首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present bulk solar wind isotopic and elemental ratios for Ar, Kr, and Xe averaged from up to 14 individual analyses on silicon targets exposed to the solar wind for ∼2.3 years during NASA’s Genesis mission. All averages are given with 1σ standard errors of the means and include the uncertainties of our absolute calibrations. The isotopic ratios 86Kr/84Kr and 129Xe/132Xe are 0.303 ± 0.001 and 1.06 ± 0.01, respectively. The elemental ratios 36Ar/84Kr and 84Kr/132Xe are 2390 ± 120 and 9.9 ± 0.3, respectively. Average fluxes of 84Kr and 132Xe in the bulk solar wind in atoms/(cm2 s) are 0.166 ± 0.009 and 0.017 ± 0.001, respectively. The flux uncertainties also include a 2% uncertainty for the determination of the extracted areas. The bulk solar wind 36Ar/38Ar ratio of 5.50 ± 0.01 and the 36Ar flux of 397 ± 11 atoms/(cm2 s) determined from silicon targets agree well with the 36Ar/38Ar ratio and the 36Ar flux determined earlier on a different type of target by Heber et al. (2009). A comparison of the solar wind noble gas/oxygen abundance ratios with those in the solar photosphere revealed a slight enrichment of Xe and, within uncertainties a roughly uniform depletion of Kr-He in the solar wind, possibly related to the first ionization potentials of the studied elements. Thus, the solar wind elemental abundances He-Kr display within uncertainties roughly photospheric compositions relative to each other. A comparison of the Genesis data with solar wind heavy noble gas data deduced from lunar regolith samples irradiated with solar wind at different times in the past reveals uniform 36Ar/84Kr ratios over the last 1-2 Ga but an increase of the 84Kr/132Xe ratio of about a factor of 2 during the same time span. The reason for this change in the solar wind composition remains unknown.  相似文献   

2.
We discuss observed xenon isotopic signatures in solar system reservoirs and possible relationships. The predominant trapped xenon component in ordinary chondrites (OC) is OC-Xe and its isotopic signature differs from Xe in ureilites, in carbonaceous chondrites, in the atmospheres of Earth and Mars, and in the solar wind. Additional minor Xe components were identified in type 3 chondrites and in the metal phase of chondrites. The OC-Xe and ureilite signatures are both consistent with varying mixtures of HL-Xe and slightly mass fractionated solar-type Xe. Xenon in the Martian atmosphere is found to be strongly mass fractionated by 37.7‰ per amu, relative to solar Xe, favoring the heavy isotopes. Xenon in SNC’s from the Martian mantle show admixture of solar-type Xe, which belongs to an elementally strongly fractionated component. The origin of the isotopic signatures of Ne and Xe in the terrestrial atmosphere are discussed in the light of evidence that the Xe isotopic fractionations in the Martian and terrestrial atmospheres are consistent. However, in the terrestrial atmospheric Xe component excesses are observed for132Xe and also for129,131Xe, relative to fractionated solar Xe. The suggested chemically fractionated fission Xe component (CFF-Xe) seems to closely match the above excesses. We discuss models of origin for planetary volatiles and possible processes driving their evolution to present day compositions.  相似文献   

3.
The elemental and isotopic composition of noble gases in two chondritic meteorites which belong to documented “falls” is reported. Ogi, which belongs to the group of H-chondrites, fell in Saga, Kyushu (Japan) at 11am on 8 June 1741 and Siena which belongs to the group of LL-chondrites, fell in Tuscany (Italy) at 7pm on 16 June 1794. The recovered mass of Ogi and Siena were 14·2 and 4 kg respectively. Their exposure ages are 13±2 m.y. and 13±3 m.y. respectively.  相似文献   

4.
5.
6.
Solar wind (SW) helium, neon, and argon trapped in a bulk metallic glass (BMG) target flown on NASA’s Genesis mission were analyzed for their bulk composition and depth-dependent distribution. The bulk isotopic and elemental composition for all three elements is in good agreement with the mean values observed in the Apollo Solar Wind Composition (SWC) experiment. Conversely, the He fluence derived from the BMG is up to 30% lower than values reported from other Genesis bulk targets or in-situ measurements during the exposure period. SRIM implantation simulations using a uniform isotopic composition and the observed bulk velocity histogram during exposure reproduces the Ne and Ar isotopic variations with depth within the BMG in a way which is generally consistent with observations. The similarity of the BMG release patterns with the depth-dependent distributions of trapped solar He, Ne, and Ar found in lunar and asteroidal regolith samples shows that also the solar noble gas record of extraterrestrial samples can be explained by mass separation of implanted SW ions with depth. Consequently, we conclude that a second solar noble gas component in lunar samples, referred to as the “SEP” component, is not needed. On the other hand, a small fraction of the total solar gas in the BMG released from shallow depths is markedly enriched in the light isotopes relative to predictions from implantation simulations with a uniform isotopic composition. Contributions from a neutral solar or interstellar component are too small to explain this shallow sited gas. We tentatively attribute this superficially implanted gas to low-speed, current-sheet related SW, which was fractionated in the corona due to inefficient Coulomb drag. This fractionation process could also explain relatively high Ne/Ar elemental ratios in the same initial gas fraction.  相似文献   

7.
We have analyzed nitrogen, neon and argon abundances and isotopic ratios in target material exposed in space for 27 months to solar wind (SW) irradiation during the Genesis mission. SW ions were extracted by sequential UV (193 nm) laser ablation of gold-plated material, purified separately in a dedicated line, and analyzed by gas source static mass spectrometry. We analyzed gold-covered stainless steel pieces from the Concentrator, a device that concentrated SW ions by a factor of up to 50. Despite extensive terrestrial N contamination, we could identify a non-terrestrial, 15N-depleted nitrogen end-member that points to a 40% depletion of 15N in solar-wind N relative to inner planets and meteorites, and define a composition for the present-day Sun (15N/14N = [2.26 ± 0.67] × 10−3, 2σ), which is indistinguishable from that of Jupiter’s atmosphere. These results indicate that the isotopic composition of nitrogen in the outer convective zone of the Sun has not changed through time, and is representative of the protosolar nebula. Large 15N enrichments due to e.g., irradiation, low temperature isotopic exchange, or contributions from 15N-rich presolar components, are therefore required to account for inner planet values.  相似文献   

8.
Noble gas recharge temperatures and the excess air component   总被引:1,自引:0,他引:1  
The calculation of a groundwater recharge temperature based on the dissolved concentrations of Ne, Ar, Kr and Xe requires a correction for noble gas supersaturation due to excess air entrainment. This entrainment is commonly attributed to the recharge process or to air contamination at the wellhead during sample collection. With the exception of some local studies, most work has concentrated on interpretation of the recharge temperature or quantification of the radiogenic content for palaeoclimatic and dating purposes. The magnitude and source of the excess air is not directly relevant to these studies and so is often ignored. In this work, excess air Ne and other data have been calculated from new and published noble gas data sets for several groundwater systems. For younger groundwaters which have been recharged under one broad climatic regime, the amount of air entrainment increases according to lithology in the order granites, sandstones and limestones respectively. A negative correlation between precipitation and excess air entrainment is identified in at least one aquifer, and some of the mechanisms which may influence the entrainment process are discussed.  相似文献   

9.
The noble gases He, Ne, Ar, Kr and Xe and also K and Ba were measured in the Apollo 11 igneous rocks 10017 and 10071, and in an ilmenite and two feldspar concentrates separated from rock 10071. Whole rock K/Ar ages of rocks 10017 and 10071 are (2350 ± 60) × 106 yr and (2880 ± 60) × 106 yr, respectively. The two feldspar concentrates of rock 10071 have distinctly higher ages: (3260 ± 60) × 106 yr and (3350 ± 70) × 106 yr. These ages are still 10 per cent lower than the Rb/Sr age obtained by Papanastassiouet al. (1970) and some Ar40 diffusion loss must have occurred even in the relatively coarse-grained feldspar.The relative abundance patterns of spallation Ne, Ar, Kr and Xe are in agreement with the ratios predicted from meteoritic production rates. However, diffusion loss of spallation He3 is evident in the whole rock samples, and even more in the feldspar concentrates. The ilmenite shows little or no diffusion loss. The isotopic composition of spallation Kr and Xe is similar to the one observed in meteorites. Small, systematic differences in the spallation Kr spectra of rocks 10017 and 10071 are due to variations in the irradiation hardness (shielding). The Kr spallation spectra in the mineral concentrates are different from the whole rock spectra and also show individual variations, reflecting the differences in target element composition. The relative abundance of cosmic ray produced Xe131 differs by nearly 50 per cent in the two rocks. The other Xe isotopes show no variations of similar magnitude. The origin of the Xe131 yield variability is discussed.Kr81 was measured in all the samples investigated. The Kr81/Kr exposure ages of rocks 10017 and 10071 are (480 ± 25) × 106 yr and (350 ± 15) × 106 yr, respectively. Exposure ages derived from spallation Ne21, Ar38, Kr83 and Xe126 are essentially in agreement with the Kr81/Kr ages. The age of rock 10071 might be somewhat low because of a possible recent exposure of our sample to solar flare particles.  相似文献   

10.
地热系统惰性气体同位素地球化学是地热成因研究的重要手段。许多惰性气体同位素都可用于地热系统的研究中,主要目的为揭示热田的热源性质、深-浅层地热流体的内在联系和循环深度等。本文从惰性气体理化特点、样品采集、测试技术及数据等若干方面介绍了惰性气体研究方法,重点探讨了在自由气和溶解气两种形态下,热泉、喷气孔、热水井不同环境下的惰性气体采样方法,还介绍了成熟的惰性气体同位素的测试方法,即利用磁偏转静态真空质谱计分析测试方法,最后基于世界各地典型地热系统的惰性气体测试数据,讨论地热系统的气体来源判别,不同气源的混合比例计算等,进而确定地热流体循环深度。  相似文献   

11.
12.
Comparisons of the brightness distributions of the white corona observed at distances of several solar radii with solar wind velocities derived from interplanetary-scintillation observations, as well as analyses of solar wind data obtained on spacecraft from December 1994 to June 1995, indicate that the fast solar wind can contain plasma with velocities V ≈ 300–450 km/s, approaching those typical for the slow solar wind that flows in the streamer belt and chains of streamers. At the same time, certain other parameters, first and foremost the plasma density N and ratio T/N 0.5 (where T is the temperature), indicate that these two flows differ considerably. The slow solar wind flowing in the streamer belt and chains displays high densities N > 10 ± 2 cm?3 and low T/N 0.5 < 1.7 × 104 K cm3/2 at the Earth’s orbit. The number of slow solar-wind sources observed in chains can be comparable with the number observed in the belt. The fast solar wind flowing from coronal holes always displays low densities N≤ 8 cm?3 and high T/N 0.5 > 1.7 × 104 K cm3/2. These properties probably indicate different origins of the fast and slow solar winds.  相似文献   

13.
14.
40Ar-39Ar and 129Xe-128Xe analyses were performed on two lithologies (light and dark) of the St Séverin (LL6) chondrite. For the light and dark fractions, respectively, we obtained 40Ar retention ages of 4.38 and 4.42 AE and 129Xe retention ages of 8.4 and 15.2 myr after Bjurböle. The two methods give age differences of opposite sense, and by both methods the differences are significant. Both the 40Ar and the 129Xe ages are interpreted as dating relaxation of metamorphic conditions. These two chronometers are decoupled, however, and do not date the same events. 40Ar-39Ar reflect chondritic metamorphisrn on a 108 yr time scale. The 129Xe-128Xe ages reflect isotopic closure at higher temperatures and earlier times.  相似文献   

15.
The genesis and composition of lazurite was considered in the metasomatic rocks and deposits of the Baikal area, Pamirs, Hindu Kush, and other regions. It was shown that formation of lazurite is related to the prograde bimetasomatic or contact-metasomatic magnesian skarn processes developing in dolomites. The skarnized sedimentary or metamorphic rocks should be salt-bearing, contain sulfur-bearing minerals, and be affected by Cl-bearing hydrothermal solutions. Both abyssal and hypabyssal skarn bodies show distinct zoning. Depending on the PT parameters, their metasomatic columns can vary, with the preservation of the Mg/Ca ratio from the carbonate precursor. The formation of contact-metasomatic lazurite mineralization is promoted by high-alkali magmatic solutions, which cause the replacement of dolomites by skarn. Lazurite can also be formed during the postmagmatic stage, owing to a change in the mineral composition of the adjacent aluminosilicate and magnesian-skarn rocks at abyssal and hypabyssal deposits around the world. The occurrence of authigenic lazurite emphasizes its polygenetic formation. Original Russian Text ? S.M. Aleksandrov, V.G. Senin, 2006, published in Geokhimiya, 2006, No. 10, pp. 1053–1067.  相似文献   

16.
云南大坪金矿白钨矿惰性气体同位素组成及其成矿意义   总被引:11,自引:6,他引:11  
利用高真空气相质谱系统测定了云南大坪金矿白钨矿流体包裹体的惰性气体同位素组成,得出其~3He/~4He为(0.988~1.424)×10~(-6),平均1.205×10~(-6),相应R/R_a为0.706~1.018,平均0.898,~(40)Ar/~(36)Ar为1801.8~2663.8,远高于大气~(40)Ar/~(36)Ar;~(20)Ne/~(22)Ne和~(21)Ne/~(22)Ne分别为9.600~11.56和0.028~0.0467,而~(134)Xe/~(132)Xe和~(136)Xe/~(132)Xe分别为0.394~0.692和0.301~0.462,均高于其相应大气值;He-Ar、Ne和Xe同位素组成显示大坪金矿成矿流体主要由深源地幔流体和地壳流体组成,其中基本不含大气饱和水。大坪金矿的形成与该区壳幔相互作用有关:该区喜山早期地壳拉张引起的地幔岩浆上涌和去气形成深源地幔流体,下地壳在上涌地幔烘烤下形成富含CO_2、~(40)Ar、~(134)Xe、~(136)Xe和~4He的地壳流体,它们混合以后沿韧性剪切带上升,水-岩反应和沸腾作用导致矿质沉淀。因此,大坪金矿属于剪切带控制的深源热液型金矿。  相似文献   

17.
An experimental study of the source and formation of large-scale streams in the solar wind is presented. Radio-astronomical data from 1998 are compared with optical SOHO observations and solar coronal magnetic fields calculated from Zeeman data obtained at the Wilcox Observatory. A correlation between the geometry of the solar-wind transition region and the strength of coronal magnetic fields is revealed. For the moderate heliolatitudes studied, this correlation divides into three branches corresponding to three types of coronal magnetic-field structures: open structures with field lines escaping into interplanetary space, closed structures with loop-like field lines, and intermediate structures including both open and closed configurations. High-speed streams of solar wind originate in regions with open magnetic structures. These structures are connected with the lateral lobes of streamers at moderate heliolatitudes. Low-speed flows originate above closed magnetic structures, typical of the main bodies of streamers. The lowest-speed solar-wind flows are not associated with coronal streamer structures, and originate in coronal regions with intermediate magnetic configurations simultaneously containing open and closed field lines. In these regions, the white-light corona becomes an extended and amorphous area with high luminosity, which stratifies into a radial structure with narrow stripes at higher resolution.  相似文献   

18.
Data on the spatial distributions of turbulence characteristics in the inner solar wind are reported. Spectral indices for the outer and inner turbulence scales have been obtained in radio occultation experiments using signals from several spacecraft at different phases of the solar cycle. The characteristics of turbulence in the slow, low-latitude solar wind remain, on average, constant during the solar cycle. The outer turbulence scale in the fast, high-latitude solar wind appreciably exceeds that of the slow, low-latitude wind at the solar minimum. The new data confirm that the transition from the acceleration region to the steady-flow region is accompanied by a change in the turbulence regime. This change in the turbulence regime takes place at greater distances from the Sun for the fast than for the slow solar wind.  相似文献   

19.
Fluid origins in the sandstone-hosted Pb-Zn class of ore deposit have been investigated in three deposits from Scandinavia; Laisvall, Vassbo and Osen. The deposits studied are hosted by autochthonous Cambrian sandstones that preserve a near original structural relationship to the underlying Precambrian basement, enabling the role of basement interaction to be assessed.Mineral samples have been collected from across the paragenetic sequence: sphalerite, galena, pyrite, fluorite and barite, of impregnation and related joint-hosted mineralization. Fluid-inclusion halogen (Cl, Br and I) and noble gas isotope (40Ar, 36Ar, 84Kr) compositions were determined simultaneously by noble gas mass spectrometry of irradiated sample splits. Complementary He isotope analyses are obtained from nonirradiated splits of the same samples.3He/4He values at Laisvall and Osen are highly radiogenic, 0.02 Ra, and the 4He/40Ar* ratio extends to values greater than the crustal production value of 5, characteristic of low-temperature crustal fluids. At Vassbo, a slightly elevated 3He/4He ratio of 0.1-0.3 Ra is compatible with a very minor mantle component (1%-4%) suggesting a distal source for the basinal brine-dominated fluid.Br/Cl molar ratios 3.2-8.2 × 10−3 are greater than the present seawater value of 1.54 × 10−3 and correspond with I/Cl molar ratios in the range 64-1600 × 10−6. The upper limits of both the I/Cl and Br/Cl values are amongst the highest measured in crustal fluids. Together, the data indicate acquisition of salinity by the evaporation of seawater beyond the point of halite saturation and subsequent fluid interaction with I-rich organic matter in the subsurface. The data are compatible with the independent transport of sulfate and sulfide and indicate that fluids responsible for joint-hosted mineralization were distinct to those responsible for impregnation mineralization.All three deposits preserve fluids with 40Ar/36Ar in the range of 6,000-10,000 and fluid inclusion 40Ar* concentrations of >0.02-0.05 cm3cm−3. Fluid-inclusion 4He concentrations are also extremely elevated with maximum values of ∼0.1 cm3cm−3 in Laisvall fluorite and sphalerite. The high 40Ar/36Ar values, together with the high 4He and 40Ar* concentrations, result from a very long premineralization crustal residence time on the order of 100-200 Ma.Together, the noble gas and halogen data are compatible with a Caledonian mineralization event (∼425 Ma) caused by mixing of two or more, long-lived, hydrothermal basinal brines and pore fluids at the sites of mineralization. The data suggest negligible recharge of the basinal brines by meteoric water and indicate extensive fluid-basement interaction before mineralization. The similar noble gas composition of each deposit, suggests that similar processes operated at all three deposits and favors a single-pass fluid-flow model for mineralization.  相似文献   

20.
文章利用黄铁矿流体包裹体惰性气体同位素,探讨了广西栗木锡铌钽矿田成矿流体的来源.黄铁矿流体包裹体的3He/4He比值为0.14~0.97 Ra,远远低于地幔流体的比值,接近饱和大气水的比值,并与地壳流体的比值处在相同的数量级上;40 Ar/36 Ar比值为555.98~ 855.11,平均705.55,显然偏离大气氩的同位素组成;40Ar*/4He比值为0.08~0.27,平均值为0.153,接近地壳值;20Ne/22 Ne=9.671~9.748和21Ne/22 Ne=0.0306~ 0.0330,具有饱和大气水的Ne同位素比值特征.结果表明,广西栗木锡铌钽矿田老虎头、牛栏岭和金竹源3个矿床的成矿流体是大气水和地壳流体的混合流体;水溪庙矿床的成矿流体也主要是大气水和地壳流体的混合流体,但可能有少量地幔流体的加入.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号