首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of isotope-geochemical studies of carbonates of different mineral types from manganese and host rocks of the Famennian manganiferous formation of Pai-Khoi are reported. Kutnahorite ores are characterized by δ13C values from–6.6 to 1.3‰ and δ18O from 20.0 to 27.4‰. Rhodonite–rhodochrosite rocks of the Silovayakha ore occurrence have δ13C from–5.2 to–2.9 and δ18O from 25.4 to 24.3‰. Mineralogically similar rocks of the Nadeiyakha ore occurrence show the lighter carbon and oxygen isotopic compositions: δ13C from–16.4 to–13.1 and δ18O from 24.8 to 22.5‰. Similar isotopic compositions were also obtained for rhodochrosite–kutnahorite rocks of this ore occurrence: δ13C from–13.0 to–10.4‰ and δ18O from 24.6 to 21.7‰. Siderorodochrosite ores differ in the lighter oxygen and carbon isotopic compositions: δ18O from 18.7 to 17.6‰ and δ13C from–10.2 to–9.3‰, respectively. In terms of the carbon and oxygen isotopic compositions, host rocks in general correspond to marine sedimentary carbonates. Geological-mineralogical and isotope data indicate that the formation of the manganese carbonates was related to the hydrothermal ore-bearing fluids with the light isotopic composition of oxygen and carbon dissolved in CO2. The isotopic features indicate an authigenic formation of manganese carbonates under different isotopegeochemical conditions.  相似文献   

2.
Mineralization of groundwater in volcanic aquifers is partly acquired through silicates weathering. This alteration depends on the dissolution of atmospheric, biogenic, or mantellic gaseous CO2 whose contributions may depend on substratum geology, surface features, and lava flow hydrological functionings. Investigations of $ {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} $ and δ13CTDIC (total dissolved inorganic carbon) on various spatiotemporal scales in the unsaturated and saturated zones of volcanic flows of the Argnat basin (French Massif Central) have been carried out to identify the carbon sources in the system. Mantellic sources are related to faults promoting CO2 uplift from the mantle to the saturated zone. The contribution of this source is counterbalanced by infiltration of water through the unsaturated zone, accompanied by dissolution of soil CO2 or even atmospheric CO2 during cold periods. Monitoring and modeling of δ13CTDIC in the unsaturated zone shows that both $ {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} $ and δ13CTDIC are controlled by air temperature which influences soil respiration and soil-atmosphere CO2 exchanges. The internal geometry of volcanic lava flows controls water patterns from the unsaturated zone to saturated zone and thus may explain δ13C heterogeneity in the saturated zone at the basin scale.  相似文献   

3.
178 groundwater and surface waters have been sampled from April to September 1994 in an endoreic basin located in the N of Mexico (Comarca Lagunera). In this area, groundwater has been exploited over the past century mainly for irrigation and cattle supply. Recent intensive pumping has caused the lowering of the water table at a rate of 1 m a−1 Chemical analyses have been performed on all collected samples and 37 of them have been selected for isotopic measurements (18O,2H,13C and14C). Water stable isotope contents (18O,2H) show an increasing evaporation of the groundwater towards the Nazas river. They also indicate that the recharge occurs from the Nazas river and from the mountains surrounding the depression (Sierra Madre Occidental). Water presents a large spatial variability of the chemical facies (SO4Ca, SO4ClNa, HCO3-Ca and HCO3-Na) which is in relation with (i) their interaction with the geological formations of the basin (carbonates, gypsum and various silicates) and (ii) evaporation. This evaporation occurs in the upper part of the unsaturated zone during infiltration especially for the groundwater sampled near the Nazas river. The14C activity varies between 110.4 (± 1.1) and 4.0 (±0.2) pmc. The13C contents of the total dissolved inorganic C (TDIC) range between −11.0 and −3.6‰. The calculated13C contents of the CO2 in equilibrium with the TDIC, varying between −18.4%0 to −10.9% indicate two origins of C in solution: the carbonate matrix (δ13C= +0.9‰) and the soil CO2 (δ13C from −27.7‰ to −21.7‰ for the cultivated areas). Mean residence times have been determined after correction of the initial activities for dead C from the rock matrix. The mean residence times confirm a modern recharge of the groundwater from the Nazas and indicate the presence of palaeowaters in the northern and southern parts of the basin (up to 30 ka BP).  相似文献   

4.
The paleohydrological and sedimentological characteristics of a playa lake in northern Kuwait (Arabian Gulf) are reconstructed using sedimentological, geochemical, and isotopic techniques. The sequence consists of up to 8 cycles of S-poor, alluvial sediments capped by a thin organic soil interbedded with gravity-fall calcrete sediments. The succession is locally derived from mainly Quaternary sediments and is regressive with upsection filling of the subsiding basin by cycles of sheetwash flow in response to climatic change. There is no natural, open-water lake water as indicated by low total organic carbon (TOC) data, but the presence of incised calcrete yardangs suggests that more extensive open-water conditions were operative in the past. Stable isotope (δ18O‰ and δ13C‰) values of the authigenic carbonates indicate the following three distinct processes: evaporation, meteoric fluid infiltration, and rapid per-descensum flow (rapid downward movement of water and playa sediment through pipes) through a porous, clastic sequence. Because evaporites are scarce, other factors besides evaporation action control chemical and isotopic compositions of the per-decensum lake fluids. Consequently, the isotopic composition cannot be interpreted exclusively as an indicator of salinity or evaporation ratio. The degassing of CO2 during groundwater discharge may explain the enriched carbon isotope values for the authigenic carbonates precipitated in the sediments. Hydrologically closed lake water bodies tend to show low negative carbonate oxygen and carbon isotopic signatures. Isotopically negative δ13C values imply a strong input of soil-zone carbon to the groundwater of the top 60 cm of the sediment. Lakes that are hydrologically closed and evaporate or equilibrate with atmospheric CO2 will tend to have low negative δ18O and δ13C values in the carbonates as reported by Talbot (Chem Geol: Isotope Geosci Sect 80(4):261–279, 1990). Biologically active lakes will tend toward lower δ13C of dissolved carbon due to the photosynthetic effects of 12C withdrawal as reported by Dunagan and Driese (J Sed Res 69:772–783, 1999). Increased biological activity during sedimentation may account for low carbon isotope values where plants were abundant, but in shrinkage-dominated systems (those of clay-rich soil subjecting to wet-dry conditions), carbon isotopes will be largely inherited from the calcretic limestones in the land extending landward of the coast and not influenced by coastal processes (known as hinterland), such as Umm Ar-Rimam depression. This basin does not fit the classic shallow playa-type basins of the Arabian Peninsula but rather the recharge playas of the southwestern USA.  相似文献   

5.
The isotopic carbon ratio of a calcite-precipitating solution flowing as a water film on the surface of a stalagmite is determined by Rayleigh distillation. It can be calculated, when the -concentration of the solution at each surface point of the stalagmite and the fractionation factors are known. A stalagmite growth model based entirely on the physics of laminar flow and the well-known precipitation rates of a supersaturated solution of calcite, without any further assumptions, is employed to obtain the spatial distribution of the -concentration, which contributes more than 95% to the dissolved inorganic carbon (DIC). The δ13C profiles are calculated along the growth surface of a stalagmite for three cases: (A) isotopic equilibrium of both CO2 outgassing and calcite precipitation; (B) outgassing of CO2 is irreversible but calcite precipitation is in isotopic equilibrium. (C) Both CO2 outgassing and calcite precipitation are irreversible. In all cases the isotopic shift δ13C increases from the apex along the distance on a growth surface. In cases A and B, calcite deposited at the apex is in isotopic equilibrium with the solution of the drip water. The difference between δ13C at the apex and the end of the growth layer is independent of the stalagmite’s radius, but depends on temperature. For case A, it is about half the value obtained for cases B and C. In case C, the isotopic composition of calcite at the apex equals that of the drip water, but further out it becomes practically identical with that of case B. The growth model has been applied to field data of stalagmite growth, where the thickness and the δ13C of calcite precipitated to a glass plate located on the top of a stalagmite have been measured as function of the distance from the drip point. The calculated data are in good agreement to the observed ones and indicate that deposition occurred most likely under conditions B, eventually also C. A sensitivity analysis has been performed, which shows that within the limits of observed external parameters, such as drip rates and partial pressure of carbon dioxide PCO2 in the cave, the results remain valid.  相似文献   

6.
We studied calcite and rhodochrosite from exploratory drill cores (TH‐4 and TH‐6) near the Toyoha deposit, southwestern Hokkaido, Japan, from the aspect of stable isotope geochemistry, together with measuring the homogenization temperatures of fluid inclusions. The alteration observed in the drill cores is classified into four zones: ore mineralized zone, mixed‐layer minerals zone, kaolin minerals zone, and propylitic zone. Calcite is widespread in all the zones except for the kaolin minerals zone. The occurrence of rhodochrosite is restricted in the ore mineralized zone associated with Fe, Mn‐rich chlorite and sulfides, the mineral assemblage of which is basically equivalent to that in the Toyoha veins. The measured δ18OSMOW and δ13CPDB values of calcite scatter in the relatively narrow ranges from ?2 to 5‰ and from ?9 to ?5‰, respectively; those of rhodochrosite from 3 to 9‰ and from ?9 to ?5‰, excluding some data with large deviations. The variation of the isotopic compositions with temperature and depth could be explained by a mixing process between a heated surface meteoric water (100°C δ18O =?12‰, δ13C =?10‰) and a deep high temperature water (300°C, δ18O =?5‰, δ13C =?4‰). Boiling was less effective in isotopic fractionation than that of mixing. The plots of δ18O and δ13C indicate that the carbonates precipitated from H2CO3‐dominated fluids under the conditions of pH = 6–7 and T = 200–300°C. The sequential precipitation from calcite to rhodochrosite in a vein brought about the disequilibrium isotopic fractionation between the two minerals. The hydrothermal fluids circulated during the precipitation of carbonates in TH‐4 and TH‐6 are similar in origin to the ore‐forming fluids pertaining to the formation of veins in the Toyoha deposit.  相似文献   

7.
This paper summarizes a new outlook on the conceptual model of Melgaço–Messegães CO2-rich cold (≈18 °C) mineral water systems, issuing in N of Portugal, based on their isotopic (2H, 3H, 13C, 14C and 18O) and geochemical features. Stable isotopes indicate the meteoric origin of these CO2-rich mineral waters. Based on the isotopic fractionation with the altitude, a recharge altitude between 513 up to 740 m a.s.l. was estimated, corroborating the tritium results. The lowest 3H content (0 TU) is found in the groundwater samples with the highest mineralization. The mineral waters circulation are mainly related to a granitic and granodioritic environment inducing two different groundwater types (Ca/Na–HCO3 and Na/Ca–HCO3), indicating different underground flow paths. Calcium dissolution is controlled by hydrolysis of rock-matrix silicate minerals (e.g. Ca-plagioclases) and not associated to anthropogenic sources. The shallow dilute groundwaters exhibit signatures of anthropogenic origins (e.g. NO3) and higher Na/Ca ratios. The stable isotopes together with the geochemistry provided no indication of mixing between the regional shallow cold dilute groundwater and mineral water systems. The heavy isotopic signatures identified in the δ13C data (δ13C = 4.7 ‰, performed on the total dissolved inorganic carbon (TDIC) of CO2-rich mineral waters) could be derived from a deep-seated (upper mantle) source or associated to methanogenesis (CH4 source). The negligible 14C content (≈2 pmC) determined in the TDIC of the mineral waters, corroborates the hypothesis of a mantle-derived carbon source to the mineral groundwater systems or dissolution of carbonate layers at depth.  相似文献   

8.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   

9.
C and O isotope composition of Middle-Upper Miocene and Lower Pliocene carbonates from Kerch-Taman Region (Eastern Paratethys) have been studied in order to reconstruct palaeoenvironmental variability and post-sedimentation changes. The δ13C and δ18О values of the Upper Sarmatian to Lower Pliocene organogenic carbonates reflect the desalinization of paleobasins, global Late Miocene Cooling, and increase in seasonal temperature fluctuations. Isotopic composition of the Middle Sarmatian organogenic carbonates was strongly influenced by evaporation processes, high bioproductivity, and local submarine methane emissions. Warm climate and low bioproductivity together with unstable hydrological regime during the Late Chokrakian and the Karaganian times influenced the isotope composition of primary carbonates. Calcite shell of Spiratella sp. (δ13C =–0.4‰ and δ18О =–0.4‰) from Tarkhanian sediments was formed in warm marine environment. Dolomitization prevails over other secondary mineralization in the studied carbonate rocks. Two groups of secondary dolomites that are characterized by negative and positive δ13C values have been recognized. Lowe δ13C values (up to–31.4‰) in dolomites indicate the influence of both dissolved inorganic carbon (DIC) from oxidized organic matter (Сorg) and methane. Dolomites with positive δ13C values (7.0 and 7.8‰) associat with migration of CO2- and CH4-containing saline groundwater.  相似文献   

10.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

11.
An integrated mineralogical-geochemical and stable isotopic study of Pb-Zn deposits located at Kayar-Ghugra (Zn-Pb ± Ag), Rampura-Agucha (Zn-Pb, Ag), Dariba-Bethumni (Zn-Pb) and Zawar (Pb-Zn ± Cd, Ag) in Rajasthan is presented in this paper. The Kayar Zn-Pb deposit hosted by (i) phlogopite-tremolite bearing dolomitic carbonates and (ii) scapolite bearing calc-silicates, both belonging to Mesoproterozoic Delhi Supergroup exhibit distinctly different δ13C signatures being close to zero permil for the former reflecting deposition in pristine marine environment and much depleted isotopic values for the latter possibly related to post-depositional alterations. The Zn-Pb sulphides of Agucha, hosted in amphibolite facies to lower granulite facies metasedimentary units belonging to the Bhilwara Supergroup have δ34S values that indicate (i) H2S dominated regime characterized by low fO2, low pH, wherein the δ34S(fluid) responsible for mineralisation approximates the δ34S(sulphide); (ii) the role of seawater in the generation of Agucha ores; (iii) the process of a low temperature oxidation of sulphides in the hydrothermal fluids resulting in the formation of sulphate, by the interaction of ground water; (iv) isotopic disequilibrium in sulphatesulphide pairs that explain oxidation of H2S by acid groundwater (low pH) and deposition of sulphides at higher temperatures and (v) equilibrium isotopic fractionation of the coexisting sulphides reflecting in a higher concentration of H2S (>10?5m) in relation to the total metal content in the hydrothermal fluid $\left( {m_{H_2 S} \geqslant mS_{_{metals} } } \right)$ . Accordingly the concentration of sulphide-sulphate in the hydrothermal solution responsible for the mineralization in Agucha exceeds that of total metals. The sulphides of Bethumni-Rajpura-Dariba belt hosted in low to medium grade siliceous carbonates has a marginally positive (mean of +1.5‰) δ13C values. At Sindeswar, broad and widely scattered δ34S values indicate a polymodal sedimentary source of sulphur that recrystallised at rather low temperature of < 50°C possibly during the processes of low temperature bacterial reduction. The C and O-isotopic studies on mineralized and non-mineralized carbonates reveal (i) normal marine depositional signatures for non-mineralized carbonates with possible minor influence of biogenic carbon during deposition and (ii) ore zone carbonates exhibit depleted δ13C values presumably due either to the deeper mantle-like source of carbonates or due to post-depositional equilibration with isotopically light meteoric waters. In Zawar belt, sulphides hosted in dolomitic carbonate indicated (i) near identical δ34S values of disseminated galena and pyrite veinlets and depleted values of ?4.6 ‰ for late veins of massive galena of Zawar Mala (ii) pyritepyrrhotite veinlet having enhanced δ34S values when compared to the PbS-ZnS veinlet in Morchia-Magra, Balaria and Baroi mines. The carbon isotopic values for carbonates of Zawar Mala mine area are mostly depleted and those from Balaria and Baroi mines exhibit values of 13C close to zero. The generally depleted δ 18O clustering around ?15 ‰ tally well with the reported Paleoproterozoic carbonates and is attributed to the post-depositional equilibration reactions with isotopically light meteoric waters. It is summarized that the host carbonates for Zn-Pb deposits occurring in different tectono-stratigraphic units in Rajasthan have largely similar but bimodal distribution of δ 18O and δ13C isotopic ratios that suggest normal marine values and much depleted values. Whereas the former seems to be in general agreement with the nature of distribution in the Palaeoproterozoic carbonates the latter is attributed to (i) depositional conditions of the basins that includes absence or presence of biogenic activity (ii) isotopic re-equilibration under different metamorphic recrystallization events and/or (iii) interaction with isotopically lighter meteoric waters. In contrast to the uniformity in the C and O distribution pattern, the S-isotopic distribution in the deposits of Rampura-Agucha, Bethumni-Rajpura-Darbia and Zawar mine areas show marked variations reflecting complex deposit-specific ore-forming processes in the said deposits.  相似文献   

12.
MIS 11 is often considered to be the best climatic analogue for the Holocene. Many studies have suggested, however, that it is a period of extreme climate warmth comparable in temperatures to the Middle and Late Pliocene. In Britain deposits of the Hoxnian interglacial are correlated to MIS 11 and multi-proxy techniques can be used to reconstruct the climate of this interglacial. Soil, groundwater and freshwater carbonates are common in Hoxnian deposits and the stable isotopic composition of these precipitates can be used to increase our understanding of MIS 11 environments in Britain. Carbonates from Marks Tey, Clacton, Swanscombe, Elveden and West Stow are studied, the stratigraphic context of which indicates that their formation is broadly synchronous (in the mid-Hoxnian, pollen zones Ho II to Ho III). The carbon isotopic composition of groundwater and pedogenic carbonates is typically depleted with respect to δ13C (ca −9 to −8‰ VPDB) reflecting uptake of plant respired CO2 during water migration/recharge. The carbon isotopic composition of lacustrine carbonate is more enriched with respect to δ13C (ca 0-1‰VPDB) reflecting the equilibration of lake waters with atmospheric CO2. The δ18O of groundwater and pedogenic carbonates is slightly more enriched than modern soil carbonates but not as enriched as soil carbonates formed under interglacials that were warmer than the Holocene (i.e. the Cromerian). The stable isotopic composition of Hoxnian carbonates does not, therefore, indicate that this interglacial was characterised by uniquely warm climates in the context of other Middle Pleistocene interglacials and the Holocene. This is contrary to many marine and littoral records from around the world but consistent with environmental records from Britain and Europe.  相似文献   

13.
The oxygen (δ18O, δ17O) and carbon (δ13C, FMOD14C-the fraction of modern 14C) isotopic compositions of carbonate were measured for a set of paired Antarctic CM chondrites (EET 96006, EET 96016, EET 96017, and EET 96019). While the oxygen isotopic compositions do not plot on the terrestrial fractionation line and indicate that a component of the carbonate minerals has an extraterrestrial origin, they also do not fall on the array defined for carbonates by CM falls and are thus consistent with the presence of a terrestrial carbonate component. The δ13C and FMOD14C measurements of carbonate suggest the presence of at least two carbon sources: carbonate derived from atmospheric CO2 that is inferred to have been produced as a result of silicate weathering reactions and carbonate derived from another carbon source that is either old or non-atmospheric. The relationships between oxygen and carbon isotope data provide additional constraints on the weathering process, and allow the possibility that rock-dominated weathering of the meteorite caused the oxygen isotopic composition of Antarctic water added to the meteorite to evolve away from the terrestrial mass-fractionation array, leading to formation of low temperature terrestrial alteration products that do not lie on the terrestrial fractionation line.  相似文献   

14.
The isotopic composition of calcite from travertine deposits of the Tokhana-Verkhnii hot spring in the Elbrus area shows broad variations in δ13C and δ18O (from +3.8 to +16.3‰ and from +24.6 to +28.1‰, respectively). The δ13C and δ18O values increase toward the sole of the travertine dome. The isotopically heaviest carbonates (δ13C of up to +16.3‰) were found near the bottom of the dome and composed ancient travertine, which are now not washed by mineral water. The scatter of the δ13C values of the fresh sample is slightly narrower: from +3.8 to +10‰. Calculations indicate that all carbonates of the Tokhana dome were not in equilibrium with spontaneous carbon dioxide released by the spring (\(\delta ^{13} C_{CO_2 } \) = ?8‰). To explain the generation of isotopically heavy travertine, a physicochemical model was developed for precipitation of Ca carbonates during the gradual degassing of the mineral water. The character of variations in the calculated δ13C values (from +5.5 to +13‰) is in good agreement with the tendency in the variations of the δ13C in the carbonate samples. The calculated and measured pH values are also consistent. Our results demonstrate that the isotopic composition of large travertine masses can be heterogeneous, and this should be taken into account during paleoclimatic and paleohydrogeological reconstruction.  相似文献   

15.
Detailed isotopic study (δ13C, δ18O) of Lower Proterozoic sedimentary carbonates from biostratigraphically dated successions in Karelia (Russia) revealed a large positive δ13C anomaly (average δ13C-value constitutes approximately +10‰ PDB) at 2.3 Byr ago and a huge drop of δ13C-values in the subsequent ‘black shale period’(2.2 Byr ago). These data are interpreted to be a result of large-scale changes in the oxygen content of the atmosphere. According to this model the positive carbon isotopic anomaly of sedimentary carbonates at about 2.3 Byr ago reflects a very high O2-content of the atmosphere at this time; the subsequent drop in δ13C-values equates with a sharp decrease of the O2-content of the atmosphere.  相似文献   

16.
Tufas, which are freshwater carbonates, are potential archives of terrestrial paleoclimate. Time series of stable isotopic compositions commonly show regular seasonal patterns controlled by temperature-dependent processes, and some perturbation intrinsic to the locality. We examined three tufa-depositing sites in southwestern Japan with similar temperate climates, to understand the origin of local characteristics in the isotopic records. Seasonal change in the oxygen isotope is principally reflected by temperature-dependent fractionation between water and calcite but was perturbed after heavy rainfalls overwhelming the stability of the δ18O value of the groundwater at one site. Isotopic mass balance indicates an undersaturated and relatively small aquifer at this locality. Water δ18O values at the other two sites were stable, reflecting a regular seasonal change in the δ18O value of tufa. Perturbation of the δ13C values in tufa is largely due to CO2 degassing from the stream, which significantly increases the δ13C values of dissolved inorganic carbon (DIC). At a site with remarkably high pCO2 in springwater and a sensitive response of flow rate to rainfall, the amount of CO2 degassing changed distinctly with flow rate. In contrast, the other two sites having low pCO2 springwater reflect a regular seasonal pattern of δ13C in DIC and tufa specimens.  相似文献   

17.
We report here for the first time geochemical, mineralogical and stable carbon and oxygen isotopic data on the crystalline basement rocks of the 1993 Killari earthquake region of Maharashtra (India), which is covered by a thick suite of Deccan volcanics. Our results revealed the hitherto unknown amphibolite–granulite nature of the 2.5?Ga basement, which contains 2.00–2.28?wt% of CO2. The stable carbon (δ13C) and oxygen (δ18O) isotopic measurements on carbonates separated from two basement samples KIL-13 (440.5?m depth) and KIL-20 (499.6?m depth) collected from the KLR-1 borehole drilled in the epicentral region showed the respective values of ?6.23 and ?6.22‰ versus PDB for δ13C and 7.94 and 8.11‰ versus SMOW for δ18O. The samples plot in the primary igneous carbonatite field, indicating the mantle origin of the carbonates, derived through the process of mantle metasomatism from the deep mantle carbon reservoir. This would suggest large-scale crust-mantle thermal fluid interaction beneath the Killari seismogenic region, which is characterized by massive upwarping of the high-velocity mafic crust and retrograde metamorphism.  相似文献   

18.
19.
The carbon isotopic composition of CO2 inclusions trapped in minerals reflects the origin and evolution of CO2-bearing fluids and melts, and records the multiple-stages carbon geodynamic cycle, as CO2 took part in various geological processes widely. However, the practical method for determination isotope composition of individual CO2 inclusion is still lacking. Developing a microanalytical technique with spatial resolution in micrometers to precisely determinate the δ13C value of individual CO2 inclusion, will make it possible to analyze a tiny portion of a zoning mineral crystal, distinguish the differences in micro-scale, and possible to find many useful information that could not be obtained with the bulk extraction and analysis techniques. In this study, we systematically collected Raman spectra of CO2 standards with different δ13C values (?34.9 ‰ to 3.58 ‰) at 32.0 °C and from ~7.0 MPa to 120.0 MPa, and developed a new procedure to precisely determinate the δ13C value of individual CO2 inclusion. We investigated the relationship among the Raman peak intensity ratio, δ13C value, and CO2 density, and established a calibration model with high accuracy (0.5 ‰?1.5 ‰), sufficient for geological application to distinguish different source of CO2 with varying δ13CO2. As a demonstration, we measured the δ13C values and the density of CO2 inclusions in the growth zones of alkali basalt-hosted corundum megacrysts from Changle, Shandong Province. We found the significant differences of density and δ13C between the CO2 inclusions in the core of corundum and those inclusions in the outer growth zones, the δ13C value decreases from core to rim with decreasing density: δ13C values are from ?7.5 ‰ to ?9.2 ‰ for the inclusions in the core, indicating the corundum core was crystallized from mantle-derived magmas; from ?13.5 ‰ to ?18.5 ‰ for CO2 inclusions in zone 1 and from ?16.5 ‰ to –22.0 ‰ for inclusions in zone 2, indicating the outer zones of corundum grew in a low δ13C value environment, resulted from an infilling of low δ13C value fluid and/or degassing of the ascending basaltic magma.  相似文献   

20.
Vertical profiles of concentration and C-isotopic composition of dissolved methane and carbon dioxide were observed over 26 months in the catotelm of a deep (6.5 m) peat bog in Switzerland. The dissolved concentrations of these gases increase with depth while CO2 predominates over CH4 (CO2 ca. 5 times CH4). This pattern can be reproduced by a reaction-advection-ebullition model, where CO2 and CH4 are formed in a ratio of 1:1. The less soluble methane is preferentially lost via outgassing (bubbles). The isotopic fractionation between CO2 and CH4 also increases with depth, with αC values ranging from 1.045 to 1.075. The isotopic composition of the gases traces the passage of respiration-derived CO2 (from the near surface) through a shallow zone with methanogenesis of low isotopic fractionation (splitting of fermentation-derived acetate). This solution then moves through the catotelm, where methanogenesis occurs by CO2 reduction (large isotopic fractionation). In the upper part of the catotelm the C-13-depleted respiration-derived CO2 pool buffers the isotopic composition of CO2; the δ13C of CO2 increases only slowly. At the same time strongly depleted CH4 is formed as CO2 reduction consumes the depleted CO2. In the lower part of the catotelm, the respiration-derived CO2 and shallow CH4 become less important and CO2 reduction is the dominant source of CO2 and CH4. Now, the δ13C values of both gases increase until equilibrium is reached with respect to the isotopic composition of the substrate. Thus, the δ13C values of methane reach a minimum at intermediate depth, and the deep methane has δ13C values comparable to shallow methane. A simple mixing model for the isotopic evolution is suggested. Only minor changes of the observed patterns of methanogenesis (in terms of concentration and isotopic composition) occur over the seasons. The most pronounced of these is a slightly higher rate of acetate splitting in spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号