首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of pH on the kinetics of smectite (K-montmorillonite) dissolution was investigated at 25 °C in batch and stirred flow-through reactors over the pH range of 1-13.5, in KNO3 solutions. Dissolution rates were obtained based on the release of Si and Al at steady-state under far from equilibrium conditions. Dissolution was non-stoichiometric between pH 5 and 10, due to adsorption/precipitation of Al. Dissolution rates computed from batch and flow-through experiments were consistent, irrespective of the Si and Al concentrations. Sample pre-treatment and the interlayer cation do not affect the steady-state dissolution rate or stoichiometry of cation release. The rate dependence on pH can be described by:
  相似文献   

2.
Dissolution of the fluorite (1 1 1) cleavage surface was investigated by means of in situ atomic force microscopy (AFM) and ex situ vertical scanning interferometry (VSI) experiments at pH range 1-3 in HCl solutions. Surface retreat was quantified at different pH values, yielding dissolution rates that were used to derive an empirical rate law for fluorite dissolution:
  相似文献   

3.
We ran a series of 124 semi-batch reactor experiments to measure the dissolution rate of forsterite in solutions of nitric and oxalic acid solutions over a pH range of 0-7 and total oxalate concentrations between 0 and 0.35 m at 25 °C. We found that the empirical rate law for the dissolution of forsterite in these solutions is
  相似文献   

4.
Stable oxygen isotopic fractionation during inorganic calcite precipitation was experimentally studied by spontaneous precipitation at various pH (8.3 < pH < 10.5), precipitation rates (1.8 < log R < 4.4 μmol m− 2 h− 1) and temperatures (5, 25, and 40 °C) using the CO2 diffusion technique.The results show that the apparent stable oxygen isotopic fractionation factor between calcite and water (αcalcite–water) is affected by temperature, the pH of the solution, and the precipitation rate of calcite. Isotopic equilibrium is not maintained during spontaneous precipitation from the solution. Under isotopic non-equilibrium conditions, at a constant temperature and precipitation rate, apparent 1000lnαcalcite–water decreases with increasing pH of the solution. If the temperature and pH are held constant, apparent 1000lnαcalcite–water values decrease with elevated precipitation rates of calcite. At pH = 8.3, oxygen isotopic fractionation between inorganically precipitated calcite and water as a function of the precipitation rate (R) can be described by the expressions
at 5, 25, and 40 °C, respectively.The impact of precipitation rate on 1000lnαcalcite–water value in our experiments clearly indicates a kinetic effect on oxygen isotopic fractionation during calcite precipitation from aqueous solution, even if calcite precipitated slowly from aqueous solution at the given temperature range. Our results support Coplen's work [Coplen T. B. (2007) Calibration of the calcite–water oxygen isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957], which indicates that the equilibrium oxygen isotopic fractionation factor might be greater than the commonly accepted value.  相似文献   

5.
The solubility of gold was measured in KCl solutions (0.001-0.1 m) at near-neutral to weakly acidic pH in the presence of the K-feldspar-muscovite-quartz, andalusite-muscovite-quartz, and pyrite-pyrrhotite-magnetite buffers at temperatures 350 to 500°C and pressures 0.5 and 1 kbar. These mineral buffers were used to simultaneously constrain pH, f(S2), and f(H2). The experiments were performed using a CORETEST flexible Ti-cell rocking hydrothermal reactor enabling solution sampling at experimental conditions. Measured log m(Au) (mol/kg H2O) ranges from −7.5 at weakly acid pH to −5.9 in near-neutral solutions, and increases slightly with temperature. Gold solubility in weakly basic and near-neutral solutions decreases with decreasing pH at all temperatures, which implies that Au(HS)2 is the dominant Au species in solution. In more acidic solutions, solubility is independent of pH. Comparison of the experimentally measured solubilities with literature values for Au hydrolysis constants demonstrates that at 350°C dominates Au aqueous speciation at the weakly acidic pH and f(S2)/f(H2) conditions imposed by the pyrite-pyrrhotite-magnetite buffer. In contrast, at temperatures >400°C becomes less important and predominates in weakly acid solutions. Solubility data collected in this study were used to calculate the following equilibrium reaction constants:
  相似文献   

6.
7.
The ultraviolet spectra of dilute, aqueous arsenic (III)-containing solutions have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, the equilibrium constant was obtained for the reaction
  相似文献   

8.
9.
Lead speciation in many aqueous geochemical systems is dominated by carbonate complexation. However, direct observations of Pb2+ complexation by carbonate ions are few in number. This work represents the first investigation of the equilibrium over a range of ionic strength. Through spectrophotometric observations of formation at 25 °C in NaHCO3-NaClO4 solutions, formation constants of the form were determined between 0.001 and 5.0 molal ionic strength. Formation constant results were well represented by the equation:
  相似文献   

10.
Steady-state talc dissolution rates, at far-from-equilibrium conditions, were measured as a function of aqueous silica and magnesium activity, pH from 1 to 10.6, and temperature from 25 to 150 °C. All rates were measured in mixed flow reactors and exhibited stoichiometric or close to stoichiometric dissolution. All measured rates at pH > 2 obtained at a fixed ionic strength of 0.02 M can be described to within experimental uncertainty using
  相似文献   

11.
This UV spectrophotometric study was aimed at providing precise, experimentally derived thermodynamic data for the ionisation of molybdic acid (H2MoO4) from 30 to 300 °C and at equilibrium saturated vapour pressures. The determination of the equilibrium constants and associated thermodynamic parameters were facilitated by spectrophotometric measurements using a specially designed high temperature optical Ti-Pd flow-through cell with silica glass windows.The following van’t Hoff isochore equations describe the temperature dependence of the first and second ionisation constants of molybdic acid up to 300 °C:
  相似文献   

12.
Gypsum precipitation kinetics were examined from a wide range of chemical compositions , ionic strengths (4.75-10 m) and saturation state with respect to gypsum (1.16-1.74) in seeded batch experiments of mixtures of Ca2+-rich Dead Sea brine and -rich seawater. Despite the variability in the experimental solutions, a single general rate law was formulated to describe the heterogeneous precipitation rate of gypsum from these mixtures:
  相似文献   

13.
14.
The solubility of metallic mercury in dodecane, octane and toluene has been investigated experimentally at temperatures up to 200°C and pressures up to 6 bars (toluene). The equilibrium Hg concentrations are very similar in octane and dodecane, reaching values of 821 ppm and 647 ppm, respectively at 200°C, whereas they are significantly lower in toluene (e.g., 280 ppm at 200°C). The behavior of Hg in toluene is nevertheless similar to that in the alkanes. There is a strong prograde dependence of Hg concentration on temperature in both types of solvent, which can be described by the following experimentally determined relationships:
  相似文献   

15.
16.
Potentiometric measurements of the stoichiometric constants for the dissociation of carbonic acid in NaCl solutions ( and ) have been made as a function of molality (0-6 m) and temperature (0-50 °C). The results have been fitted to the equations
  相似文献   

17.
Recent experimental determinations of the solubility products of common rare earth minerals such as monazite and xenotime and stability constants for chloride, sulfate, carbonate and hydroxide complexes provide a basis to model quantitatively the solubility, and therefore the mobility, of rare earth elements (REE) at near surface conditions. Data on the mobility of REE and stabilities of REE complexes at near-neutral conditions are of importance to safe nuclear waste disposal, and environmental monitoring. The aim of this study is to understand REE speciation and solubility of a given REE in natural environments. In this study, a series of formation constants for La aqueous complexes are recommended by using the specific interaction theory (SIT) for extrapolation to infinite dilution. Then, a thermodynamic model has been employed for calculation of the solubility and speciation of La in soil solutions reacted with the La end-member of mineral monazite (LaPO4), and other La-bearing solid phases including amorphous lanthanum hydroxide (La(OH)3, am) and different La carbonates, as a function of various inorganic and organic ligand concentrations. Calculations were carried out at near-neutral pH (pH 5.5–8.5) and 25 °C at atmospheric CO2 partial pressure. The model takes account of the species: La3+, LaCl2+, , , , , , , , , La(OH)2+, LaOx+, , LaAc2+ and (where Ox2− = oxalate and Ac = acetate).The calculations indicate that the La species that dominate at pH 5.5–8.5 in the baseline model soil solution (BMSS) include La3+, LaOx+, , and in order of increasing importance as pH rises. The solubility of monazite in the BMSS remains less than 3 × 10−9 M, exhibiting a minimum of 2 × 10−12 M at pH 7.5. The calculations quantitatively demonstrate that the concentrations of La controlled by the solubility of other La-bearing solid phases are many orders of magnitude higher than those controlled by monazite in the pH range from 5.5 to 8.5, suggesting that monazite is likely to be the solubility-controlling phase at this pH range. The calculations also suggest that significant mobility of La (and other REE) is unlikely because high water–rock ratios on the order of at least 104 (mass ratio) are required to move 50% of the La from a soil. An increase in concentration of oxalate by one order of magnitude from that of the baseline model solution results in the dominance of LaOx+ at pH 5.5–7.5. Similarly, the increase in concentration of by one order of magnitude makes the dominant species at pH 5.5–7.5. Above pH 7.5, carbonate complexes are important. The increase in oxalate or concentrations by one order of magnitude can enhance the solubility of monazite by a factor of up to about 6 below neutral pH, in comparison with that in the baseline model soil solution. From pH 7.0 to 8.5, the solubility of monazite in the soil solutions with higher concentrations of oxalate or is similar, or almost identical, to that in the BMSS.  相似文献   

18.
Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of “soil” phytoliths ( at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pHIEP = 1.2 ± 0.1 and 2.5 ± 0.2 for “soil” (native) and “heated” (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-pK surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ? pH ? 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation:
  相似文献   

19.
The influence of solution complexation on the sorption of yttrium and the rare earth elements (YREEs) by amorphous ferric hydroxide was investigated at 25 °C over a range of pH (4.0-7.1) and carbonate concentrations . Distribution coefficients, defined as , where [MSi]T is the total concentration of sorbed YREE, MT is the total YREE concentration in solution, and [Si] is the concentration of amorphous ferric hydroxide, initially increased in magnitude with increasing carbonate concentration, and then decreased. The initial increase of is due to sorption of YREE carbonate complexes , in addition to sorption of free YREE ions (M3+). The subsequent decrease of , which is more extensive for the heavy REEs, is due to the increasing intensity of YREE solution complexation by carbonate ions. The competition for YREEs between solution complexation and surface complexation was modeled via the equation:
  相似文献   

20.
The steady state dissolution rate of San Carlos olivine [Mg1.82Fe0.18 SiO4] in dilute aqueous solutions was measured at 90, 120, and 150 °C and pH ranging from 2 to 12.5. Dissolution experiments were performed in a stirred flow-through reactor, under either a nitrogen or carbon dioxide atmosphere at pressures between 15 and 180 bar. Low pH values were achieved either by adding HCl to the solution or by pressurising the reactor with CO2, whereas high pH values were achieved by adding LiOH. Dissolution was stoichiometric for almost all experiments except for a brief start-up period. At all three temperatures, the dissolution rate decreases with increasing pH at acidic to neutral conditions with a slope of close to 0.5; by regressing all data for 2 ? pH ? 8.5 and 90 °C ? T ? 150 °C together, the following correlation for the dissolution rate in CO2-free solutions is obtained:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号