首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriohopanepolyols (BHPs) are a diverse group of membrane lipids produced by a wide variety of bacteria and can be used as molecular biomarkers for bacterial processes and populations in both modern and ancient environments. A group of BHPs, including adenosylhopane and structurally related compounds, have been identified as being specific to soils, enabling the transport of terrestrial organic matter (terrOM) to the marine realm to be monitored. Estuary surface sediment samples were obtained from the five Great Russian Arctic Rivers (GRARs; Ob, Yenisey, Lena, Indigirka and Kolyma) and river sediments were obtained from two North American Rivers (Yukon and Mackenzie). Analysis of the BHP signatures, using high performance liquid chromatography–tandem mass spectrometry (HPLC–MSn), indicated the presence of 15 different BHPs originating from a variety of different bacteria, as well as a significant presence of terrestrially derived OM. Total BHP abundance and the contribution of the “soil-marker” BHPs to the total BHP pool increased eastwards among the GRAR sediments. This suggests increasing terrestrial OM or increased preservation of OM as a result of shorter periods of permafrost thawing. The North American rivers showed greatly differing BHP levels between the Yukon and Mackenzie rivers, with a greater BHP input and thus a relatively higher soil OM contribution from the Yukon. The Indigirka River basin in the eastern Siberian Arctic appeared to be the epicentre in the pan-Arctic BHP distribution trend, with the highest “soil-marker” BHPs but the lowest tetrafunctionalised BHPs. Aminobacteriohopanepentol, an indicator of aerobic methane oxidation, was observed in all the sediments, with the source being either the marine environment or methane producing terrestrial environments.  相似文献   

2.
Lead concentrations and isotopic composition of sediment samples collected from three sites within the Lebanese coastal zones were measured: at Akkar, Dora and Selaata. Akkar is located far from any direct source of contamination, while Dora and Selaata receive urban and industrial wastes, respectively. Low Pb concentrations (6–16 μg g−1) were detected in the Akkar sediments, and high concentrations of Pb (70–101 μg g−1) were detected in the Dora sediments. Measuring stable isotope ratios of Pb makes it possible to identify the principal sources of Pb in the Akkar sediments as Pb emitted from gasoline combustion and Pb originating from natural sources. On the other hand, Pb stable isotopic ratios in Dora sediments indicate that they are more highly influenced by anthropogenic sources. Isotopic Pb ratios in the Selaata deposits, where Pb concentrations range between 5 and 35 μg g−1, have an exceptional radiogenic signature for marine sediments 1.25 < 206Pb/207Pb < 1.6 and 0.5 < 206Pb/208Pb < 0.67, which shows the impact of the phosphogypsum discharged by Selaata’s chemical plant. Isotopic Pb analysis applied to EDTA extracts, to test the mobility of Pb, shows that that this mobility is high (>60%) after 24 h of extraction, and that the extracted Pb is less radiogenic than the residual Pb.  相似文献   

3.
Contaminated fluvial sediments represent both temporary sinks for river-borne pollutants and potential sources in case of natural and/or anthropogenic resuspension. Reservoir lakes play a very important role in sediment dynamics of watersheds and may offer great opportunities to study historical records of river-borne particles and associated elements transported in the past. The fate and potential environmental impact of Hg depends on its abundance, its carrier phases and its chemical speciation. Historical Hg records and solid state Hg speciation were compared in sediments from two contrasting reservoirs of the Lot River (France) upstream and downstream from a major polymetallic pollution (e.g. Cd, Zn) source. Natural (geochemical background) and anthropogenic Hg concentrations and their relationships with predominant carrier phases were determined. The results reveal important historical Hg contamination (up to 35 mg kg−1) of the downstream sediment, reflecting the historical evolution of industrial activity at the point source, i.e. former coal mining, Zn ore treatment and post-industrial remediation work. Single chemical extractions (ascorbate, H2O2, KOH) suggest that at both sites most (∼75%) of the Hg is bound to organic and/or reactive sulphide phases. Organo-chelated (KOH-extracted) Hg, representing an important fraction in the uncontaminated sediment, shows similar concentrations (∼0.02 mg kg−1) at both sites and may be mainly attributed to natural inputs and/or processes. Although, total Hg concentrations in recent surface sediments at both sites are still very different, similar mono-methylmercury concentrations (up to 4 μg kg−1) and vertical distributions were observed, suggesting comparable methylation-demethylation processes. High mono-methylmercury concentrations (4–15 μg kg−1) in 10–40 a-old, sulphide-rich, contaminated sediment suggest long-term persistence of mono-methylmercury. Beyond historical records of total concentrations, the studied reservoir sediments provided new insights in solid state speciation and carrier phases of natural and anthropogenic Hg. In case of sediment resuspension, the major part of the Hg historically stored in the Lot River sediments will be accessible to biogeochemical recycling in the downstream fluvial-estuarine environment.  相似文献   

4.
To understand the geochemical cycle of Hg in hypereutrophic freshwater lake, two sampling campaigns were conducted in Lake Taihu in China during May and September of 2009. The concentrations of unfiltered total Hg (unfTHg) were in the range of 6.8–83 ng L−1 (28 ± 18 ng L−1) in the lake water and total Hg in the sediment was 12–470 ng g−1, both of which are higher than in other background lakes. The concentration of unfTHg in ∼11% of the lake water samples exceeded the second class of the Chinese environmental standards for surface water of 50 ng L−1 (GB 3838-2002), indicating that a high ecological risk is posed by the Hg in Lake Taihu. However, the concentrations of unfiltered total MeHg (unfMeHg) were relatively low in the lake water (0.14 ± 0.05 ng L−1, excluding two samples with 0.81 and 1.0 ng L−1). Lake sediment MeHg varied from 0.2–0.96 ng g−1, with generally low ratios of MeHg/THg of <1%. The low concentrations of TMeHg in the lake water may have resulted from a strong uptake by the high primary productivity and the demethylation of MeHg in oxic conditions. In addition, contrary to the results of previous research conducted in deep-water lakes and reservoirs, the low concentrations of MeHg and low ratio of MeHg/THg in the lake sediment indicates that the net methylation of Hg was not accelerated by the elevated organic matter load created by the eutrophication of Lake Taihu. The results also showed that sediments were a source of THg and MeHg in the water. Higher diffusion fluxes of THg and MeHg may be partly responsible for the higher concentrations of THg in the lake water in May, 2009.  相似文献   

5.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

6.
In a comprehensive study, we compared depositional conditions, organic matter (OM) composition, and organic carbon turnover in sediments from two different depositional systems along the Chilean continental margin: at ∼23° S off Antofagasta and at ∼36° S off Concepción. Both sites lie within the Chilean coastal upwelling system and have an extended oxygen minimum zone in the water column. However, the northern site (23° S) borders the Atacama Desert, while the southern site (36° S) has a humid hinterland. Eight surface sediment cores (up to 30 cm long) from water depths of 126-1350 m were investigated for excess 210Pb (210Pbxs) activity, total organic and total inorganic carbon concentrations (TOC and TIC, respectively), C/N-ratios, organic carbon isotopic compositions (δ13C), chlorin concentrations, Chlorin Indices (CI), and sulfate reduction rates (SRR). Sediment accumulation rates obtained from 210Pb-analysis were similar in both regions (0.04-0.15 cm yr−1 at 23° S, 0.10-0.19 cm yr−1 at 36° S), although total 210Pbxs fluxes indicated that the vertical particle flux was higher at 36° S than at 23° S. We propose that sediment focusing in isolated deposition centers led to high sediment accumulation rates at 23° S. Furthermore, there were no indications for sediment mixing at 23° S, while bioturbation was intense at 36° S. δ13C-values (−24.5‰ to −20.1‰ vs. VPDB) and C/N-ratios (molar, 8.6-12.8) were characteristic of a predominantly marine origin of the sedimentary OM in both investigated areas. The extent of OM alteration in the water column was partly reflected in the surface sediments as chlorin concentrations decreased and C/N-ratios and CI increased with increasing water depth of the sampling site. SRR were lower at 23° S (areal SRR 0.12-0.60 mmol m−2 d−1) than at 36° S (areal SRR 0.82-1.18 mmol m−2 d−1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23° S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004-0.0022 yr−1) showed a good correspondence to kTOC that were derived from the depth profiles of TOC (0.0003-0.0014 yr−1). Both, kSRR and kTOC, reflect differences in OM composition. At 36° S they were related to the degradation state of bulk OM (represented by C/N-ratios), whereas near 23° S they were related to the freshness of a small fraction of labile OM (represented by CI). Our study shows that although rates of organic carbon accumulation were similar in both investigated sites, the extent and kinetics of organic carbon degradation were closely linked to differing depositional conditions.  相似文献   

7.
The Xunyang Hg mine (XMM) situated in Shaanxi Province is an active Hg mine in China. Gaseous elemental Hg (GEM) concentrations in ambient air were determined to evaluate its distribution pattern as a consequence of the active mining and retorting in the region. Total Hg (HgT) and methylmercury (MeHg) concentrations in riparian soil, sediment and rice grain samples (polished) as well as Hg speciation in surface water samples were measured to show local dispersion of Hg contamination. As expected, elevated concentrations of GEM were found, ranging from 7.4 to 410 ng m−3. High concentrations of HgT and MeHg were also obtained in riparian soils, ranged from 5.4 to 120 mg kg−1 and 1.2 to 11 μg kg−1, respectively. Concentrations of HgT and MeHg in sediment samples varied widely from 0.048 to 1600 mg kg−1 and 1.0 to 39 μg kg−1, respectively. Surface water samples showed elevated HgT concentrations, ranging from 6.2 to 23,500 ng L−1, but low MeHg concentrations, ranging from 0.022 to 3.7 ng L−1. Rice samples exhibited high concentrations of 50–200 μg kg−1 in HgT and of 8.2–80 μg kg−1 in MeHg. The spatial distribution patterns of Hg speciation in the local environmental compartments suggest that the XMM is the source of Hg contaminations in the study area.  相似文献   

8.
Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF.190 t yr−1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr−1) and the Schussen (50 t TDBr yr−1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr−1. In comparison, only 40 t TDBr yr−1 was deposited to the lake’s catchment by precipitation, and thus ∼80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (∼12 t yr−1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from the catchment, which is supported by Ti, Zr and Br/Corg data. In the lake bromine was irreversibly lost to the sediments, with best flux estimates based on mass-balance and sediment trap data of +50-90 μg Br m−2 d−1. Overall, it appears that bromine is not simply a cyclic salt in the case of Lake Constance, with a clear geological component and dynamic lacustrine biogeochemistry.  相似文献   

9.
Kinetics of microbial sulfate reduction in estuarine sediments   总被引:2,自引:0,他引:2  
Kinetic parameters of microbial sulfate reduction in intertidal sediments from a freshwater, brackish and marine site of the Scheldt estuary (Belgium, the Netherlands) were determined. Sulfate reduction rates (SRR) were measured at 10, 21, and 30 °C, using both flow-through reactors containing intact sediment slices and conventional sediment slurries. At the three sites, and for all depth intervals studied (0-2, 2-4, 4-6 and 6-8 cm), the dependence of potential SRR on the sulfate concentration followed the Michaelis-Menten rate equation. Apparent sulfate half-saturation concentrations, Km, measured in the flow-through reactor experiments were comparable at the freshwater and marine sites (0.1-0.3 mM), but somewhat higher at the brackish site (0.4-0.9 mM). Maximum potential SRR, Rmax, in the 0-4 cm depth interval of the freshwater sediments were similar to those in the 0-6 cm interval of the marine sediments (10-46 nmol cm−3 h−1 at 21 °C), despite much lower in situ sulfate availability and order-of-magnitude lower densities of sulfate-reducing bacteria (SRB), at the freshwater site. Values of Rmax in the brackish sediments were lower (3.7-7.6 nmol cm−3 h−1 at 21 °C), probably due to less labile organic matter, as inferred from higher Corg/N ratios. Inflow solutions supplemented with lactate enhanced potential SRR at all three sites. Slurry incubations systematically yielded higher Rmax values than flow-through reactor experiments for the freshwater and brackish sediments, but similar values for the marine sediments. Transport limitation of potential SRR at the freshwater and brackish sites may be related to the lower sediment porosities and SRB densities compared to the marine site. Multiple rate controls, including sulfate availability, organic matter quality, temperature, and SRB abundance, modulate in situ sulfate-reducing activity along the estuarine salinity gradient.  相似文献   

10.
Specific surface area (SSA) of headwater stream bed sediments is a fundamental property which determines the nature of sediment surface reactions and influences ecosystem-level, biological processes. Measurements of SSA – commonly undertaken by BET nitrogen adsorption – are relatively costly in terms of instrumentation and operator time. A novel approach is presented for estimating fine (<150 μm) stream bed sediment SSA from their geochemistry – after removal of organic matter – for agricultural headwater catchments across 15,400 km2 of central England, UK. From a regional set of 1972 stream bed sediment sites with common characteristics for which geochemical data were available, 60 samples were selected – based on maximising their variation in Al concentrations – and their BET SSA measured by N2 adsorption. After careful selection of potential regression predictors following a principal component analysis and removal of a subset of samples with the largest Mo concentrations (>2.5 mg kg−1), four elements were identified as significant predictors of SSA (ordered by decreasing predictive power): V > Ca > Al > Rb. The optimum model from these four elements accounted for 73% of the variation in bed sediment SSA (range 6–46 m2 g−1) with a root mean squared error of prediction – based on leave-one-out cross-validation – of 6.3 m2 g−1. It is believed that V is the most significant predictor because its concentration is strongly correlated both with the quantity of Fe-oxides and clay minerals in the stream bed sediments, which dominate sediment SSA. Sample heterogeneity in SSA – based on triplicate measurements of sub-samples – was a substantial source of variation (standard error = 2.2 m2 g−1) which cannot be accounted for in the regression model.  相似文献   

11.
Sediments from the Aquia aquifer in coastal Maryland were collected as part of a larger study of As in the Aquia groundwater flow system where As concentration are reported to reach levels as high as 1072 nmol kg−1, (i.e., ∼80 μg/L). To test whether As release is microbially mediated by reductive dissolution of Fe(III) oxides/oxyhydroxides within the aquifer sediments, the Aquia aquifer sediment samples were employed in a series of microcosm experiments. The microcosm experiments consisted of sterilized serum bottles prepared with aquifer sediments and sterilized (i.e., autoclaved), artificial groundwater using four experimental conditions and one control condition. The four experimental conditions included the following scenarios: (1) aerobic; (2) anaerobic; (3) anaerobic + acetate; and (4) anaerobic + acetate + AQDS (anthraquinone-2,6-disulfonic acid). AQDS acts as an electron shuttle. The control condition contained sterilized aquifer sediments kept under anaerobic conditions with an addition of AQDS. Over the course of the 27 day microcosm experiments, dissolved As in the unamended (aerobic and anaerobic) microcosms remained constant at around ∼28 nmol kg−1 (2 μg/L). With the addition of acetate, the amount of As released to the solution approximately doubled reaching ∼51 nmol kg−1 (3.8 μg/L). For microcosm experiments amended with acetate and AQDS, the dissolved As concentrations exceeded 75 nmol kg−1 (5.6 μg/L). The As concentrations in the acetate and acetate + AQDS amended microcosms are of similar orders of magnitude to As concentrations in groundwaters from the aquifer sediment sampling site (127-170 nmol kg−1). Arsenic concentrations in the sterilized control experiments were generally less than 15 nmol kg−1 (1.1 μg/L), which is interpreted to be the amount of As released from Aquia aquifer sediments owing to abiotic, surface exchange processes. Iron concentrations released to solution in each of the microcosm experiments were higher and more variable than the As concentrations, but generally exhibited similar trends to the As concentrations. Specifically, the acetate and acetate + AQDS amended microcosm typically exhibited the highest Fe concentrations (up to 1725 and 6566 nmol kg−1, respectively). The increase in both As and Fe in the artificial groundwater solutions in these amended microcosm experiments strongly suggests that microbes within the Aquia aquifer sediments mobilize As from the sediment substrate to the groundwaters via Fe(III) reduction.  相似文献   

12.
The concentrations of Re, as well as those of several other geochemical variables, were measured in dated sediment cores and in porewater samples from four lacustrine basins in Eastern Canada: one, perennially oxic, located 40 km from Québec City and three, seasonally anoxic, located within 25 km of non-ferrous metal smelters. The drainage basins of these lakes are uninhabited and have not been affected by human activity or wildfires. All of the depth profiles of dissolved Re indicate: higher Re concentrations in the water overlying the sediment than in the porewater; diffusion of Re across the sediment-water interface; a progressive decrease in porewater Re concentrations to reach minimum values of ∼0.5 pM within a 10-cm sediment depth interval. Modeling of these Re porewater profiles with a one-dimensional transport-reaction equation indicates that Re is removed from porewater within this depth interval. Based on thermodynamic predictions of Re speciation and of saturation states and on comparison of these predictions with sulfide porewater profiles, we infer that Re is removed from porewater by precipitation of rheniite (ReS2(s)). The rate constant for the formation of ReS2(s) in sediments is estimated from the modeling exercise to be 0.51 ± 0.64 × 10−21 mol cm−3 s−1. Accumulation of sedimentary Re shows a strong authigenic component, as in anoxic marine sediments. Sharp increases in solid-phase Re during the last century are attributed to atmospheric deposition of anthropogenic Re deriving from coal burning and nearby smelter emissions.  相似文献   

13.
To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5–37 mg kg−1, Cu 20–190 mg kg−1, Zn 50–300 mg kg−1, Pb 4.5–34 mg kg−1). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.  相似文献   

14.
The speciation of iron (Fe) in soils, sediments and surface waters is highly dependent on chemical interactions with natural organic matter (NOM). However, the molecular structure and hydrolysis of the Fe species formed in association with NOM is still poorly described. In this study extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the coordination chemistry and hydrolysis of Fe(III) in solution of a peat humic acid (5010-49,200 μg Fe g−1 dry weight, pH 3.0-7.2). Data were analyzed by both conventional EXAFS data fitting and by wavelet transforms in order to facilitate the identification of the nature of backscattering atoms. Our results show that Fe occurs predominantly in the oxidized form as ferric ions and that the speciation varies with pH and Fe concentration. At low Fe concentrations (5010-9920 μg g−1; pH 3.0-7.2) mononuclear Fe(III)-NOM complexes completely dominates the speciation. The determined bond distances for the Fe(III)-NOM complexes are similar to distances obtained for Fe(III) complexed by desferrioxamine B and oxalate indicating the formation of a five-membered chelate ring structure. At higher Fe concentrations (49,200 μg g−1; pH 4.2-6.9) we detect a mixture of mononuclear Fe(III)-NOM complexes and polymeric Fe(III) (hydr)oxides with an increasing amount of Fe(III) (hydr)oxides at higher pH. However, even at pH 6.9 and a Fe concentration of 49,200 μg g−1 our data indicates that a substantial amount of the total Fe (>50%) is in the form of organic complexes. Thus, in environments with significant amounts of organic matter organic Fe complexes will be of great importance for the geochemistry of Fe. Furthermore, the formation of five-membered chelate ring structures is in line with the strong complexation and limited hydrolytic polymerization of Fe(III) in our samples and also agrees with EXAFS derived structures of Fe(III) in organic soils.  相似文献   

15.
The shallow aquifer beneath the Western Snake River Plain (Idaho, USA) exhibits widespread elevated arsenic concentrations (up to 120 μg L−1). While semi-arid, crop irrigation has increased annual recharge to the aquifer from approximately 1 cm prior to a current rate of >50 cm year−1. The highest aqueous arsenic concentrations are found in proximity to the water table (all values >50 μg L−1 within 50 m) and concentrations decline with depth. Despite strong vertical redox stratification within the aquifer, spatial distribution of aqueous species indicates that redox processes are not primary drivers of arsenic mobilization. Arsenic release and transport occur under oxidizing conditions; groundwater wells containing dissolved arsenic at >50 μg L−1 exhibit elevated concentrations of O2 (average 4 mg L−1) and NO3 (average 8 mg L−1) and low concentrations of dissolved Fe (<20 μg L−1). Sequential extractions and spectroscopic analysis of surficial soils and sediments indicate solid phase arsenic is primarily arsenate and is present at elevated concentrations (4–45 mg kg−1, average: 17 mg kg−1) relative to global sedimentary abundances. The highest concentrations of easily mobilized arsenic (up to 7 mg kg−1) are associated with surficial soils and sediments visibly stained with iron oxides. Batch leaching experiments on these materials using irrigation waters produce pore water arsenic concentrations approximating those observed in the shallow aquifer (up to 152 μg L−1). While As:Cl aqueous phase relationships suggest minor evaporative enrichment, this appears to be a relic of the pre-irrigation environment. Collectively, these data indicate that infiltrating irrigation waters leach arsenic from surficial sediments to the underlying aquifer.  相似文献   

16.
Lake Iso Valkjärvi (southern Finland, Europe) was divided in two with a plastic curtain in 1991. One half was neutralized with CaCO3, and the other acted as a control. Mercury concentrations of perch (Perca fluviatilis) and northern pike (Esox lucius) in the limed and control side of the lake were studied both before and after the treatment. Average Hg concentrations of perch and pike were 0.40 and 1.2 μg g−1 (ww) in the early 1980s and 0.25 and 0.72 μg g−1 (ww) a decade later at the time of liming. Ten years after the liming the Hg concentrations of perch in the limed and control sides of the lake were 0.21 and 0.28 μg g−1 (ww) and those of pike were 0.69 and 0.43 μg g−1 (ww), respectively. Nitrogen isotope ratios (δ15N) for perch in the sampling period 2002–2004 showed wide variation suggesting variable trophic positions for individual fish. Pike formed two groups according to their δ15N-values, suggesting that zoobenthos dominated the diet of pike around 20 cm in length and fish that of the larger pikes. Because the δ15N-values of fish were at similar levels in the limed and control sides of L. Iso Valkjärvi, differences in food web structure cannot account for the different fish Hg concentrations. A more likely explanation is water quality induced differences in the dynamics and bioavailability of Hg, leading to decreased formation of methyl Hg.  相似文献   

17.
Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been determined at monthly resolution in five Law Dome (coastal Eastern Antarctica) ice core sections dated from ∼1757 AD to ∼1898 AD. ‘Natural’ background Pb concentrations in ∼1757 AD average ∼0.2 pg g−1 and can be attributed to mineral dust and volcanic emissions, with 206Pb/207Pb ratios reaching up to 1.266 ± 0.002. From ∼1887 AD to ∼1898 AD, Pb concentrations reached ∼5 pg g−1 and 206Pb/207Pb ratios decreased to 1.058 ± 0.001 as a result of additional inputs of Pb from anthropogenic sources. Seasonal variability in the late 1880s has been investigated by decoupling volcanic Pb from the total measured Pb concentrations, revealing spring and autumn maxima, and consistent winter minima, in anthropogenic Pb and mineral dust (Ba) concentrations. We link this variability to the annual cycle in the position and strength of the Antarctic Circumpolar Trough and, the Southern Ocean westerly winds to the north of the trough region. During the autumn and spring seasons, these systems increase in strength, transporting more impurity laden air from the Southern Hemisphere continental regions to Eastern Antarctica and Law Dome. As this Pb is isotopically identical to that emitted from south-eastern Australia (Broken Hill, Port Pirie) this implies a relatively direct air trajectory pathway from southern Australia to Law Dome (Eastern Antarctica).  相似文献   

18.
19.
Waters from abandoned Sb-Au mining areas have higher Sb (up to 2138 μg L−1), As (up to 1252 μg L−1) and lower Al, Zn, Li, Ni and Co concentrations than those of waters from the As-Au mining area of Banjas, which only contain up to 64 μg L−1 As. In general, Sb occurs mainly as SbO3 and As H2AsO4. In general, waters from old Sb-Au mining areas are contaminated in Sb, As, Al, Fe, Cd, Mn, Ni and NO2, whereas those from the abandoned As-Au mining area are contaminated in Al, Fe, Mn, Ni, Cd and rarely in NO2. Waters from the latter area, immediately downstream of mine dumps are also contaminated in As. In stream sediments from Sb-Au and As-Au mining areas, Sb (up to 5488 mg kg−1) and As (up to 235 mg kg−1) show a similar behaviour and are mainly associated with the residual fraction. In most stream sediments, the As and Sb are not associated with the oxidizable fraction, while Fe is associated with organic matter, indicating that sulphides (mainly arsenopyrite and pyrite) and sulphosalts containing those metalloids and metal are weathered. Arsenic and Sb are mainly associated with clay minerals (chlorite and mica; vermiculite in stream sediments from old Sb-Au mining areas) and probably also with insoluble Sb phases of stream sediments. In the most contaminated stream sediments, metalloids are also associated with Fe phases (hematite and goethite, and also lepidocrocite in stream sediments from Banjas). Moreover, the most contaminated stream sediments correspond to the most contaminated waters, reflecting the limited capacity of stream sediments to retain metals and metalloids.  相似文献   

20.
Levels of the chalcophile metals Hg, Pb, Cd, Cu and Zn and the metalloid As in soils from rice paddy fields were assessed in two regions impacted by different industrial activities in Guizhou province, China. The two study areas (Wanshan and Qingzhen) have previously received attention in the international literature due to heavy Hg pollution, though levels of other potentially harmful elements have not previously been reported. The regions were selected as representing two important, but categorically different metal(loid) contaminated areas in China: Wanshan has been a major region for Hg production while Qingzhen is an important region for a large range of various heavy industries based on coal as an energy source.Within a limited distance of the Hg mine tailings in Wanshan the rice paddy fields are heavily contaminated by Hg (median concentration 25 μg g−1, maximum 119 μg g−1) and moderately contaminated by Zn and Cd (median concentrations of 86 and 0.9 μg g−1, respectively). Zinc and Cd levels correlate well with Hg contamination, which indicates a similar source and mechanism of transport and accumulation. Other studies have concluded that the main sources of Hg contamination in Wanshan are the numerous Hg mine tailings. This is likely as these metals are all geochemically associated with the mineral cinnabar (HgS). The other chalcophile elements (Pb, Cu and As) are nevertheless found at background levels only. In Qingzhen the soils were found to contain elevated levels of As and Hg (median concentrations of 38 and 0.3 μg g−1, respectively). These are elements that are known to be more associated with coal and released during coal combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号