首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
FeII-III hydroxycarbonate green rust GR(CO32−), FeII4 FeIII2 (OH)12 CO3·3H2O, is oxidized in aqueous solutions with varying reaction kinetics. Rapid oxidation with either H2O2 or dissolved oxygen under neutral and alkaline conditions leads to the formation of ferric oxyhydroxycarbonate GR(CO32−)∗, FeIII6 O12 H8 CO3·3H2O, via a solid-state reaction. By decreasing the flow of oxygen bubbled in the solution, goethite α-FeOOH forms by dissolution-precipitation mechanism whereas a mixture of non-stoichiometric magnetite Fe(3−x)O4 and goethite is observed for lower oxidation rates. The intermediate FeII-III oxyhydroxycarbonate of formula FeII6(1−x) FeIII6x O12 H2(7−3x) CO3·3H2O, i.e. GR(x)∗ for which x ? [1/3, 1], is the synthetic compound that is homologous to the fougerite mineral present in hydromorphic gleysol; in situ oxidation accounts for the variation of ferric molar fraction x = [FeIII]/{[FeII]+[FeIII]} observed in the field as a function of depth and season but limited to the range [1/3, 2/3]. The domain of stability for partially oxidized green rust is observed in the Eh-pH Pourbaix diagrams if thermodynamic properties of GR(x)∗ is compared with those of lepidocrocite, γ-FeOOH, and goethite, α-FeOOH. Electrochemical equilibrium between GR(x)∗ and FeII in solution corresponds to Eh-pH conditions close to those measured in the field. Therefore, the reductive dissolution of GR(x)∗ can explain the relatively large concentration of FeII measured in aqueous medium of hydromorphic soils containing fougerite.  相似文献   

2.
Ammonia (NH3) is the major intermediate phase in the pathway of nitrogen (N) transfer from the fixed N phases (e.g., in crustal material) to free N2 (e.g., in natural gas reservoirs and volcanic gases). Yet the N isotopic behavior during these N-cycling processes remains poorly known. In an attempt to contribute to the understanding of N cycling using N isotopes, we carried out laboratory experiments to investigate the N isotopic effect associated with thermal decomposition of ammonia (2NH3 → N2 + 3H2). Pure NH3 (with initial δ15NNH3 of ∼ −2‰, relative to air standard) was sealed into quartz tubes and thermally decomposed at 600, 700 or 800 °C from 2 hours to 500 days. With the progress of the reaction, the δ15N of the remaining NH3 and the accumulated N2 increased from −2 to +35‰ and from −20 to −2‰, respectively. The differences of the N-isotope fractionations at the three temperatures are not significant. Modeling using the Rayleigh distillation model yielded similar kinetic N-isotope fractionation factors (αN2-NH3) of 0.983 ± 0.002 for 600, 700 and 800 °C. Applied to geological settings, this significant isotope discrimination (∼17‰) associated with partial decomposition of NH3/NH4+ from crustal sources (δ15Naverage ∼ +6.3‰) can produce mantle-like (i.e. ∼ −5‰) or even lower δ15N values of N2. This may explain the large variation of δ15N (−20 to +30‰) of N2 in natural gas reservoirs. It can also possibly explain the extreme 15N-depletion of N2 in some volcanic gases. This possibility has to be carefully considered when using N isotopes to trace geological N cycling across subduction zones by analysis of volcanic N2.  相似文献   

3.
This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species (Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH4+ as an N source, and H2PO4 as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H2O-CO2-CaCO3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H2CO3 generated by dissolution of atmospheric CO2 (H2CO3 + CaCO3 → Ca2+ + 2HCO3) and H+ released during NH4+ uptake (H+ + CaCO3 → Ca2+ + HCO3). Reaction with H2CO3 and H+ supplied ∼45% and 55% of the total Ca2+ and ∼60% and 40% of the total HCO3, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH4+ was ∼2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H2CO3. In lactate bearing reactors, most H+ generated by NH4+ uptake reacted with HCO3 produced by lactate oxidation to yield CO2 and H2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H2CO3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.  相似文献   

4.
To study the geological control on groundwater As concentrations in Red River delta, depth-specific groundwater sampling and geophysical logging in 11 monitoring wells was conducted along a 45 km transect across the southern and central part of the delta, and the literature on the Red River delta’s Quaternary geological development was reviewed. The water samples (n = 30) were analyzed for As, major ions, Fe2+, H2S, NH4, CH4, δ18O and δD, and the geophysical log suite included natural gamma-ray, formation and fluid electrical conductivity. The SW part of the transect intersects deposits of grey estuarine clays and deltaic sands in a 15–20 km wide and 50–60 m deep Holocene incised valley. The NE part of the transect consists of 60–120 m of Pleistocene yellowish alluvial deposits underneath 10–30 m of estuarine clay overlain by a 10–20 m veneer of Holocene sediments. The distribution of δ18O-values (range −12.2‰ to −6.3‰) and hydraulic head in the sample wells indicate that the estuarine clay units divide the flow system into an upper Holocene aquifer and a lower Pleistocene aquifer. The groundwater samples were all anoxic, and contained Fe2+ (0.03–2.0 mM), Mn (0.7–320 μM), SO4 (<2.1 μM–0.75 mM), H2S (<0.1–7.0 μM), NH4 (0.03–4.4 mM), and CH4 (0.08–14.5 mM). Generally, higher concentrations of NH4 and CH4 and low concentrations of SO4 were found in the SW part of the transect, dominated by Holocene deposits, while the opposite was the case for the NE part of the transect. The distribution of the groundwater As concentration (<0.013–11.7 μM; median 0.12 μM (9 μg/L)) is related to the distribution of NH4, CH4 and SO4. Low concentrations of As (?0.32 μM) were found in the Pleistocene aquifer, while the highest As concentrations were found in the Holocene aquifer. PHREEQC-2 speciation calculations indicated that Fe2+ and H2S concentrations are controlled by equilibrium for disordered mackinawite and precipitation of siderite. An elevated groundwater salinity (Cl range 0.19–65.1 mM) was observed in both aquifers, and dominated in the deep aquifer. A negative correlation between aqueous As and an estimate of reduced SO4 was observed, indicating that Fe sulphide precipitation poses a secondary control on the groundwater As concentration.  相似文献   

5.
Recent isopiestic studies of the Fe2(SO4)3-H2SO4-H2O system at 298.15 K are represented with an extended version of Pitzer’s ion interaction model. The model represents osmotic coefficients for aqueous {(1 − y)Fe2(SO4)3 + yH2SO4} mixtures from 0.45 to 3.0 m at 298.15 K and 0.0435 ? y ? 0.9370. In addition, a slightly less accurate representation of a more extended molality range to 5.47 m extends over the same y values, translating to a maximum ionic strength of 45 m. Recent isopiestic data for the system at 323.15 K are represented with the extended Pitzer model over a limited range in molality and solute fraction. These datasets are also represented with the usual “3-parameter” version of Pitzer’s model so that it may be incorporated in geochemical modeling software, but is a slightly less accurate representation of thermodynamic properties for this system. Comparisons made between our ion interaction model and available solubility data display partial agreement for rhomboclase and significant discrepancy for ferricopiapite. The comparisons highlight uncertainty remaining for solubility predictions in this system as well as the need for additional solubility measurements for Fe3+-bearing sulfate minerals. The resulting Pitzer ion interaction models provide an important step toward an accurate and comprehensive representation of thermodynamic properties in this geochemically important system.  相似文献   

6.
The range in 56Fe/54Fe isotopic compositions measured in naturally occurring iron-bearing species is greater than 5‰. Both theoretical modeling and experimental studies of equilibrium isotopic fractionation among iron-bearing species have shown that significant fractionations can be caused by differences in oxidation state (i.e., redox effects in the environment) as well as by bond partner and coordination number (i.e., nonredox effects due to speciation).To test the relative effects of redox vs. nonredox attributes on total Fe equilibrium isotopic fractionation, we measured changes, both experimentally and theoretically, in the isotopic composition of an Fe2+-Fe3+-Cl-H2O solution as the chlorinity was varied. We made use of the unique solubility of FeCl4 in immiscible diethyl ether to create a separate spectator phase against which changes in the aqueous phase could be quantified. Our experiments showed a reduction in the redox isotopic fractionation between Fe2+- and Fe3+-bearing species from 3.4‰ at [Cl] = 1.5 M to 2.4‰ at [Cl] = 5.0 M, due to changes in speciation in the Fe-Cl solution. This experimental design was also used to demonstrate the attainment of isotopic equilibrium between the two phases, using a 54Fe spike.To better understand speciation effects on redox fractionation, we created four new sets of ab initio models of the ferrous chloride complexes used in the experiments. These were combined with corresponding ab initio models for the ferric chloride complexes from previous work. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 6.39‰ to 5.42‰ for Fe(H2O)62+, 5.98‰ to 5.34‰ for FeCl(H2O)5+, and 5.91‰ to 4.86‰ for FeCl2(H2O)4, depending on the model. The theoretical models predict ferric-ferrous fractionation about half as large (depending on model) as the experimental results.Our results show (1) oxidation state is likely to be the dominant factor controlling equilibrium Fe isotope fractionation in solution and (2) nonredox attributes (such as ligands present in the aqueous solution, speciation and relative abundances, and ionic strength of the solution) can also have significant effects. Changes in the isotopic composition of an Fe-bearing solution will influence the resultant Fe isotopic signature of any precipitates.  相似文献   

7.
Microbial SO42− reduction limits accumulation of aqueous As in reducing aquifers where the sulfide that is produced forms minerals that sequester As. We examined the potential for As partitioning into As- and Fe-sulfide minerals in anaerobic, semi-continuous flow bioreactors inoculated with 0.5% (g mL−1) fine-grained alluvial aquifer sediment. A fluid residence time of three weeks was maintained over a ca. 300-d incubation period by replacing one-third of the aqueous phase volume of the reactors with fresh medium every seven days. The medium had a composition comparable to natural As-contaminated groundwater with slightly basic pH (7.3) and 7.5 μM aqueous As(V) and also contained 0.8 mM acetate to stimulate microbial activity. Medium was delivered to a reactor system with and without 10 mmol L−1 synthetic goethite (α-FeOOH). In both reactors, influent As(V) was almost completely reduced to As(III). Pure As-sulfide minerals did not form in the Fe-limited reactor. Realgar (As4S4) and As2S3(am) were undersaturated throughout the experiment. Orpiment (As2S3) was saturated while sulfide content was low (∼50 to 150 μM), but precipitation was likely limited by slow kinetics. Reaction-path modeling suggests that, even if these minerals had formed, the dissolved As content of the reactor would have remained at hazardous levels. Mackinawite (Fe1 + xS; x ? 0.07) formed readily in the Fe-bearing reactor and held dissolved sulfide at levels below saturation for orpiment and realgar. The mackinawite sequestered little As (<0.1 wt.%), however, and aqueous As accumulated to levels above the influent concentration as microbial Fe(III) reduction consumed goethite and mobilized adsorbed As. A relatively small amount of pyrite (FeS2) and greigite (Fe3S4) formed in the Fe-bearing reactor when we injected a polysulfide solution (Na2S4) to a final concentration of 0.5 mM after 216, 230, 279, and 286 days. The pyrite, and to a lesser extent the greigite, that formed did sequester As from solution, containing 0.84 and 0.23 wt.% As on average, respectively. Our results suggest that As precipitation during Fe-sulfide formation in nature occurs mainly in conjunction with pyrite formation. Our findings imply that the effectiveness of stimulating microbial SO42− reduction to remediate As contamination may be limited by the rate and extent of pyrite formation and the solubility of As-sulfides.  相似文献   

8.
Solid phases of silicon dioxide react with water vapor with the formation of hydroxides and oxyhydroxides of silica. Recent transpiration and mass-spectrometric studies convincingly demonstrate that H4SiO4 is the predominant form of silica in vapor phase at water pressure in excess of 10−2 MPa. Available literature transpiration and solubility data for the reactions of solid SiO2 phases and low-density water, extending from 424 to 1661 K, are employed for the determination of ΔfG0, ΔfH0 and S0 of H4SiO4 in the ideal gas state at 298.15 K, 0.1 MPa. In total, there are 102 data points from seven literature sources. The resulting values of the thermodynamic functions of H4SiO4(g) are: ΔfG0 = −1238.51 ± 3.0 kJ mol−1, ΔfH0 = −1340.68 ± 3.5 kJ mol−1 and S0 = 347.78 ± 6.2 J K−1 mol−1. These values agree quantitatively with one set of ab initio calculations. The relatively large uncertainties are mainly due to conflicting data for H4SiO4(g) from various sources, and new determinations of would be helpful. The thermodynamic properties of this species, H4SiO4(g), are necessary for realistic modeling of silica transport in a low-density water phase. Applications of this analysis may include the processes of silicates condensation in the primordial solar nebula, the precipitation of silica in steam-rich geothermal systems and the corrosion of SiO2-containing alloys and ceramics in moist environments.  相似文献   

9.
The speciation of aqueous dissolved sulfur was determined in hydrothermal waters in Iceland. The waters sampled included hot springs, acid-sulfate pools and mud pots, sub-boiling well discharges and two-phase wells. The water temperatures ranged from 4 to 210 °C, the pHT was between 2.20 and 9.30 at the discharge temperature and the SO4 and Cl concentrations were 0.020-52.7 and <0.01-10.0 mmol kg−1, respectively. The analyses were carried out on-site within ∼10 min of sampling using ion chromatography (IC) for sulfate (SO42−), thiosulfate (S2O32−) and polythionates (SxO62−) and titration and/or colorimetry for total dissolved sulfide (S2−). Sulfite (SO32−) could also be determined in a few cases using IC. Alternatively, for few samples in remote locations the sulfur oxyanions were stabilized on a resin on site following elution and analysis by IC in the laboratory. Dissolved sulfate and with few exceptions also S2− were detected in all samples with concentrations of 0.02-52.7 mmol kg−1 and <1-4100 μmol kg−1, respectively. Thiosulfate was detected in 49 samples of the 73 analyzed with concentrations in the range of <1-394 μmol kg−1 (S-equivalents). Sulfite was detected in few samples with concentrations in the range of <1-3 μmol kg−1. Thiosulfate and SO32− were not detected in <100 °C well waters and S2O32− was observed only at low concentrations (<1-8 μmol kg−1) in ∼200 °C well waters. In alkaline and neutral pH hot springs, S2O32− was present in significant concentrations sometimes corresponding to up to 23% of total dissolved sulfur (STOT). In steam-heated acid-sulfate waters, S2O32− was not a significant sulfur species. The results demonstrate that S2O32− and SO32− do not occur in the deeper parts of <150 °C hydrothermal systems and only in trace concentrations in ∼200-300 °C systems. Upon ascent to the surface and mixing with oxygenated ground and surface waters and/or dissolution of atmospheric O2, S2− is degassed and oxidized to SO32− and S2O32− and eventually to SO42− at pH >8. In near-neutral hydrothermal waters the oxidation of S2− and the interaction of S2− and S0 resulting in the formation of Sx2− are considered important. At lower pH values the reactions seemed to proceed relatively rapidly to SO42− and the sulfur chemistry of acid-sulfate pools was dominated by SO42−, which corresponded to >99% of STOT. The results suggest that the aqueous speciation of sulfur in natural hydrothermal waters is dynamic and both kinetically and source-controlled and cannot be estimated from thermodynamic speciation calculations.  相似文献   

10.
The behavior of ammonium, NH4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν1-NH4+ Raman band in these solutions was found to be similar to that of salammoniac.The Raman band of silica monomers at ∼780 cm−1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H2O ± NH4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H4SiO40 band showed that the silica solubility in experiments with H2O + NH4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium.The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ∼2 at 600 °C, 0.26 GPa, 6.6 m initial NH4Cl, based on the ratio of the integrated ν1-NH3 and ν1-NH4+ intensities and the HCl0 dissociation constant. The NH3/NH4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high-P low-T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance.The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH4. Nucleation and growth of mica at the expense of K-feldspar and NH4+/K+ exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH4+ into K-feldspar was distinctly faster than K-feldspar consumption.  相似文献   

11.
Dissolution experiments on a serpentinite were performed at 70 °C, 0.1 MPa, in H2SO4 solution, in open and closed systems, in order to evaluate the overall dissolution rate of mineral components over different times (4, 9 and 24 h). In addition, the serpentinite powder was reacted with a NaCl-bearing aqueous solution and supercritical CO2 for 24 h at higher pressures (9-30 MPa) and temperatures (250-300 °C) either in a stirred reactor or in an externally-heated pressure vessel to assess both the dissolution rate of serpentinite minerals and the progress of the carbonation reaction. Results show that, at 0.1 MPa, MgO extraction from serpentinite ranges from 82% to 98% and dissolution rate varies from 8.5 × 10−10 mole m−2 s−1 to 4.2 × 10−9 mole m−2 s−1. Attempts to obtain carbonates from the Mg-rich solutions by increasing their pH failed since Mg- and NH4- bearing sulfates promptly precipitated. On the other hand, at higher pressures, significant crystallization (5.0-10.4 wt%) of Ca- and Fe-bearing magnesite was accomplished at 30 MPa and 300 °C using 100 g L−1 NaCl aqueous solutions. The corresponding amount of CO2 sequestered by crystallization of carbonates is 9.4-15.9 mole%. Dissolution rate (from 6.3 × 10−11 mole m−2 s−1 to 1.3 × 10−10 mole m−2 s−1) is lower than that obtained at 0.1 MPa and 70 °C but it is related to pH values much higher (3.3-4.4) than that (−0.65) calculated for the H2SO4 solution.Through a thorough review of previous experimental investigations on the dissolution kinetics of serpentine minerals the authors propose adopting: (i) the log rate [mole m−2 s−1] value of −12.08 ± 0.16 (1σ), as representative of the neutral dissolution mechanism at 25 °C and (ii) the following relationship for the acidic dissolution mechanism at 25 °C:
log rate=-0.45(±0.09)×pH-10.01(±0.30).  相似文献   

12.
The mobility and transport of gold in low-temperature waters and brines is affected by the aqueous speciation of gold, which is sensitive in particular to pH, oxidation and halide concentrations. In this study, we use UV-Vis spectrophotometry to identify and measure the thermodynamic properties of Au(III) aqueous complexes with chloride, bromide and hydroxide. Au(III) forms stable square planar complexes with hydroxide and halide ligands. Based on systematic changes in the absorption spectra of solutions in three binary systems NaCl-NaBr, NaCl-NaOH and NaBr-NaOH at 25 °C, we derived log dissociation constants for the following mixed and end-member halide and hydroxide complexes: [AuCl3Br], [AuCl2Br2], [AuBr3Cl] and [AuBr4]; [AuCl3(OH)], [AuCl2(OH)2], [AuCl(OH)3] and [Au(OH)4]; and [AuBr3(OH)], [AuBr2(OH)2] and [AuBr(OH)3]. These are the first reported results for the mixed chloride-bromide complexes. Increasing temperature to 80 °C resulted in an increase in the stability of the mixed chloride-bromide complexes, relative to the end-member chloride and bromide complexes. For the [AuCl(4−n)(OH)n] series of complexes (n = 0-4), there is an excellent agreement between our spectrophotometric results and previous electrochemical results of Chateau et al. [Chateau et al. (1966)]. In other experiments, the iodide ion (I) was found to be unstable in the presence of Au(III), oxidizing rapidly to I2(g) and causing Au to precipitate. Predicted Au(III) speciation indicates that Au(III) chloride-bromide complexes can be important in transporting gold in brines with high bromide-chloride ratios (e.g., >0.05), under oxidizing (atmospheric), acidic (pH < 5) conditions. Native gold solubility under atmospheric oxygen conditions is predicted to increase with decreasing pH in acidic conditions, increasing pH in alkaline conditions, increasing chloride, especially at acid pH, and increasing bromide for bromide/chloride ratios greater than 0.05. The results of our study increase the understanding of gold aqueous geochemistry, with the potential to lead to new methods for mineral exploration, hydrometallurgy and medicine.  相似文献   

13.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

14.
Here we compare new experimental studies with theoretical predictions of equilibrium iron isotopic fractionation among aqueous ferric chloride complexes (Fe(H2O)63+, FeCl(H2O)52+, FeCl2(H2O)4+, FeCl3 (H2O)3, and FeCl4-), using the Fe-Cl-H2O system as a simple, easily-modeled example of the larger variety of iron-ligand compounds, such as chlorides, sulfides, simple organic acids, and siderophores. Isotopic fractionation (56Fe/54Fe) among naturally occuring iron-bearing species at Earth surface temperatures (up to ∼3‰) is usually attributed to redox effects in the environment. However, theoretical modeling of reduced isotopic partition functions among iron-bearing species in solution also predicts fractionations of similar magnitude due to non-redox changes in speciation (i.e., ligand bond strength and coordination number). In the present study, fractionations are measured in a series of low pH ([H+] = 5 M) solutions of ferric chloride (total Fe = 0.0749 mol/L) at chlorinities ranging from 0.5 to 5.0 mol/L. Advantage is taken of the unique solubility of FeCl4- in immiscible diethyl ether to create a separate spectator phase, used to monitor changing fractionation in the aqueous solution. Δ56Feaq-eth = δ56Fe (total Fe remaining in aqueous phase)−δ56Fe (FeCl4- in ether phase) is determined for each solution via MC-ICPMS analysis.Both experiments and theoretical calculations of Δ56Feaq-eth show a downward trend with increasing chlorinity: Δ56Feaq-eth is greatest at low chlorinity, where FeCl2(H2O)4+ is the dominant species, and smallest at high chlorinity where FeCl3(H2O)3 is dominant. The experimental Δ56Feaq-eth ranges from 0.8‰ at [Cl-] = 0.5 M to 0.0‰ at [Cl-] = 5.0 M, a decrease in aqueous-ether fractionation of 0.8‰. This is very close to the theoretically predicted decreases in Δ56Feaq-eth, which range from 1.0 to 0.7‰, depending on the ab initio model.The rate of isotopic exchange and attainment of equilibrium are shown using spiked reversal experiments in conjunction with the two-phase aqueous-ether system. Equilibrium under the experimental conditions is established within 30 min.The general agreement between theoretical predictions and experimental results points to substantial equilibrium isotopic fractionation among aqueous ferric chloride complexes and a decrease in 56Fe/54Fe as the Cl-/Fe3+ ion ratio increases. The effects on isotopic fractionation shown by the modeling of this simple iron-ligand system imply that ligands present in an aqueous environment are potentially important drivers of fractionation, are indicative of possible fractionation effects due to other speciation effects (such as iron-sulfide systems or iron bonding with organic ligands), and must be considered when interpreting iron isotope fractionation in the geological record.  相似文献   

15.
The reductive biotransformation of two Si-ferrihydrite coprecipitates (1 and 5 mole % Si) by Shewanella putrefaciens, strain CN32, was investigated in 1,4-piperazinediethanesulfonic acid-buffered media (pH ∼7) with lactate as the electron donor. Anthraquinone-2,6-disulfonate, an electron shuttle, was present in the media. Experiments were performed without and with PO43− (P) (1 to 20 mmol/L) in media containing 50 mmol/L Fe. Our objectives were to define the combined effects of SiO44− (Si) and P on the bioreducibility and biomineralization of ferrihydrites under anoxic conditions. Iron reduction was measured as a function of time, solids were characterized by powder X-ray diffraction and Mössbauer spectroscopy, and aqueous solutions were analyzed for Si, P, Cl and inorganic carbon. Both of the ferrihydrites were rapidly reduced regardless of the Si and P content. Si concentration had no effect on the reduction rate or mineralization products. Magnetite was formed in the absence of P whereas carbonate green rust GR(CO32−) ([Fe(6−x)IIFeIIIx(OH)12]x+(CO32−)0.5x · yH2O) and vivianite [Fe3(PO4)2 · 8H2O], were formed when P was present. GR(CO32−) dominated as a mineral product in samples with <4 mmol/L P. The Fe(II)/Fe(III) ratio of GR(CO32−) varied with P concentration; the ratio was 2 in 1 mmol/L P and approached 1 with 4- and 10 mmol/L P. Green rust appeared to form by solid-state transformation of ferrihydrite. Media P and Si concentration dictated the mechanism of transformation. In the 1 mole % Si coprecipitate with 1 mmol/L P, an intermediate Fe(II)/Fe(III) phase with structural Fe(II) slowly transformed to GR with time. In contrast, when ferrihydrite contained more Si (5 mole %) and/or contained higher P (4 mmol/L), sorbed Fe(II) and residual ferrihydrite together transformed to GR. Despite similar chemistries, P was shown to have a profound effect on extent of ferrihydrite reduction and biotransformations while that of Si was minimal.  相似文献   

16.
Experimental studies on the stability of several Mg-sulfate hydrates including epsomite (MgSO4·7H2O), hexahydrite (MgSO4·6H2O), starkeyite (MgSO4·4H2O), and kieserite (MgSO4·H2O) as a function of temperature and relative humidity are in poor agreement with calculations based on thermodynamic properties of these substances taken from the literature. Therefore, we synthesized four different MgSO4 hydrates and measured their enthalpies of formation by solution calorimetry at T = 298.15 K. The resulting enthalpies of formation from the elements are:
ΔfH0298 (epsomite) = −3387.7 ± 1.3 kJmol−1
ΔfH0298 (hexahydrite) = −3088.1 ± 1.1 kJmol−1
ΔfH0298 (sanderite, MgSO4·2H2O) = −1894.9 ± 1.3 kJmol−1
ΔfH0298 (kieserite) = −1612.4 ± 1.3 kJmol−1
Using mathematical programming (MAP) techniques, standard thermodynamic values consistent both with our calorimetric data and previously published humidity brackets could be derived:
Epsomite: ΔfH0298 = −3388.7 kJmol−1, S0298 = 371.3 Jmol−1 K−1, ΔfG0298 = −2871.0 kJmol−1
Hexahydrite: ΔfH0298 = −3087.3 kJmol−1, S0298 = 348.5 Jmol−1 K−1, ΔfG0298 = −2632.3 kJmol−1
Starkeyite: ΔfH0298 = −2496.1 kJmol−1, S0298 = 259.9 Jmol−1 K−1, ΔfG0298 = −2153.8 kJmol−1
Kieserite: ΔfH0298 = −1611.5 kJmol−1, S0298 = 126.0 Jmol−1 K−1, ΔfG0298 = −1437.9 kJmol−1
Additionally, heat capacity measurements and standard entropy determinations of several magnesium sulfate hydrate minerals from the literature are analyzed and judged against estimates obtained from a linear combination of the heat capacities of MgSO4 and hexagonal ice. The results of the MAP analysis are compared to these estimates to conclude that heat capacity and entropy correlate well with the number of waters of hydration. However, even the good correlation is not good enough to capture the fine variations in these properties. Consequently, their experimental measurement is inevitable if reliable thermodynamic data are sought. Our MAP thermodynamic data show that epsomite, hexahydrite, and kieserite have stability fields in the T-%RH space. Starkeyite is metastable. Although no MAP data could have been derived for pentahydrite (MgSO4·5H2O) and sanderite, their transient existence suggest that both of them are metastable as well.  相似文献   

17.
Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11°S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3), nitrite (NO2) and ammonium (NH4+) was used to constrain a 1-D reaction-transport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80-260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (?2.9 mmol N m−2 d−1) and accounted for ?65% of NO3 + NO2 uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+) since DNRA reduces NO3 and, potentially NO2, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300-1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (?2 mmol N m−2 d−1) and removed 55-73% of NO3 and NO2 taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62% to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3, NO2) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment.  相似文献   

18.
Reports of the high ion content of steam and low-density supercritical fluids date back to the work of Carlon [Carlon H. R. (1980) Ion content of air humidified by boiling water.J. Appl.Phys.51, 171-173], who invoked ion and neutral-water clustering as mechanism to explain why ions partition into the low-density aqueous phase. Mass spectrometric, vibrational spectroscopic measurements and quantum chemical calculations have refined this concept by proposing strongly bound ion-solvent aggregates and water clusters such as Eigen- and Zundel-type proton clusters H3O+·(H2O)m and the more weakly bound water oligomers (H2O)m. The extent to which these clusters affect fluid chemistry is determined by their abundance, however, little is known regarding the stability of such moieties in natural low-density high-temperature fluids. Here we report results from quantum chemical calculations using chemical-accuracy multi-level G3 (Curtiss-Pople) and CBS-Q theory (Peterson) to address this question. In particular, we have investigated the cluster structures and clustering equilibria for the ions and H3S+·(H2O)m(H2S)n, where m ? 6 and n ? 4, at 300-1000 K and 1 bar as well as under vapor-liquid equilibrium conditions between 300 and 646 K. We find that incremental hydration enthalpies and entropies derived from van’t Hoff analyses for the attachment of H2O and H2S onto H3O+, and H3S+ are in excellent agreement with experimental values and that the addition of water to all three ions is energetically more favorable than solvation by H2S. As clusters grow in size, the energetic trends of cluster hydration begin to reflect those for bulk H2O liquids, i.e. calculated hydration enthalpies and entropies approach values characteristic of the condensation of bulk water (ΔHo = −44.0 kJ mol−1, ΔSo = −118.8 J K mol−1). Water and hydrogen sulfide cluster calculations at higher temperatures indicate that a significant fraction of H3O+, and H3S+ ions exists as solvated moieties.  相似文献   

19.
Pyrite dissolution and interaction with Fe(II), Co(II), Eu(III) and U(VI) have been studied under anoxic conditions by solution chemistry and spectroscopic techniques. Aqueous data show a maximal cation uptake above pH 5.5. Iron (II) uptake can explain the non-stoichiometric [S]aq/[Fe]aq ratios often observed during dissolution experiments. Protonation data corrected for pyrite dissolution resulted in a proton site density of 9 ± 3 sites nm−2. Concentration isotherms for Eu(III) and U(VI) sorption on pyrite indicate two different behaviours which can be related to the contrasted redox properties of these elements. For Eu(III), sorption can be explained by the existence of a unique site with a saturation concentration of 1.25 × 10−6 mol g−1. In the U(VI) case, sorption seems to occur on two different sites with a total saturation concentration of 4.5 × 10−8 mol g−1. At lower concentration, uranium reduction occurs, limiting the concentration of dissolved uranium to the solubility of UO2(s).Scanning electron microscopy and micro-Raman spectrometry of U(VI)-sorbed pyrite indicate a heterogeneous distribution of U at the pyrite surface and a close association with oxidized S. X-ray photoelectron spectroscopy confirms the partial reduction of U and the formation of a hyperstoichiometric UO2+x(s). Our results are consistent with a chemistry of the pyrite surface governed not by Fe(II)-bound hydroxyl groups, but by S groups which can either sorb cations and protons, or sorb and reduce redox-sensitive elements such as U(VI).  相似文献   

20.
Published solubility data for amorphous ferric arsenate and scorodite have been reevaluated using the geochemical code PHREEQC with a modified thermodynamic database for the arsenic species. Solubility product calculations have emphasized measurements obtained under conditions of congruent dissolution of ferric arsenate (pH < 3), and have taken into account ion activity coefficients, and ferric hydroxide, ferric sulfate, and ferric arsenate complexes which have association constants of 104.04 (FeH2AsO42+), 109.86 (FeHAsO4+), and 1018.9 (FeAsO4). Derived solubility products of amorphous ferric arsenate and crystalline scorodite (as log Ksp) are −23.0 ± 0.3 and −25.83 ± 0.07, respectively, at 25 °C and 1 bar pressure. In an application of the solubility results, acid raffinate solutions (molar Fe/As = 3.6) from the JEB uranium mill at McClean Lake in northern Saskatchewan were neutralized with lime to pH 2-8. Poorly crystalline scorodite precipitated below pH 3, removing perhaps 98% of the As(V) from solution, with ferric oxyhydroxide (FO) phases precipitated starting between pH 2 and 3. Between pH 2.18 and 7.37, the apparent log Ksp of ferric arsenate decreased from −22.80 to −24.67, while that of FO (as Fe(OH)3) increased from −39.49 to −33.5. Adsorption of As(V) by FO can also explain the decrease in the small amounts of As(V)(aq) that remain in solution above pH 2-3. The same general As(V) behavior is observed in the pore waters of neutralized tailings buried for 5 yr at depths of up to 32 m in the JEB tailings management facility (TMF), where arsenic in the pore water decreases to 1-2 mg/L with increasing age and depth. In the TMF, average apparent log Ksp values for ferric arsenate and ferric hydroxide are −25.74 ± 0.88 and −37.03 ± 0.58, respectively. In the laboratory tests and in the TMF, the increasing crystallinity of scorodite and the amorphous character of the coexisting FO phase increases the stability field of scorodite relative to that of the FO to near-neutral pH values. The kinetic inability of amorphous FO to crystallize probably results from the presence of high concentrations of sulfate and arsenate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号