首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In the present study, we explored this novel mechanism during N mineralization by 15N amendments (single and coupled additions of 15NH4+, 14NO3 and 15NO3) to surface sediments with a wide range of characteristics and overall reactivity. Patterns of 29/30N2 production in the pore water during closed sediment incubations demonstrated anammox at all 7 of the investigated sites. Stoichiometric calculations revealed that 4% to 79% of total N2 production was due to this novel route. The relative importance of anammox for N2 release was inversely correlated with remineralized solute production, benthic O2 consumption, and surface sediment Chl a. The observed correlations indicate competition between reductants for pore water nitrite during early diagenesis and that additional factors (e.g. availability of Mn-oxides), superimposed on overall patterns of diagenetic activity, are important for determining absolute and relative rates of anammox in coastal marine sediments.  相似文献   

2.
The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG° = −33 kJ mol−1, but the in situ energy yield strongly depends on the concentrations of substrates and products in the pore water of the sediment. In this work ΔG for the AOM-SRR process was calculated from the pore water concentrations of methane, sulfate, sulfide, and dissolved inorganic carbon (DIC) in sediment cores from different sites of the European continental margin in order to determine the influence of thermodynamic regulation on the activity and distribution of microorganisms mediating AOM-SRR. In the zone of methane and sulfate coexistence, the methane-sulfate transition zone (SMTZ), the energy yield was rarely less than −20 kJ mol−1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic and kinetic drive, whereas the rate activity mainly depends on kinetic regulation.  相似文献   

3.
Distribution of intact and core GDGTs in marine sediments   总被引:1,自引:0,他引:1  
We conducted a survey of archaeal GDGT (glycerol dibiphytanyl glycerol tetraether) distributions in marine sediments deposited in a range of depositional settings. The focus was comparison of two pools presumed to have distinct geobiological significance, i.e. intact polar GDGTs (IP GDGTs) and core GDGTs (C GDGTs). The former pool has been suggested to be related to living communities of benthic archaea in marine sediments, while the latter is commonly interpreted to consist of molecular fossils from past planktonic archaeal communities that inhabited the surface ocean. Understanding the link between these two pools is important for assessment of the validity of current molecular proxies for sedimentary archaeal biomass and past sea surface temperatures. The relative distributions of GDGTs in the two pools in a core at a CH4 rich site in the Black Sea provide evidence for in situ production of glycosidic IP GDGTs and their subsequent degradation to corresponding C GDGTs on timescales that are short in geological terms. In addition, we monitored the relationship between the IP GDGT and C GDGT pools in a sample set from various ocean basins with subseafloor depth from a few cm to 320 m and 0 to 4 Myr in age. Notable differences between the two pools can be summarized as follows: the GDGT with acyclic biphytanes, GDGT-0, and its analogues with two and three cyclopentane moieties (GDGT-2 and -3) are generally more abundant in the pool of IP GDGTs, while crenarchaeol tends to be more abundant in the C GDGT pool. Consequently, the ring index is generally higher for the C GDGTs while TEX86, a molecular proxy ratio not considering the two major GDGTs, tends to be higher in the IP GDGT pool. These differences in the proportion of individual GDGTs in the two pools are probably due to in situ production of IP GDGTs with distributions differing from those of C GDGTs. Despite these differences, we observed significant correlation of these two ratios between the two pools. Specifically, in both pools TEX86 is high in sediments from warm oceanic regimes and low in cold regimes. We discuss these relationships and suggest that recycling of core GDGTs by benthic archaea is an important mechanism linking both molecular pools.  相似文献   

4.
Convergent lines of molecular, carbon-isotopic, and phylogenetic evidence have previously indicated (Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F., 1999. Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805.) that archaea are involved in the anaerobic oxidation of methane in sediments from the Eel River Basin, offshore northern California. Now, further studies of those same sediments and of sediments from a methane seep in the Santa Barbara Basin have confirmed and extended those results. Mass spectrometric and chromatographic analyses of an authentic standard of sn-2-hydroxyarchaeol (hydroxylated at C-3 in the sn-2 phytanyl moiety) have confirmed our previous, tentative identification of this compound but shown that the previously examined product was the mono-TMS, rather than di-TMS, derivative. Further analyses of 13C-depleted lipids, appreciably more abundant in samples from the Santa Barbara Basin, have shown that the archaeal lipids are accompanied by two sets of products that are only slightly less depleted in 13C. These are additional glycerol ethers and fatty acids. The alkyl substituents in the ethers (mostly monoethers, with some diethers) are non-isoprenoidal. The carbon-number distributions and isotopic compositions of the alkyl substituents and of the fatty acids are similar, suggesting strongly that they are produced by the same organisms. Their structures, n-alkyl and methyl-branched n-alkyl, require a bacterial rather than archaeal source. The non-isoprenoidal glycerol ethers are novel constituents in marine sediments but have been previously reported in thermophilic, sulfate- and nitrate-reducing organisms which lie near the base of the rRNA-based phylogenetic tree. Based on previous observations that the anaerobic oxidation of methane involves a net transfer of electrons from methane to sulfate, it appears likely that the non-archaeal, 13C-depleted lipids are products of one or more previously unknown sulfate-reducing bacteria which grow syntrophically with the methane-utilizing archaea. Their products account for 50% of the fatty acids in the sample from the Santa Barbara Basin. At all methane-seep sites examined, the preservation of aquatic products is apparently enhanced because the methane-oxidizing consortium utilizes much of the sulfate that would otherwise be available for remineralization of materials from the water column.  相似文献   

5.
Structural diversity and fate of intact polar lipids in marine sediments   总被引:1,自引:0,他引:1  
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.  相似文献   

6.
Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments. They may be buried in the sediment or oxidized by O2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3, Fe(III) oxides, or MnO2 are available as potential electron acceptors. In chemical experiments, FeS2 and FeS were oxidized by MnO2 but not with NO3 or amorphous Fe(III) oxide (Schippers and Jørgensen, 2001). Here we also show that in experiments with anoxic sediment slurries, a dissolution of tracer-marked 55FeS2 occurred with MnO2 but not with NO3 or amorphous Fe(III) oxide as electron acceptor. To study a thermodynamically possible anaerobic microbial FeS2 and FeS oxidation with NO3 or amorphous Fe(III) oxide as electron acceptor, more than 300 assays were inoculated with material from several marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S0 as substrates and NO3 as electron acceptor, in the presence of 55FeS2, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of 55FeS2 could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds in a carbonate-buffered solution at pH 8. Despite many different experiments, an anaerobic microbial dissolution of FeS2 could not be detected; thus, we conclude that this process does not have a significant role in marine sediments. FeS can be oxidized microbially with NO3 as electron acceptor. O2 and MnO2, but not NO3 or amorphous Fe(III) oxide, are chemical oxidants for both FeS2 and FeS.  相似文献   

7.
Freshwater chlorophycean algae are characteristic organic-walled microfossils in recent coastal and shelf sediments from the Beaufort, Laptev and Kara seas (Arctic Ocean). The persistent occurrence of the chlorophycean algae Pediastrum spp. and Botryococcus cf. braunii in marine palynomorph assemblages is related to the discharge of freshwater and suspended matter from the large Siberian and North American rivers into the Arctic shelf seas. The distribution patterns of these algae in the marine environments reflect the predominant deposition of riverine sediments and organic matter along the salinity gradient from the outer estuaries and prodeltas to the shelf break. Sedimentary processes overprint the primary distribution of these algae. Resuspension of sediments by waves and bottom currents may transport sediments in the bottom nepheloid layer along the submarine channels to the shelf break. Bottom sediments and microfossils may be incorporated into sea ice during freeze-up in autumn and winter leading to an export from the shelves into the deep sea. The presence of these freshwater algae in sea-ice and bottom sediments in the central Arctic Ocean confirm that transport in sea ice is an important process which leads to a redistribution of shallow water microfossils.  相似文献   

8.
Marine sediments and ferromanganese nodules from the Pacific Ocean have been analyzed for the OMn ratio of solid manganese. We tested six chemical methods and concluded that the iodometric and oxalate methods were equivalent and were the best choice in terms of accuracy and precision on natural samples. We choose the iodometric method for most of our analyses because the oxalate procedure is a method of differences.The ferromanganese nodules that we analyzed were all from MANOP site H and had MnFe ratios that ranged from 5.6 to 70. These nodules were invariably highly oxidized with OMn values ranging from 1.90 to 2.00. Our most precise analyses suggest that less than 1% of the total manganese is present as Mn(II).We also analyzed red clay and hemipelagic sediments from the eastern tropical Pacific (Baja borderland and MANOP site H) and carbonate ooze samples from the equatorial Pacific. These sediments are also highly oxidized (OMn= 1.90 to 2.00) except when Mn(II) appears in the interstitial water. As dissolved Mn(II) increases the value of the OMn ratio in the solid phase decreases. The OMn ratio decreases to values as low as 1.40. This decrease appears to be due to a decrease in oxidized manganese by reduction, however, an increase in reduced manganese in the solid sediments by adsorption or MnCO3 formation can not be ruled out in all cases.  相似文献   

9.
Gravity driven mass-flow deposits proven by sedimentary and digital echosounder data are indicative for prevailing dynamic sedimentary conditions along the continental margin of the western Argentine Basin. In this study we present geochemical data from a total of 23 gravity cores. Pore-water SO4 is generally depleted within a few meters below the sediment surface by anaerobic oxidation of methane (AOM). The different shapes of SO4 profiles (concave, kink- and s-type) can be consistently explained by sedimentary slides possibly in combination with changes in the CH4 flux from below, thus, mostly representing transient pore-water conditions. Since slides may keep their original sedimentary signature, a combined analysis and numerical modeling of geochemical, physical properties, and hydro acoustic data could be applied in order to reconstruct the sedimentary history. We present first order estimates of the dating of sedimentary events for an area where conventional stratigraphic methods failed to this day. The results of the investigated sites suggest that present day conditions are the result of events that occurred decades to thousands of years ago and promote a persisting mass transport from the shelf into the deep-sea, depositing high amounts of reactive compounds. The high abundance of reactive iron phases in this region maintains low hydrogen sulfide levels in the sediments by a nearly quantitative precipitation of all reduced sulfate by AOM. For the total region we estimate a SO4 (or CH4) flux of 6.6 × 1010 moles per year into the zone of AOM. Projected to the global continental slope and rise area, this may sum up to about 2.6 × 1012 moles per year. Provided that the sulfur is completely fixed in the sediments it is about twice the global value of the recent global sulfur burial in marine sediments of 1.2 × 1012 moles per year as previously estimated. Thus, AOM obviously contributes very significantly to the regulation of global sulfur reservoirs, which is hitherto not sufficiently recognized. This finding may have implications for global geochemical models, as sulfur burial is an important control factor in the development of atmospheric oxygen levels over time.  相似文献   

10.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   

11.
In this study, the molecular composition and biomarker distribution of lacustrine sediments from Val-1 drillhole in the central zone of the western part of the Valjevo-Mionica basin were investigated at depth interval of 0–400 m. Former investigations have shown that the core material can be separated into six depth intervals based on bulk geochemical, mineralogical and sedimentological characteristics. Concerning the quality of organic matter, presence of specific minerals, and high salinity and anoxicity, or alkalinity, three zones are of highest interest, defined at depth intervals of 15–75 m (A), 75–200 m (B) and 360–400 m (F). The first aim of the study was to identify which biomarkers characterize these specific intervals. The second aim, addressing the transitions zones of these intervals, was to extend the changes in the characteristics of the organic substance, to reflect the changes of conditions in the depositional environment as well as to define biomarker parameters which are the most sensitive sedimentological indicators.The sediments from the hypersaline anoxic and alkaline environment show high contribution of algal precursor biomass, what is in accordance with the good quality of organic substances in the sediments from these zones. High squalane content and low content of regular isoprenoid C25 are typical for hypersaline anoxic environment, whereas sediments from alkaline environment have high regular isoprenoid C25 content.Transition to specific sedimentation zones is characterized by change in total organic matter content, and of both free and pyrolysis-derived, and change in hydrogen index value. In the biomarker distributions, more significant changes were detected in distributions of n-alkanes and isoprenoids, compared to polycyclic alkanes. The most intensive changes in alkane distribution are reflected in changes in n-C17 content compared to n-C27, and phytane compared to n-C18. In addition, significant sensitivity was seen in ratios between squalane and n-alkane C26 (hypersaline depositional environment), or isoprenoid C25 and n-alkane C22 for high alkalinity environment.This study showed that Sq/n-C26 ratio can be used to assess the quality of organic substance in immature lacustrine sediments.  相似文献   

12.
The organic rich sediments of the Skagerrak contain high quantities of shallow gas of mostly biogenic origin that is transported to the sediment surface by diffusion. The sulfate methane transition zone (SMTZ), where anaerobic oxidation of methane (AOM) and sulfate reduction occur, functions as a methane barrier for this upward diffusing methane.To investigate the regulation of AOM and sulfate reduction rates (SRR) and the controls on the efficiency of methane consumption, pore water concentrations, and microbial rates of AOM, sulfate reduction and methanogenesis were determined in three gravity cores collected along the slope of the Norwegian Trench in the Skagerrak. SRR occurred in two distinct peaks, at the sediment surface and the SMTZ, the latter often exceeding the peak AOM rates that occurred at the bottom of the SMTZ. Highest rates of both AOM and SRR were observed in a core from a pockmark, where advective methane transport occurred, generating high methane and sulfate fluxes. But even at this site with a shallow SMTZ, the entire flux of methane was oxidized below the sediment surface. AOM, SRR and methanogenesis seem to be closely associated and strongly regulated by sulfate concentrations, which were, in turn, regulated by the methane flux. Rate measurements of SRR, AOM and methanogenesis revealed a tight coupling of these processes. Bicarbonate-based methanogenesis occurred at moderate sulfate concentrations (>5 mM) above the AOM zone but seemed to be inhibited in the depth where AOM occurred. The unbalanced stoichiometry of AOM and SRR in the SMTZ was more pronounced in rate measurements than in methane and sulfate fluxes, and seemed more likely be related to enhanced SRR in this zone than an underestimation of methane fluxes.  相似文献   

13.
The sterol contents of plankton and sediment samples have been determined. Cholesterol, 22-dehydrocholesterol, brassicasterol, campesterol, 24-methylenecholesterol, stigmasterol, and β-sitosterol are the major sterols in these samples. Systematic variations have been observed in the compositions of the sterols from bay and Gulf of Mexico plankton and from sediments collected in the mouth of the Aransas River, Capano Bay, Aransas Bay, Corpus Christi Bay and the Gulf near Port Aransas. The concentration of cholesterol increases as the concentration of β-sitosterol decreases in the sample sequence of river inlet sediments-bay sediments-Gulf sediments-bay and Gulf plankton. Calculations based on either the cholesterol or the β-sitosterol contents of the sterol fractions of the fresh water sediments and the Gulf plankton and sediments suggest that 34% of the sterols in the Gulf sediments are derived from terrigenous sources.  相似文献   

14.
The degradation of acyclic petroleum hydrocarbons was studied during a 24-month experiment in Mediterranean coastal sediments (Gulf of Fos). Sediment cores entirely contaminated with oil (Arabian Light Crude Oil) were incubated in situ. The use of conservative tracers of sediment's particles reworking (luminophores) allowed the distinction of the reworked layer from the anoxic deeper sediments. Using the 17α,21βC30 hopane (C30H) as an inert internal reference, we could demonstrate that, after 24 months of experiment, acyclic petroleum hydrocarbons can be degraded under natural anaerobic conditions. The reactivity of individual alkanes appeared to depend on their chemical structure. To cite this article: D. Massias et al., C. R. Geoscience 335 (2003).To cite this article: D. Massias et al., C. R. Geoscience 335 (2003).  相似文献   

15.
The C and N stable isotope compositions of some flora of East Africa from coastal Tanzania and Amboseli National Park (Kenya) are used to assess if they can be used as a terrestrial end member during the estimation of terrestrial fraction in coastal marine sediments. The results of C isotope composition of various tree leaves, which average −29.3 ± 1.4%, indicate that these tropical higher land plant species follow a Calvin-Benson or non-Kranz (C3) type of metabolism. The results for grass species, which average −13.2 ± 2.4%, indicate that most of them follow a Hatch-Slack or Kranz (C4) type of metabolism. However, some of the succulent plants from the Amboseli National Park have δ13C values that average −14.7%, an indication that they follow a CAM (Crassulacean Acid Metabolism) type of metabolism. The N isotope values are relatively higher than expected for the terrestrial organic material. The average δ15N values for both tree and grass samples are higher than 5% and fall within the range normally considered to be marine. The high enrichment in 15N may be related to the environmental conditions in which plants thrive. Plants growing in sandy, dry and overgrazed environments are expected to be enriched in 15N owing to full utilisation of all available N species, regardless of their isotopic compositions. Other processes which may cause an enrichment in 15N include adsorption by various types of clay minerals, supply of 15N-enriched nitrate through sea-spray, and local denitrification, especially in swampy and lake margins where the input of organic matter may be higher than the rate of decomposition.The stable isotopic composition of organic C and N for surficial organic matter for the coastal marine sediments averages −17.0 ± 0.9% and 5.4 ± 1.1%, respectively. These values indicate a substantial contribution of C4 plants and sea grasses. However, contribution of C4 relative to that of sea grasses can not be evaluated owing to the fact that there is no significant difference in the isotopic compositions between the two groups.In the savannah environment, where a contribution from the C4 types of plants might be substantial, the δ13C value for a terrestrial end member needs to be established prior to evaluation of the terrestrially derived organic matter in the marine environment. Owing to a significant contribution of sea grasses to the total organic matter preserved in coastal marine sediments, the stable isotopes of organic C seem to have a limited applicability as source indicators in the East African coastal waters. Furthermore, the results indicate that N stable isotopes seem to have a limited applicability as source indicators in coastal waters of East Africa. However, more work needs to be conducted to determine the terrestrial and sea grass end member values for the coastal areas.  相似文献   

16.
《Organic Geochemistry》1999,30(8):937-945
The anaerobic degradation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated in several marine harbor sediments. In sediments from Boston Harbor that were heavily contaminated with petroleum, [14C]-naphthalene and [14C]-phenanthrene were oxidized to 14CO2 without a lag, suggesting that the microbial community was adapted for anaerobic PAH oxidation in situ. The addition of molybdate, a specific inhibitor of sulfate-reducing microorganisms, inhibited PAH mineralization which suggested that sulfate reducers were involved in the anaerobic oxidation of the PAHs. PAHs were also anaerobically oxidized at another site in Boston Harbor that was less heavily contaminated, but at a slower rate than in the most heavily contaminated sediments. Sediments not contaminated with petroleum did not significantly oxidize the PAHs. A similar correspondence between rates of anaerobic PAH oxidation and the degree of PAH contamination was observed in sediments from Tampa Bay and San Diego Bay. When relatively pristine sediments from San Diego Bay that did not have a significant capacity for anaerobic PAH oxidation were exposed to high concentrations of naphthalene, they developed a potential for naphthalene degradation that was comparable to that in sediments that had a history of PAH contamination. The increase in potential for naphthalene degradation in the sediments exposed to naphthalene was associated with an increase in naphthalene-degrading microorganisms. These results suggest that many marine harbor sediments contain microorganisms capable of anaerobically oxidizing PAHs under sulfate-reducing conditions and that these microorganisms will respond with an increase in their activity when PAHs are introduced into the sediments. Thus, if PAH inputs into harbor sediments from petroleum can be reduced there may be a widespread potential for microorganisms to remove this PAH contamination from the sediments, despite anaerobic conditions.  相似文献   

17.
Degradation patterns of sedimentary algal lipids were tracked with time under variable redox treatments designed to mimic conditions in organic-rich, bioturbated deposits. Uniformly 13C-labeled algae were mixed with Long Island Sound surface muddy sediments and exposed to different redox regimes, including continuously oxic and anoxic, and oscillated oxic: anoxic conditions. Concentrations of several 13C-labeled algal fatty acids (16:1, 16:0 and 18:1), phytol and an alkene were measured serially. Results showed a large difference (∼10×) in first-order degradation rate constants of cell-associated lipids between continuously oxic and anoxic conditions. Exposure to oxic conditions increased the degradation of cell-associated lipids, and degradation rate constants were positive functions (linear or nonlinear) of the fraction of time sediments were oxic. Production of two new 13C-labeled compounds (iso-15:0 fatty acid and hexadecanol) further indicated that redox conditions and oxic: anoxic oscillations strongly affect microbial degradation of algal lipids and net synthesis of bacterial biomass. Production of 13C-labeled iso-15:0 fatty acid (a bacterial biomarker) was inversely proportional to the fraction of time sediments were oxic, rapidly decreasing after 10 days of incubation under oxic and frequently oscillated conditions. Turnover of bacterial biomass was faster under continuously or occasionally oxic conditions than under continuously anoxic conditions. 13C-labeled hexadecanol, an intermediate degradation product, accumulated under anoxic conditions but not under oxic or periodically oxic conditions. The frequency of oxic: anoxic oscillation clearly alters both the rate and pathways of lipid degradation in surficial sediments. Terminal degradation efficiency and lipid products from degradation of algal material depend on specific patterns of redox fluctuations.  相似文献   

18.
19.
Steroids with unconventional side chains have increasingly been applied as diagnostic markers for geological source and age assessments. However, one of the most distinctive characteristics, the abnormal abundance of pregnane and homopregnane in ancient sediments and petroleum, remains unresolved. Higher pregnane and homopregnane, as well as C23–C26 20-n-alkylpregnanes, relative to the regular steranes were observed in samples collected from different petroleum basins in China. These included Precambrian marine carbonate-derived petroleum (NW Sichuan Basin), Lower Paleozoic marine marl derived crude oils (Tarim Basin), and Eocene hypersaline lacustrine carbonate source rocks and associated petroleum (Bohai Bay Basin). However, all of the samples have many common biomarker characteristics, such as pristane/phytane ratios < 1, low amounts of diasteranes and high C29/C30 hopane (∼0.6–1), C35/C34 hopane (mostly  1) and dibenzothiophene/phenanthrene (DBT/PHEN, mostly 0.5–1) ratios revealing a contribution from anoxic carbonate/marl source rocks deposited in restricted, clastic-starved settings. We suggest that 5α,l4β,l7β-pregnane and homopregnane, as well as their higher C23–C26 homologues, are geological products derived from steroids bound to the kerogen by a sulfurized side chain. Carbon or carbonate minerals are considered to be natural catalysts for this cracking reaction via preferential cleavage of the bond between C-20 and C-22. Similar distributions occur in the short chain analogues of 4-methylsterane, triaromatic steroid and methyltriaromatic steroid hydrocarbons, providing circumstantial evidence for this proposal. The ratio of pregnane and homopregnane to the total regular steranes and the ratio of C27 diasteranes to cholestanes can be sensitive indicators of sedimentary environments and facies. In general, high diasteranes and low pregnanes (with homologues) indicate an oxic water column or significant input of terrigenous organic matter in clay rich source rocks and some organic lean carbonate rocks. Low diasteranes with high pregnanes implies restricted, sulfur rich conditions, typical of anoxic carbonate source rocks. Furthermore, the two ratios may be useful to assess the variation of mineralogy and openness of source rock depositional settings.  相似文献   

20.
Eighty six gravity cores collected from the Pacific Ocean by the Scripps Institution of Oceanography have been logged for magnetic susceptibility using a simple and rapid technique. These logs fall into three types: Type 1 showing several highs and lows, Type 2 with a single-broad-hump, and Type 3 showing nearly constant susceptibility with depth. Type 1 cores are found to be mainly from sediment-trap (trenches) areas which are close to the active volcanoes and the high peaks probably correspond to a slump or deposition of volcanic material; these events occurred between 0·1 and 2·8 million years ago. Type 2 cores are by far the most common, (56 out of 86) and show a maximum deposition of magnetic material (i.e. crest region of the hump) in the range of 0·2 and 1·7 million years. The susceptibility during this period was about a factor of two higher for several cores compared to their respective values during the last 0·1 million years. Oceanwide deposition of volcanic material and/or the atmospherically transported dust rich in magnetic material (cosmic and/or terrestrial) by our planet can account for such an increase. A third possibility may be the change (decrease) in accumulation rates of the sediments during this period. In type 3 cores the susceptibility is almost constant with depth and these are randomly distributed (excluding the sediment trap areas) analogous to the case of type 2 cores. A high deposition rate in these areas can alter type 2 into type 3. It appears that the maximum of type 2 hump can act as a stratigraphic marker since type 2 cores are the most common ones and are widely distributed over the entire Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号