首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
作为低影响开发(Low Impact Developmet, LID)措施之一,城市雨水花园集中入渗雨水径流可增加对城区地下水的补给。根据一现场监测试验,研究了长期(监测期3年)及短期(降雨3天内)雨水花园入渗点及对照点地下水位与水质的变化,分析了集中入渗的效果和影响范围。结果表明:① 雨水花园对入渗区地下水位产生了显著影响(α=0.01);② 氨氮(NH4-N)在3年及雨后3日的观测值均显著小于对照值;总氮(TN)指标在短期增加显著,长期均值增加不显著。③ 硝态氮(NO3-N)浓度在降雨后有所升高,但不显著,几个观测点浓度有增有减;总磷(TP)浓度的短期值和长期均值有增有减。对于类似研究区地下水位在2~3 m的情况,集中入渗雨水径流可有效补给地下水,对氮素影响明显,对磷影响有限。  相似文献   

2.
卡拉哈瑞(K alah ari)成矿带上有世界著名的铜、金、镍矿产,其中纳米比亚辛克莱特大型铜矿和赞比亚特大型铜矿,已探明储量占世界的10%.该成矿带经纳米比亚~博茨瓦纳~赞比亚,长1500km ,宽15 km .博茨瓦纳位于该成矿带的中段,境内长约500 km 、宽10 km .1982年西方一家公司在乔贝(C hobe)地区的古哈山钻探验证航磁异常,寻找成矿潜力区.在深部见多层铜、金矿体.1995年 A stra E xploration and M ining C om pany(Pty)Ltd 公司在卡拉哈瑞成矿带乔贝(C hobe)地区完成了航磁调查和重力异常调查  相似文献   

3.
浅议水源热泵系统中的地下水回灌   总被引:1,自引:0,他引:1  
胡海军  李春晖 《地下水》2010,32(2):49-50
通过对水源热泵使用现状的调查,分析水源热泵的应用范围,同时对水源热泵系统中地下水回灌进行剖析,比较不同类型回灌的效果及所产生的影响,指出最优化的回灌思路,并针对其实际应用过程提出严格成井工艺,制定国内相关技术标准,加强对现有的项目的跟监控等几项推广建议。  相似文献   

4.
The Agadir-Essaouira area in the occidental High Atlas Mountains of Morocco is characterized by a semi-arid climate. The scarcity and quality of water resources, exacerbated by long drought periods, constitute a major problem for a sustainable development of this region. Groundwater resources of carbonate units within Jurassic and Cretaceous aquifers are requested for drinking and irrigation purposes. In this study, we collected 84 samples from wells, boreholes, springs, and rivers. Hydrochemical and isotopic data were used to examine the mineralization and origin of water, which control groundwater quality. The chemical composition of water seems to be controlled by water-rock interactions, such as dissolution of carbonates (calcite and dolomite), weathering of gypsum, as well as ion exchange processes, which explain the observed variability. Stable isotopes results show that groundwater from the mainly marly Cretaceous aquifer are submitted to an evaporation effect, while samples from the chiefly calcareous Jurassic aquifer indicate a meteoric origin, due to a rapid infiltration of recharge runoff through the karstic outcrops. The low values of δ18O and δ2H suggest a local recharge from areas with elevations ranging from 400 to 1200 m for the Cretaceous aquifer and from 800 to 1500 m for the Jurassic units.  相似文献   

5.
The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular, little is known about the impact of transferred water on surface water and groundwater.In this study, Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer, respectively.Generally, surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However, inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also, the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan, Na~+was exchanged into soil matrices during the leakage of the surface water.In addition, the transferred water resulted in surface water with good quality, and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking, deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration.  相似文献   

6.
Temporal and spatial changes of the hydrological cycle are the consequences of climate variations. In addition to changes in surface runoff with possible floods and droughts, climate variations may affect groundwater through alteration of groundwater recharge with consequences for future water management. This study investigates the impact of climate change, according to the Special Report on Emission Scenarios (SRES) A1B, A2 and B1, on groundwater recharge in the catchment area of a fissured aquifer in the Black Forest, Germany, which has sparse groundwater data. The study uses a water-balance model considering a conceptual approach for groundwater-surface water exchange. River discharge data are used for model calibration and validation. The results show temporal and spatial changes in groundwater recharge. Groundwater recharge is progressively reduced for summer during the twenty-first century. The annual sum of groundwater recharge is affected negatively for scenarios A1B and A2. On average, groundwater recharge during the twenty-first century is reduced mainly for the lower parts of the valley and increased for the upper parts of the valley and the crests. The reduced storage of water as snow during winter due to projected higher air temperatures causes an important relative increase in rainfall and, therefore, higher groundwater recharge and river discharge.  相似文献   

7.
The groundwater recharge and water fluxes of the Guarani Aquifer System in the state of Sao Paulo in Brazil were assessed through a numeric model. The study area (6,748 km2) comprises Jacaré-Guaçú and Jacaré-Pepira River watersheds, tributaries of the Tietê River in the central region of the state. GIS based tools were used in the storage, processing and analysis of data. Main hydrologic phenomena were selected, leading to a groundwater conceptual model, taking into account the significant outcrops occurring in the study area. Six recharge zones were related to the geologic formation and structures of the semi-confined and phreatic aquifer. The model was calibrated against the baseflows and static water levels of the wells. The results emphasize the strong interaction of groundwater flows between watersheds and the groundwater inflow into the rivers. It has been concluded that lateral groundwater exchanges between basins, the deep discharges to the regional system, and well exploitation were not significant aquifer outflows when compared to the aquifer recharge. The results have shown that the inflows from the river into the aquifer are significant and have the utmost importance since the aquifer is potentially more vulnerable in these places.  相似文献   

8.
An integrated approach was used to evaluate the impact of flash flood recharge on groundwater quality and its suitability for drinking, irrigation, livestock and poultry uses in the Wadi Baysh Basin, Western Saudi Arabia. Analyses of 182 groundwater samples, collected from the study area before and after a flash flood (FF) event, show that the average concentrations of TDS, Mg, Na, Cl, NO3 and EC decreased significantly after the event. The major water types (mixed CaMgCl, NaCl and CaCl) indicate that the infiltration of surface water from FF recharge has a great influence on groundwater chemistry. Drinking water suitability maps, created using WHO standards, indicate that wells located in the upstream region are suitable for drinking despite their high TDS and total hardness (TH) values. Groundwater in the coastal region is unsuitable due to its high salinity, high TH and high concentrations of major ions. The suitability of groundwater for irrigational use was assessed using salinity, sodium adsorption ratio, bicarbonate hazard, residual sodium carbonate, Kelly’s ratio, magnesium hazard, sodium percentage and permeability index values, which indicated that groundwater in the study region is suitable for most soils and crops. After FF, groundwater quality is improved by dilution, especially in the downstream region. USSL classification shows that the majority of the water samples are in the C3S1, C4S2, and C3S2 classes and are therefore suitable for the irrigation of salt-tolerant crops. Irrigational suitability maps suggest that wells in the upstream region are suitable for irrigation, whereas wells located near to the coast are unfit for irrigation. This study implies that construction of check dams in the dry valleys (wadies) may improve the groundwater quality in the area.  相似文献   

9.
Assessment of surface water and groundwater quality is necessary as it controls their usability for drinking and irrigation purposes. This study was carried out to assess the suitability of groundwater for these purposes and to understand the impact of water stored in a check dam on groundwater quality near Chennai, Tamil Nadu, India. Water samples were collected from a check dam across Arani River and 13 nearby wells during October 2010, January 2011, and April 2011. These samples were analyzed for pH, electrical conductivity (EC), and calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride, and sulfate concentrations. The World Health Organization and the Bureau of Indian Standards guidelines were used to assess the suitability of groundwater for the purpose of drinking. Suitability of water for irrigation was determined based on the EC, sodium adsorption ratio, US Salinity Laboratory diagram, percentage sodium, Wilcox’s diagram, Kelly’s index, and Doneen’s permeability index. About 38 % of the groundwater samples were suitable for drinking and 70 % were suitable for irrigational use. Water stored in the check dam and groundwater in the wells closer to the structure were suitable for both drinking and irrigation purposes. The study confirms that the check dam in this area improves the groundwater quality in its surroundings.  相似文献   

10.
甘肃西北部黑河流域中游地表径流和地下水补给变异特征   总被引:1,自引:0,他引:1  
大量实际资料和综合研究表明,在西北内陆区当人类活动影响强度超过37%时,地表径流过程由天然状态转变为以人为干扰为主,不仅造成下游区获得的地表径流量大幅减少,而且中游区地下水补给也失去自然特征,补给量明显减少,同时还影响地下水径流过程及其溢出量衰减,进而导致下游区生态环境需水更加紧缺和退化。调控中游区安全引水量和调整中游区种植产业结构,发展节水型农业,是解决黑河流域下游区生态环境问题的关键。  相似文献   

11.
To investigate the effect of recharge water temperature on bioclogging processes and mechanisms during seasonal managed aquifer recharge (MAR), two groups of laboratory percolation experiments were conducted: a winter test and a summer test. The temperatures were controlled at ~5±2 and ~15±3 °C, and the tests involved bacterial inoculums acquired from well water during March 2014 and August 2015, for the winter and summer tests, respectively. The results indicated that the sand columns clogged ~10 times faster in the summer test due to a 10-fold larger bacterial growth rate. The maximum concentrations of total extracellular polymeric substances (EPS) in the winter test were approximately twice those in the summer test, primarily caused by a ~200 μg/g sand increase of both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In the first half of the experimental period, the accumulation of bacteria cells and EPS production induced rapid bioclogging in both the winter and summer tests. Afterward, increasing bacterial growth dominated the bioclogging in the summer test, while the accumulation of LB-EPS led to further bioclogging in the winter test. The biological analysis determined that the dominant bacteria in experiments for both seasons were different and the bacterial community diversity was ~50% higher in the winter test than that for summer. The seasonal inoculums could lead to differences in the bacterial community structure and diversity, while recharge water temperature was considered to be a major factor influencing the bacterial growth rate and metabolism behavior during the seasonal bioclogging process.  相似文献   

12.
大量实际资料和综合研究表明,在西北内陆区当人类活动影响强度超过37%时,地表径流过程由天然状态转变为以人为干扰为主,不仅造成下游区获得的地表径流量大幅减少,而且中游区地下水补给也失去自然特征,补给量明显减少,同时还影响地下水径流过程及其溢出量衰减,进而导致下游区生态环境需水更加紧缺和退化。调控中游区安全引水量和调整中游区种植产业结构,发展节水型农业,是解决黑河流域下游区生态环境问题的关键。  相似文献   

13.
Detailed climatic records from land (glaciation curves, fossil records, etc.), sea (eustatic changes, deep-ses date), and air (Greenland 018 curve) are almost identical for the last 35,000 years. This cannot be a mere coincidence: it indicates that even minor fluctuations are caused by global climatic changes. The various records seem to be easily correlated with each other. The Last Ice Age is characterized by drastic changes between colder and warmer periods. The Present (Flandrian) Interglacial (Holocene Epoch) is also characterized by climatic fluctuations, although of minor amplitude. Analysis of peaks and bottoms in six Atlantic deep-sea cores gives a climatic sequence identical to the eustatic transgression/regression sequence, indicating the recording of global short-term warm/cold fluctuations. From these fluctuations, the climatic cyclicity was calculated. Two drastically frequency-changing cycles were found, one varying from 230 to 1,000 years and one from 1,000 to 3,600 years. A third cycle of 21,000 years was also estabished. The transition from the Last Ice Age to the Present Interglacial is marked by three major steps towards interglacial conditions; viz. at 12,7000, 10,000 and 9,300 radiocarbon years B. P. The 10,000 boundary has earler been suggested as the Pleistocene/Holocene boundary.  相似文献   

14.
A methodology is presented for assessing the average changes in groundwater recharge under a future climate. The method is applied to the 1,060,000 km2 Murray-Darling Basin (MDB) in Australia. Climate sequences were developed based upon three scenarios for a 2030 climate relative to a 1990 climate from the outputs of 15 global climate models. Dryland diffuse groundwater recharge was modelled in WAVES using these 45 climate scenarios and fitted to a Pearson Type III probability distribution to condense the 45 scenarios down to three: a wet future, a median future and a dry future. The use of a probability distribution allowed the significance of any change in recharge to be assessed. This study found that for the median future, climate recharge is projected to increase on average by 5% across the MDB but this is not spatially uniform. In the wet and dry future scenarios the recharge is projected to increase by 32% and decrease by 12% on average across the MDB, respectively. The differences between the climate sequences generated by the 15 different global climate models makes it difficult to project the direction of the change in recharge for a 2030 climate, let alone the magnitude.  相似文献   

15.
Quantification of groundwater recharge in the city of Nottingham, UK   总被引:10,自引:3,他引:10  
 Groundwater is an important and valuable resource for water supply to cities. In order to make full and wise use of the asset value, a clear understanding of the quantities and sources of urban groundwater recharge is needed. The water supply and disposal network is often an important source of recharge to urban groundwater through leakage from water mains and sewers. An approach to establishing the spatial and temporal amounts of the three urban recharge sources (precipitation, mains and sewers) is developed and illustrated using the Nottingham (UK) urban aquifer. A calibrated groundwater flow model is supplemented by calibrated solute balances for three conservative species (Cl, SO4 and total N), thus providing four lines of evidence to use in the recharge estimation. Nottingham is located on a Triassic sandstone aquifer with average precipitation of 700 mm/year. Using the models, current urban recharge is estimated to be 211 mm/year, of which 138 mm/year (±40%) is from mains leakage and 10 mm/year (±100%) is from sewer leakage. The wide confidence intervals result from the scarcity of historical field data and the long turnover time in this high volume aquifer, and should be significantly lower for many other aquifer systems. Received: 1 December 1997 · Accepted: 14 September 1998  相似文献   

16.
Land subsidence is a serious problem in Taiwan’s Yunlin area due to groundwater overpumping. There are safety risks in the high-speed railway structures in the areas of Siluo, Huwei, Tuku, and Yuanchang towns that run from north to south in the Yunlin area. Therefore, it is important to increase the groundwater recharge and to remedy the land subsidence in this area. The purpose of this study is to use the stream-flow estimation model (SF) and the groundwater flow numerical software MODFLOW (MF) to estimate the stream infiltration with consideration to the variation of the river water level in the Hsinhuwei River. The Ferris analytical model (FA) and MF are used to estimate the increased stream infiltration after the water level of the river rises. The hydraulic parameters required for each model are obtained from field observations and laboratory experiments. The results indicate that the assessment of the stream infiltration obtained through the SF and MF models are 264.2 × 104 and 170.9 × 104 m3/year, respectively. When the river water level increases by about 2.5 m, the annual stream infiltration obtained through the FA and MF models significantly increases by 31.6 × 104 and 26.4 × 104 m3/year, respectively. Taken together, the stream storages estimated using these two models indicate that an increasing efficiency of groundwater recharge is within the range of 10.0–18.5%.  相似文献   

17.
The late Mesoproterozoic to Neoproterozoic Kalahari Copperbelt (KCB) in Namibia and Botswana is widely covered by Kalahari sand, which precludes direct correlations between known stratabound sediment-hosted Cu–Ag districts. We use a combination of review of literature data, and newly processed and interpreted high-resolution aeromagnetic maps in both countries to provide a new correlative cross-border interpretation. Lithostratigraphic control on the aeromagnetic response allows detailed indirect mapping of the Kalahari Copperbelt lithotectonic domains below the sand cover. This enabled us to redefine the width and lateral extent of the KCB as two continuous magnetic domains (the Rehoboth and Ghanzi–Chobe domains) extending from central Namibia to northern Botswana, and helped in resolving problems of stratigraphic correlations across the international border.The Rehoboth magnetic domain, in the western part of the KCB in Namibia, records continental arc magmatism at ~ 1200 Ma during orogenic events along the northwestern edge of the Kalahari Craton. This was followed at 1110–1090 Ma by widespread magmatism, identified within the entire KCB, and related to the 1112–1106 Ma Umkondo Large Igneous Province. The basal parts of the Tsumis Group in Namibia and Ghanzi Group in Botswana were deposited in shallow-water environments after a period of erosion and peneplanation. Subsequently, and prior to the Sturtian glaciation, the host-rocks of the Cu–Ag deposits formed by the deposition of chemically reduced shales and siltstones that formed in deeper water and overlie chemically oxidised shallow-water sandstones. This regional interface, which is both a permeability barrier and redox boundary, played a critical role in the formation of the stratabound sediment-hosted Cu–Ag deposits of the Kalahari Copperbelt, and the interface, with its strong magnetic contrast, can be followed through the entire Ghanzi–Chobe magnetic domain of the copperbelt. The whole KCB was affected by the Damara Orogeny during early Cambrian times, which resulted in the formation of a NE–SW trending ~ 250 km-wide fold-and-thrust belt.  相似文献   

18.
The study was carried out with an aim to assess the heavy metal (HM) and polycyclic aromatic hydrocarbons (PAHs) in the air of a biodiversity as well as tourist-rich area of Western Ghats by applying a most frequent growing lichen Remototrachyna awasthii (Hale and Patw.) Divakar and A. Crespo, as biomonitor. Thalli of R. awasthii were collected from eight sites of Mahabaleshwar area located in Western Ghats. Samples were prepared for HM and PAHs quantification by ICP-MS and HPLC, respectively. Total metal concentration (HM) ranged from 644 to 2,277.5 μg g?1 while PAHs concentration between 0.193 and 54.78 μg g?1. HM and PAHs concentrations were the highest at Bus Stand while control site (Lingmala Fall) exhibited the lowest concentration of HM as well as PAHs followed by samples from Wilson point (both these sites are having trekking route). It was also evident from this study that vehicular emission played a significant role in the release of HM and PAHs as pollutants in the environment. The effectiveness of R. awasthii as biomonitor could be further investigated by comparing this species with other biomonitors.  相似文献   

19.
We present detrital zircon UPb SHRIMP age patterns for the central segment (34–42°S) of an extensive accretionary complex along coastal Chile together with ages for some relevant igneous rocks. The complex consists of a basally accreted high pressure/low temperature Western Series outboard of a frontally accreted Eastern Series that was overprinted by high temperature/low pressure metamorphism. Eleven new SHRIMP detrital zircon age patterns have been obtained for meta-turbidites from the central (34–42°S) segment of the accretionary complex, four from previously undated metamorphic complexes and associated intrusive rocks from the main Andean cordillera, and three from igneous rocks in Argentina that were considered as possible sediment source areas. There are no Mesozoic detrital zircons in the accretionary rocks. Early Paleozoic zircons are an essential component of the provenance, and Grenville-age zircons and isolated grains as old as 3 Ga occur in most rocks, although much less commonly in the Western Series of the southern sector. In the northernmost sector (34–38°30′S) Proterozoic zircon grains constitute more than 50% of the detrital spectra, in contrast with less than 10% in the southern sector (39–42°S). The youngest igneous detrital zircons in both the northern Western (307 Ma) and Eastern Series (345 Ma) are considered to closely date sedimentation of the protoliths. Both oxygen and LuHf isotopic analyses of a selection of Permian to Neoproterozoic detrital zircon grains indicate that the respective igneous source rocks had significant crustal contributions. The results suggest that Early Paleozoic orogenic belts (Pampean and Famatinian) containing material recycled from cratonic areas of South America supplied detritus to this part of the paleo-Pacific coast. In contrast, in the southern exposures of the Western Series studied here, Permian detrital zircons (253–295 Ma) dominate, indicating much younger deposition. The northern sector has scarce Early to Middle Devonian detrital zircons, prominent south of 39°S. The sedimentary protolith of the northern sector was probably deposited in a passive margin setting starved of Devonian (Achalian) detritus by a topographic barrier formed by the Precordillera, and possibly Chilenia, terranes. Devonian subduction-related metamorphic and plutonic rocks developed south of 39°S, beyond the possible southern limit of Chilenia, where sedimentation of accretionary rocks continued until Permian times.  相似文献   

20.
Sustainable groundwater management requires knowledge of recharge. Recharge is also an important parameter in groundwater flow and transport models. Spatial variation in recharge due to distributed land-us.e, soil texture, topography, groundwater level, and hydrometeorological conditions should be accounted for in recharge estimation. However, conventional point-estimates of recharge are not easily extrapolated or regionalized. In this study, a spatially distributed water balance model WetSpass was used to simulate long-term average recharge using land-use, soil texture, topography, and hydrometeorological parameters in Dire Dawa, a semiarid region of Ethiopia. WetSpass is a physically based methodology for estimation of the long-term average spatial distribution of surface runoff, actual evapotranspiration, and groundwater recharge. The long-term temporal and spatial average annual rainfall of 626 mm was distributed as: surface runoff of 126 mm (20%), evapotranspiration of 468 mm (75%), and recharge of 28 mm (5%). This recharge corresponds to 817 l/s for the 920.12 km2 study area, which is less than the often-assumed 1,000 l/s recharge for the Dire Dawa groundwater catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号