material had initial δ13C values of ≤ −38‰. The inferred 13C-depletions of organic carbon could have been produced by anaerobic chemoautotrophs such as methanogen, but not by aerobic photoautotrophs. This is consistent with the estimated physical and chemical condition of the hydrothermal fluid, which was probably habitable for anaerobic and thermophilic/hyperthermophilic chemoautotrophs. Alternatively, the organic matter may have been possibly produced by abiological reaction such as Fischer-Tropsch Type (FTT) synthesis under the hydrothermal condition. However, the estimated condition is inconsistent with the presence of the effective catalysts for the FTT reaction (i.e., Fe-Ni alloy, magnetite, and hematite). These lines of evidence suggest the possible existence of biosphere in the ∼3.5 Ga sub-seafloor hydrothermal system.  相似文献   

13.
Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron-accepting process. Further, the isotopic relationship suggests a relative increase in acetate flow to acetoclastic methanogenesis with depth although its contribution to total methanogenesis is probably small. Our study demonstrates how the stable carbon isotope biogeochemistry of acetate can be used to identify pathways of microbial carbon turnover in subsurface environments. Our observations also raise new questions regarding the factors controlling acetate turnover in marine sediments.  相似文献   

14.
The isotopic (δD, δ18O, δ13C, and 87Sr/86Sr) and geochemical characteristics of hydrothermal solutions from the Mid-Atlantic Ridge and the material of brucite-carbonate chimneys at the Lost City hydrothermal field at 30°N, MAR, were examined to assay the role of the major factors controlling the genesis of the fluid and hydrothermal chimneys of the Lost City field. The values of δD and δ18O in fluid samples indicates that solutions at the Lost City field were produced during the serpentinization of basement ultramafic rocks at temperatures higher than 200°C and at relatively low fluid/rock ratios (<1). The active role of serpentinization processes in the genesis of the Lost City fluid also follows from the results of the electron-microscopic studying of the material of hydrothermal chimneys at this field. The isotopic (δ18O, δ13C, and 87Sr/86Sr) and geochemical (Sr/Ca and REE) signatures indicate that, before its submarine discharging at the Lost City field, the fluid filtered through already cold altered outer zones of the Atlantis Massif and cooled via conductive heat loss. During this stage, the fluid could partly dissolve previously deposited carbonates in veins cutting serpentinite at the upper levels of the Atlantis Massif and the carbonate cement of sedimentary breccias underlying the hydrothermal chimneys. Because of this, the age of modern hydrothermal activity at the Lost City field can be much younger than 25 ka.  相似文献   

15.
Understanding past climate change is critical to the interpretation of earth history. Even though relative temperature change has been readily assessed in the marine record, it has been more difficult in the terrestrial record due to restricted taxonomic distribution and isotopic fractionation. This problem could be overcome by the use of multiple paleoproxies. Therefore, the δ18O isotopic composition of five paleoproxies (rodent tooth enamel, δ18OPhosphate = +17.7 ± 2.0‰ n = 74 (VSMOW); fish scale ganoine δ18OPhosphate = +19.7 ± 0.7‰ n = 20 (VSMOW); gastropod shell δ18OCalcite = −1.7 ± 1.3‰ n = 50 (VPDB); charophyte gyrogonite δ18OCalcite = −2.4 ± 0.5‰ n = 20 (VPDB); fish otolith δ18OAragonite = δ18O = −3.6 ± 0.6‰ n = 20 (VPDB)) from the Late Eocene (Priabonian) Osborne Member (Headon Hill Formation, Solent Group, Hampshire Basin, UK) were determined. Because diagenetic alteration was shown to be minimal the phosphate oxygen component of rodent tooth enamel (as opposed to enamel carbonate oxygen) was used to calculate an initial δ18OLocal water value of 0.0 ± 3.4‰. However, a skewed distribution, most likely as a result of the ingestion of evaporating water, necessitated the calculation of a corrected δ18OLocal water value of −1.3 ± 1.7‰ (n = 62). This δ18OLocal water value corresponds to an approximate mean annual temperature of 18 ± 1°C. Four other mean paleotemperatures can also be calculated by combining the δ18OLocal water value with four independent freshwater paleoproxies. The calculated paleotemperature using the fish scale thermometry equations most likely represents the mean temperature (21 ± 2°C) of the entire length of the growing season. This should be concordant with the paleotemperature calculated using the Lymnaea shell thermometry equation (23 ± 2°C). The lack of concordance is interpreted to be the result of diagenetic alteration of the originally aragonitic Lymnaea shell to calcite. The mean paleotemperature calculated using the charophyte gyrogonite thermometry equation (21 ± 2°C), on the other hand, most likely represents the mean temperature of a single month toward the end of the growing season. The fish otolith mean paleotemperature (28 ± 2°C) most likely represents the mean temperature of the warmest months of the growing season. An approximate mean annual temperature of 18 ± 1°C, in addition to a mean growing season paleotemperature of 21 ± 2°C (using fish scale only) with a warmest month temperature of 28 ± 2°C, and high associated standard deviations suggest that a subtropical to warm temperate seasonal climate existed during the deposition of the Late Eocene Osborne Member.  相似文献   

16.
Nitrogen and carbon isotopic compositions, together with mineralogy and trace element geochemistry, were studied in a few kerogen-rich Paleoarchean cherts, a barite and a dolomitic stromatolite belonging to the eastern (Dixon Island Formation) and western (Dresser and Strelley Pool Chert Formations; North Pole Dome and Marble Bar) terranes of Pilbara Craton, Western Australia. The aim of the study was to search for 15N-depleted isotopic signatures, often found in kerogens of this period, and explain the origin of these anomalies. Trace elements suggest silica precipitation by hydrothermal fluids as the main process of chert formation with a contamination from volcanoclastic detritus. This is supported by the occurrence of hydrothermal-derived minerals in the studied samples indicating precipitation temperatures up to 350 °C. Only a dolomitic stromatolite from Strelley Pool shows a superchondritic Y/Ho ratio of 72 and a positive Eu/Eu* anomaly of 1.8, characteristic of chemical precipitates from the Archean seawater. The bulk δ13C vs. δ15N values measured in the cherts show a roughly positive co-variation, except for one sample from the North Pole (PI-85-00). The progressive enrichment in 15N and 13C from a pristine source having δ13C ? −36‰ and δ15N ? −4‰ is correlated with a progressive depletion in N content and to variations in Ba/La and Co/As ratios. These trends have been interpreted as a progressive hydrothermal alteration of the cherts by metamorphic fluids. Isotopic exchange at 350 °C between NH4+(rock) and N2(fluid) may explain the isotopic and elemental composition of N in the studied cherts. However, we need to assume isotopic exchange at 350 °C between carbonate C and graphite to explain the large 13C enrichment recorded. Only sample PI-85-00 shows a large N loss (90%) with a positive δ15N value (+11‰), while C (up to 120 ppm and δ13C −38‰) seems to be unaffected. This pattern has been interpreted as the result of devolatilization and alteration (oxidation) of graphite by low-temperature fluids. The 15N-13C-depleted pristine source has δ 15N values from −7‰ to −4‰ and 40Ar/36Ar ratios from 30,000 to 60,000, compatible with an inorganic mantle N source, although the elemental abundance ratios N/C and 40Ar/C are not exactly the same with the mantle source. The component alternatively could be explained by elemental fractionation from metabolic activity of chemolithoautotrophs and methanogens at the proximity to the hydrothermal vents. However, ambiguities between mantle vs organic sources of N subsist and need further experimental work to be fully elucidated.  相似文献   

17.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

18.
Stable carbon isotopes of organic matter and fossilized plant remains can be used to effectively reconstruct local palaeoclimate changes, especially from plants using a single photosynthetic mode. The charred grains of foxtail and common millet are chemically stable in the environment and have been preserved widely and continuously throughout the Holocene in North China. The charred remains of these species are ideal materials for reconstructing the palaeoclimate based on δ13C of foxtail and common millets heated to temperatures up to around 250 °C. This study reports δ13C values of modern millets carbonized at different temperatures. The results indicate that there are no significant changes in δ13C of intact and charred samples of foxtail millet (?0.46‰) and common millet (?0.49‰) for temperatures below 300 °C. The δ13C of charred foxtail millet formed at 250 °C were 0.2‰ higher in δ13C than the source samples. In contrast, the δ13C of charred common millet formed at 250 °C were 0.2‰ lighter in δ13C than the source samples. The δ13C values of grains were determined in part by the carbon content (i.e., starches, lignins and lipids) and the variable thermal tolerances of these compounds to heating. However, the observed 13C carbonization associated with fractionation of only 0.2‰ in grains is much less than the natural variation typically found in wood. We therefore suggest that δ13C measured in carbonized grains can serve as an effective indicator for paleoenvironmental and archaeological reconstructions.  相似文献   

19.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

20.
Radiocarbon analyses of bulk carbon and individual organic compounds are presented for the hydrothermal environment of the Rebecca’s Roost vent in the southern trough of the Guaymas Basin hydrothermal field. The Δ14C values of CO2 and CH4in the hottest hydrothermal fluids (317°C) are nearly “radiocarbon dead” (−944‰ and −923‰, respectively). In contrast, the Δ14C values of sediments and individual fatty acids (−418‰ to −227‰) obtained from a bacterial mat located south of the vent site are similar to values previously reported for hydrothermal petroleum in this environment and are more depleted in 14C than overlying waters. Hydrothermal fluids moving through the sediments appear to supply 14C of intermediate age to the bacteria. This carbon may take the form of, or may be supplied by processes similar to, the generation of hydrothermal petroleum. Although the bacterial mat visibly was dominated by Beggiatoa spp., such mats are known to include numerous other species. Individual compound data show that preaged carbon is being consumed by the integrated bacterial assemblage. Values of δ13C and Δ14C indicate that petroleum-derived carbon is incorporated directly into fresh bacterial biomass. Subsequently, some of this newly synthesized material also is consumed by heterotrophs, as eukaryotic sterols from the same sample also have 14C-depleted values (Δ14C = −136‰ to −110‰). Therefore, the entire system may operate as a complex consortium to transform relict carbon back into biomass. Bacterial consumption of relict carbon occurs despite the ample supply of fresh carbon delivered from the productive, overlying water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号