首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied biomimetic mineralization of self-assembling polymer matrices in order to develop a model for biomineralization of iron oxides in nature. High-resolution transmission electron microscopy (HRTEM), rheology, and fluorescence probe analyses show self-assembly of acidic polysaccharide alginic acid (Alg) to form fibrils in dilute solutions. The resulting Alg fibrils are subsequently mineralized by FeOOH in a biomimetically controlled process. Experiments were conducted in pH 9.2 solutions containing millimolar concentrations of iron at 38°C. The unperturbed state of the hybrid mineral-organic structures was studied by characterization of samples of interfacial films collected from an inorganic-organic interface. Progress of mineralization over a 4-week period was followed by HRTEM, energy-dispersive X-ray analysis, and selected area electron diffraction. Morphologies of hybrid structures determined by HRTEM, X-ray powder diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray analysis, and selected area electron diffraction suggest formation of iron (III) oxyhydroxide phases and their assembly through a variety of mechanisms, possibly occurring simultaneously. An initial step involves precipitation of nanometer-scale amorphous particles and two-line ferrihydrite in bulk solution. Some nanoparticles assemble into chains that recrystallize to form akaganeite (β-FeOOH), presumably via a solid-state transformation pathway. Small organic molecules may mediate this process by stabilizing the akaganeite structure and controlling particle assembly. Ferrihydrite particles also bind to acidic polysaccharide fibrils and are transformed to ordered arrays of akaganeite. The parallel orientation of adjacent akaganeite nanocrystals may be inherited from the orientation of precursor ferrihydrite, possibly conferred during attachment of ferrihydrite to the polyacid fibrils. Alternatively, particle-particle interactions may induce orientation, leading to recrystallization. Subsequently, akaganeite is transformed to goethite that is characterized by nanoscale porosity and fine-scale twinning on {021}. Dislocation, twin, and nanopore microstructures are consistent with coarsening by nanoparticle assembly, possibly templated by the substrate. Nanoparticle assembly to generate biomimetic hybrid materials may be relevant to formation of complex natural biominerals in natural systems where mineral nanoparticles, small organic molecules, and more complex polymers coexist.  相似文献   

2.
Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (μXRF), X-ray absorption spectroscopy (μΕXAFS), and X-ray diffraction (μXRD) in conjunction with focused ion beam (FIB) sectioning, and high resolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1−xS, 0 ? x ? 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe μEXAFS spectroscopy and μXRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that microbiologically produced Fe-complexing ligands may play critical roles in both the delivery of Fe(II) to oxidases, and the limited Fe(III) oxyhydroxide crystallinity observed within the biofilm. Our research provides insight into the structure and formation of naturally occurring, microbiologically produced Fe oxyhydroxide minerals in the deep-sea. We describe the initiation of microbial seafloor weathering, and the morphological and mineralogical signals that result from that process. Our observations provide a starting point from which progressively older and more extensively weathered seafloor sulfide minerals may be examined, with the ultimate goal of improved interpretation of ancient microbial processes and associated biological signatures.  相似文献   

3.
The origin of high dissolved manganese concentrations in slightly acidic mine runoff from a surface mine operated by the Cumberland Coal Company in eastern Tennessee was investigated. Mineralogical and chemical analyses were performed on 31 samples of sandstone, shale, coal, and mudstone from the mine to identify the sources and stratigraphic distribution of high extractable manganese contents in the spoil materials. The samples were analyzed for their bulk mineral content by X-ray diffraction, net acid-base potential, and reaction to 2 or 4 chemical extraction procedures. A limited number of samples were analyzed for petrographic characteristics, clay mineral composition by X-ray diffraction, and mineral compositions by electron microprobe. Analysis of the data and consideration of the geochemical conditions at the mine were used to identify probable sources for the high extractable manganese contents.The results indicate 2 prominent, independent sources of extractable manganese. The first source is exchangeable manganese on clay minerals (mainly illite + muscovite and chlorite) and is concentrated in shale and mudstone rock types. The second and more significant source is manganese in siderite concretions and cement, mainly in shale and mudstone. Comparison to other coal-bearing strata indicates that manganese-rich siderite is common in fresh- to brackish-water subaqueous sediments that overlie coal. This is especially the case for coals formed in wet, tropical environments.Ratios of manganese to calcium and magnesium in mine runoff suggest that manganese from siderite is the major cause of the high dissolved manganese contents. A conceptual model is developed to explain the high manganese contents of the mine runoff. Oxidation of pyrite creates mildly acidic waters that are subsequently partially neutralized by reaction with impure siderite. Solubilized manganese remains dissolved in the slightly acidic runoff water, whereas dissolved iron precipitates as ferric hydroxide or goethite. Consideration of data from other coal mining regions suggests that similar reactions involving impure siderite may be responsible for high manganese concentrations in acidic to slightly acidic mine runoff. Geochemical reaction path modeling of pyrite and impure siderite with rainwater illustrate how resulting water compositions may vary depending on pyrite to siderite ratios in spoil materials. Spoil water compositions from the Cumberland mine are largely consistent with reaction of pyrite and impure siderite in proportions observed in the sediments; however, deviations may be explained by minor mixing with waters that reacted only with impure siderite or clay mineral exchange reactions.  相似文献   

4.
<正>Microbial mats are ecosystems that can control or induce the precipitation of calcium(Ca) carbonate on Earth through geological time.In the present study,we report on a novel accumulation of Ca,together with iron(Fe),in a microbial mat collected from a slight acidic hot spring(pH=5.9) in south China.Combining an array of approaches,including environmental scanning electron microscopy,X-ray microanalysis,transmission electron microscopy,and selected area electron diffraction,we provide ultrastructral evidence for amorphous acicular aggregates containing Ca and Fe associated with cyanobacteria precipitating in the microbial mats.Cyanobacterial photosynthesis and exopolymeric organic matrixes are considered to be responsible for the precipitation of Ca.These amorphous acicular aggregates might imply the early stage of calcification occurring in microbial mats.Ca and Fe coprecipitation indicates another potential important way of inorganic element precipitation in hot spring microbial mats.Our results provide insight into the possible mechanism of cyanobacterial calcification and microfossil preservation in slight acidic hot spring environments.  相似文献   

5.
Antimony (Sb) is strongly concentrated into hydrothermal mineral deposits, commonly with gold, in metasedimentary sequences around the Pacific Rim. These deposits represent potential point sources for Sb in the downstream environment, particularly when mines are developed. This study documents the magnitude and scale of Sb mobility near some mineral deposits in Australia and New Zealand. Two examples of New Zealand historic mining areas demonstrate that natural groundwater dissolution of Sb from mineral deposits dominates the Sb load in drainage waters, with Sb concentrations between 3 and 24 μg/L in major streams. Mine-related discharges can exceed 200 μg/L Sb, but volumes are small. Sb flux in principal stream waters is ca 1–14 mg/s, compared to mine tunnel fluxes of ca 0.001 mg/s. Dissolved Sb is strongly attenuated near some mine tunnels by adsorption on to iron oxyhydroxide precipitates. Similar Sb mobilisation and attenuation processes are occurring downstream of the historic/active Hillgrove antimony–gold mine of New South Wales, Australia, but historic discharges of Sb-bearing debris has resulted in elevated Sb levels in stream sediments (ca 10–100+ mg/kg) and riparian plants (up to 100 mg/kg) for ca 300 km downstream. Dissolution of Sb from these sediments ensures that river waters have elevated Sb (ca 10–1,000 μg/L) over that distance. Total Sb flux reaching the Pacific Ocean from the Hillgrove area is ca 8 tonnes/year, of which 7 tonnes/year is particulate and 1 tonne/year is dissolved.  相似文献   

6.
The prevalence of sulphidic sediments in inland wetlands has been only recently recognized in many parts of the world, including Australia. The exposure of sulphidic sediments in these wetlands due to natural and human induced drying events has resulted in the oxidation of iron sulfide minerals, the formation of secondary iron minerals characteristic of acid sulfate soils and the release of highly acidic solutions. The objective of this study was to determine the mineralogy and morphology of sediments collected from the oxidized surface horizon (0-5 cm) of an inland acid sulfate soil located in south-western New South Wales (NSW), Australia. Random powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning transmission electron microscopy combined with energy dispersive X-ray spectroscopy (STEM-EDS) techniques were used to characterize the minerals present in these sediments. Akaganéite was identified as the major mineral phase in the sediments; K-jarosite was also determined in small amounts in some sediments. The XRD patterns of sequentially washed (E-pure® water-0.01 M HCl-0.01 M EDTA) sediment samples showed all akaganéite peaks; the Rietveld refinement of these patterns also revealed a predominance of akaganéite. The chemical analyses of the original and washed sediments using STEM-EDS clearly showed the presence of akaganéite as a pure mineral phase with an average Fe/Cl mole ratio of 6.7 and a structural formula of Fe8O8(OH)6.8(Cl)1.2. These findings show that the extreme saline-acidic solutions (pH ∼ 2, EC = 216 dS/m) at the Bottle Bend lagoon provide ideal conditions for the crystallization of this rarely forming mineral.  相似文献   

7.
《Geochimica et cosmochimica acta》1999,63(19-20):3395-3406
Transmission electron microscopy (TEM), with energy dispersive X-ray (EDX) analysis and energy filtered transmission electron microscopy/electron energy loss spectroscopy (EFTEM/EELS), as well as powder X-ray diffraction (XRD) and scanning electron microscopy (SEM), have been used to study bed sediments from two acid mine drainage (AMD) sites in western Montana, USA. TEM and associated techniques, including sample preparation via epoxy impregnation and ultramicrotome sectioning, afford the opportunity to better interpret and understand complex water-rock interactions in these types of samples. For the sample taken from the first site (Mike Horse mine), ferrihydrite is the dominant phase, Si and Zn are the most abundant elements sorbed to ferrihydrite surfaces, and Pb is notably absent from ferrihydrite association. Three additional important metal-containing phases (gahnite, hydrohetaerolite, and plumbojarosite), that were not apparent in the powder XRD pattern because of their relatively low concentration, were identified in the TEM. The presence of these phases is important, because, for example, gahnite and plumbojarosite act as sinks for Zn and Pb, respectively. Therefore, the mobility of Pb from this part of the drainage system depends on the stability of plumbojarosite and the ability of ferrihydrite to sorb the released Pb. From thermodynamic data in the literature, we predict that Pb will be released by the dissolution of plumbojarosite above a pH of 4 to 5, but it will then be recaptured by ferrihydrite if the pH continues to rise to 5.5 and higher, irrespective of competition effects from other metals. Therefore, only a relatively narrow pH window exists in which Pb can escape this portion of the system as an aqueous species. For the sample taken from the other site included in this study (the Carbonate mine), jarosite and quartz are the dominant phases. Interestingly, however, the jarosites are both Pb-poor and Pb-enriched. In addition, TEM reveals the presence of microcrystalline hematite with Si, S, and P sorbed to its surfaces, a nearly pure amorphous Si, Al oxyhydroxide, and an amorphous silica phase containing minor amounts of Al, Ca, and Fe. Pb will probably be released from these mixed K-Pb jarosites above pH 4 to 5, but the Pb may be retarded by the strongly adsorbing microcrystalline hematite in this pH range. The sink for Al in this system is the amorphous Si, Al oxyhydroxide, not Al(OH)3 which is typically used in AMD modeling schemes.  相似文献   

8.
Iron(III) (hydr)oxides formed at extracellular biosurfaces or in the presence of exopolymeric substances of microbes and plants may significantly differ in their structural and physical properties from their inorganic counterparts. We synthesized ferrihydrite (Fh) in solutions containing acid polysaccharides [polygalacturonic acid (PGA), alginate, xanthan] and compared its properties with that of an abiotic reference by means of X-ray diffraction, transmission electron microscopy, gas adsorption (N2, CO2), X-ray absorption spectroscopy, 57Fe Mössbauer spectroscopy, and electrophoretic mobility measurements. The coprecipitates formed contained up to 37 wt% polymer. Two-line Fh was the dominant mineral phase in all precipitates. The efficacy of polymers to precipitate Fh at neutral pH was higher for polymers with more carboxyl C (PGA ∼ alginate > xanthan). Pure Fh had a specific surface area of 300 m2/g; coprecipitation of Fh with polymers reduced the detectable mineral surface area by up to 87%. Likewise, mineral micro- (<2 nm) and mesoporosity (2-10 nm) decreased by up to 85% with respect to pure Fh, indicative of a strong aggregation of Fh particles by polymers in freeze-dried state. C-1s STXM images showed the embedding of Fh particles in polymer matrices on the micrometer scale. Iron EXAFS spectroscopy revealed no significant changes in the local coordination of Fe(III) between pure Fh and Fh contained in PGA coprecipitates. 57Fe Mössbauer spectra of coprecipitates confirmed Fh as dominant mineral phase with a slightly reduced particle size and crystallinity of coprecipitate-Fh compared to pure Fh and/or a limited magnetic super-exchange between Fh particles in the coprecipitates due to magnetic dilution by the polysaccharides. The pHiep of pure Fh in 0.01 M NaClO4 was 7.1. In contrast, coprecipitates of PGA and alginate had a pHiep < 2. Considering the differences in specific surface area, porosity, and net charge between the coprecipitates and pure Fh, composites of exopolysaccharides and Fe(III) (hydr)oxides are expected to differ in their geochemical reactivity from pure Fe(III) (hydr)oxides, even if the minerals have a similar crystallinity.  相似文献   

9.
The nature of the surface oxidation phase on pyrite, FeS2, reacted in aqueous electrolytes at pH = 2 to 10 and with air under ambient atmospheric conditions was studied using synchrotron-based oxygen K edge, sulfur LIII edge, and iron LII,III edge X-ray absorption spectroscopy. We demonstrate that O K edge X-ray absorption spectra provide a sensitive probe of sulfide surface oxidation that is complementary to X-ray photoelectron spectroscopy. Using total electron yield detection, the top 20 to 50 Å of the pyrite surface is characterized. In air, pyrite oxidizes to form predominantly ferric sulfate. In aqueous air-saturated solutions, the surface oxidation products of pyrite vary with pH, with a marked transition occurring around pH 4. Below pH = 4, a ferric (hydroxy)sulfate is the main oxidation product on the pyrite surface. At higher pH, we find iron(III) oxyhydroxide in addition to ferric (hydroxy)sulfate on the surface. Under the most alkaline conditions, the O K edge spectrum closely resembles that of goethite, FeOOH, and the surface is oxidized to the extent that no FeS2 can be detected in the X-ray absorption spectra. In a 1.667 × 10−3 mol/L Fe3+ solution with ferric iron present as FeCl3 in NaCl, the oxidation of pyrite is autocatalyzed, and formation of the surface iron(III) oxyhydroxide phase is promoted at low pH.  相似文献   

10.
In order to explore the behavior of platinum group elements in the ecosystems of mineral deposits, the migration characteristics of platinum and palladium were determined in the pH range typical of surface waters. Model sorption experiments on the precipitation of platinum and palladium on iron oxyhydroxide in the presence of major natural inorganic and organic ligands showed that platinum interacts most actively with an iron oxyhydroxide (ferrihydrite) precipitate within the whole pH range, both in the absence and presence of natural organic substances, whereas palladium is preferentially bound to dissolved, suspended, and sedimentary humic substances. The thermodynamic calculation of coexisting platinum and palladium species is qualitatively consistent with experimental data on the character of accumulation and migration of these elements. The obtained data suggest that the migration of platinum and palladium into highly colored waters in the zones of platinum group element deposits results in their extensive deposition on natural geochemical barriers.  相似文献   

11.
天然半导体矿物由于成分、缺陷复杂,传统测试方法如紫外可见漫反射等难以准确测定其禁带宽度.本文以针铁矿为例,通过第一性原理计算得到纯针铁矿及掺Al针铁矿的电子结构.计算结果显示,纯针铁矿导带底与价带顶均由Fe3d与O2p轨道组成,而当含杂质Al时,Al2p与O2p发生杂化参与了价带组成.在此基础上,利用同步辐射X射线氧的K边吸收谱与发射谱对纯针铁矿及天然针铁矿的能带结构进行了测定.结果表明,天然含Al的针铁矿禁带宽度为2.30eV,小于纯针铁矿(2.57eV).本研究提供了一种测定天然氧化物矿物禁带宽度的新方法,为深入研究天然半导体可见光催化活性产生机制提供了理论依据.  相似文献   

12.
Natural polysaccharides such as starch, dextrin, guar gum, cellulose and their derivatives are promising non-toxic organic depressants. Although generally perceived as non-selective, these polymers have found use in commercial processes or have been tested in laboratories in practically all flotation systems involving every type of minerals. In this communication, the adsorption mechanisms of natural polysaccharides are reviewed, with the objective of promoting the wider applications of the polymers. While it seems generally accepted that natural polysaccharides interact with minerals via surface metal-hydroxylated species, an acid/base interaction model between the natural polysaccharides and mineral surfaces is proposed to explain many observed adsorption and flotation phenomena.  相似文献   

13.
本文对南丹IIICD铁陨石的矿物学特征进行了研究,并与同为铁陨石但化学分类不同的阿根廷IAB铁陨石和西伯利亚IIB铁陨石进行了对比,重点探讨了风化作用对铁陨石矿物学特征的影响.首先用偏光显微镜、静水称重、扫描电镜观察了样品的基本矿物学特征和微形貌特征,然后用振动式样品磁强计、X射线衍射与电子探针能谱半定量测试研究了样品的磁学性质、物相和化学组成.研究结果表明,南丹铁陨石在较强的自然风化作用下,光泽变弱为土状光泽,相对密度降低;风化产生的反铁磁性物质会使陨石的磁性下降;另外,样品表面物相组成也发生较大变化,以针铁矿(FeOOH)和磁铁矿(Fe3O4)等铁的次生矿物为主;但风化壳以下的矿物物相及化学成分均未发生明显变化,以Fe、Ni为主的铁纹石、镍纹石物相存在.  相似文献   

14.
The phosphate industry currently uses several natural polymers such as starch and guar as modifiers to achieve better separation of phosphate from silicates and carbonates. These natural products have many drawbacks: poor selectivity, low performance/dosage ratio, instability and sensitivity to aging, batch variability in composition, and deleterious down-stream effects. Several new, synthetic, low molecular weight polymers have recently been developed as cost-effective alternatives to natural products. These polymers have not only overcome many of the problems associated with natural products, but also have high activity and selectivity.The approach used in designing the synthetic polymers was to incorporate functional groups that would adsorb selectively on the mineral surface thereby rendering it hydrophilic. The phosphate modifier (depressant) developed recently is a low molecular weight polyacrylamide containing both hydroxyl and carboxylic acid functional groups. This polymer has provided excellent selectivity in the separation of apatite from siliceous gangue. The role of this and related polymers in the selective cationic flotation of quartz from apatite is discussed in this paper. The structure-activity relationships have been studied by determining the modifier activity of a range of polyacrylamides containing hydroxyl, carboxyl or carboxymethylol groups.  相似文献   

15.
利用硝酸铁与氨水之间的水解反应,生成了一种新的"黑色"非晶形三价铁羟基氧化物 (FeOOH).该物质在室温下稳定,有较高的硬度,其比表面积约为 300 m2/g,零电荷点 (PZC)在 pH 7~ 8之间.根据 M(o)ssbauer谱的鉴定,它具有四方纤铁矿(β-FeOOH)的结构特征. FeOOH和它与各溶质的表面配合物的 X射线光电光谱结果表明, FeOOH与 Pb、 Zn和GrO(4/2-)之间的反应是物理吸附,而与PO(4/3-)和AsO(4/3-)之间的反应是化学吸附. 3个阴离子及 2个阳离子的吸附等温式结果表明,该三价铁羟基氧化物的吸附能力比常见的铁羟基氧化物强 3倍.磷酸盐与砷酸盐之间的竞争反应结果表明,磷酸盐与 FeOOH的反应比砷酸盐强烈.  相似文献   

16.
The extraction of mineral resources requires access through underground workings, or open pit operations, or through drillholes for solution mining. Additionally, mineral processing can generate large quantities of waste, including mill tailings, waste rock and refinery wastes, heap leach pads, and slag. Thus, through mining and mineral processing activities, large surface areas of sulfide minerals can be exposed to oxygen, water, and microbes, resulting in accelerated oxidation of sulfide and other minerals and the potential for the generation of low-quality drainage. The oxidation of sulfide minerals in mine wastes is accelerated by microbial catalysis of the oxidation of aqueous ferrous iron and sulfide. These reactions, particularly when combined with evaporation, can lead to extremely acidic drainage and very high concentrations of dissolved constituents. Although acid mine drainage is the most prevalent and damaging environmental concern associated with mining activities, generation of saline, basic and neutral drainage containing elevated concentrations of dissolved metals, non-metals, and metalloids has recently been recognized as a potential environmental concern. Acid neutralization reactions through the dissolution of carbonate, hydroxide, and silicate minerals and formation of secondary aluminum and ferric hydroxide phases can moderate the effects of acid generation and enhance the formation of secondary hydrated iron and aluminum minerals which may lessen the concentration of dissolved metals. Numerical models provide powerful tools for assessing impacts of these reactions on water quality.  相似文献   

17.
Batch reactor experiments were conducted to assess perthitic alkali-feldspar dissolution and secondary mineral formation in an initially acidic fluid (pH = 3.1) at 200 °C and 300 bars. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. Solid reaction products were retrieved from two identical experiments terminated after 5 and 78 days. Scanning electron microscopy revealed dissolution features and significant secondary mineral coverage on feldspar surfaces. Boehmite and kaolinite were identified as secondary minerals by X-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy analysis of alkali-feldspar surfaces before and after reaction showed a trend of increasing Al/Si ratios and decreasing K/Al ratios with reaction progress, consistent with the formation of boehmite and kaolinite.Saturation indices of feldspars and secondary minerals suggest that albite dissolution occurred throughout the experiments, while K-feldspar exceeded saturation after 216 h of reaction. Reactions proceeded slowly and full equilibrium was not achieved, the relatively high temperature of the experiments notwithstanding. Thus, time series observations indicate continuous supersaturation with respect to boehmite and kaolinite, although the extent of this decreased with reaction progress as the driving force for albite dissolution decreased. The first experimental evidence of metastable co-existence of boehmite, kaolinite and alkali feldspar in the feldspar hydrolysis system is consistent with theoretical models of mineral dissolution/precipitation kinetics where the ratio of the secondary mineral precipitation rate constant to the rate constant of feldspar dissolution is well below unity. This has important implications for modeling the time-dependent evolution of feldspar dissolution and secondary mineral formation in natural systems.  相似文献   

18.
The metamict state and recrystallization of fergusonite in metamict natural samples were studied by thermal methods (TGA-DTA), X-ray powder diffraction (XRD), Raman spectroscopy (RS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and electron microprobe (EPMA). Two metamict mineral samples of fergusonite were investigated in order to identify the original premetamict crystal structure and to identify recrystallization mechanisms. The TEM data and RS provided evidence on the partial preservation of the original structure in the investigated minerals, which are X-ray amorphous. It was shown that fergusonite could recrystallize from a metamict mineral with original fergusonite structure or from metamictized pyrochlore, which was altered before or after metamictization. Two recrystallization mechanisms were recognized: (a) epitaxial growth occurring at the boundary between preserved premetamict structure fragments and completely metamictized areas, and (b) nucleation-crystal growth mechanism occurring in completely amorphous areas of the minerals, and resulting in recrystallization of the original mineral as well as in the crystallization of a new mineral with a modified chemical composition as compared to the initial matrix.  相似文献   

19.
The Lavrion carbonate-hosted Pb-Ag-Zn deposit in southeast Attica, Greece, consisted of significant non-sulfide ore bodies. The polymetallic sulfide mineralization was subjected to supergene oxidation, giving rise to gossan. The principal non-sulfide minerals of past economic importance were smithsonite, goethite and hematite. The supergene mineral assemblages occupy secondary open spaces and occur as replacement pods within marble. Calamine and iron ore mainly filled open fractures. X-ray diffraction and scanning electron microscopy of samples of oxidized ore indicate complex gossan mineralogy depending on the hypogene mineralogy, the degree of oxidation and leaching of elements, and the local hydrologic conditions. Bulk chemical analysis of the samples indicated high ore-grade variability of the supergene mineralization. On multivariate cluster analysis of geochemical data the elements were classified into groups providing evidence for their differential mobilization during dissolution, transport and re-precipitation. The mode of occurrence, textures, mineralogy and geochemistry of the non-sulfide mineralization confirm that it is undoubtedly of supergene origin: the product of influx into open fractures in the country rock of highly acidic, metal-rich water resulting from the oxidation of pyrite-rich sulfide protore. Dissolution of carbonates led to opening of the fractures. Mineral deposition in the supergene ore took place under near-neutral to mildly acidic conditions. The supergene dissolution and re-precipitation of Fe and Zn in the host marble increased metal grades and separated iron and zinc from lead, thereby producing economically attractive deposits; it further contributed to minimization of pollution impact on both soil and ground water.  相似文献   

20.
煤矸石—水相互作用的溶解动力学及其环境地球化学效应研究党志(中国科学院地球化学研究所,贵阳550002)关键词水—岩作用煤矸石地球化学动力学采煤矿区复垦环境效应收稿日期:1997-3-10作者简介:党志男1962年生博士生环境地球化学煤矸石以其量多、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号