共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the important scientific significance of the interaction between alkaline feldspar and high-temperature and high-pressure fluids. We have conducted a series of autoclave experiments of feldspar dissolution and secondary mineral precipitation in conditions of 250–500 °C, 8–50 MPa, and pH = 3.0 and 5.5. Based on the interaction experiments between alkaline feldspar and fluid of high-temperatures and high-pressures, we get the main results as follows: (1) The law that people have grasped below the critical point about the influence of temperature, pressure, and pH value on the alkaline feldspar dissolution behavior is still held above the critical point. (2) Due to the experimental techniques of autoclave flip 180°—sharp quenching and based on electron microprobe analysis of mineral new formed, theoretical analysis has determined that the new altered minerals distributed on the island dissolution surface of feldspar are products of precipitation on a feldspar surface after saturation of the relative ion concentration in water fluid. 相似文献
2.
Ming GENG 《Geochimica et cosmochimica acta》2010,74(19):5631-13841
A thermodynamic model is presented to calculate the oxygen solubility in pure water (273-600 K, 0-200 bar) and natural brines containing Na+, K+, Ca2+, Mg2+, Cl−, SO42−, over a wide range of temperature, pressure and ionic strength with or close to experimental accuracy. This model is based on an accurate equation of state to calculate vapor phase chemical potential and a specific particle interaction model for liquid phase chemical potential. With this approach, the model can not only reproduce the existing experimental data, but also extrapolate beyond the data range from simple aqueous salt system to complicated brine systems including seawater. Compared with previous models, this model covers much wider temperature and pressure space in variable composition brine systems. A program for this model can be downloaded from the website: http://www.geochem-model.org. 相似文献
3.
4.
Kerogen has been artificially matured under “hydrous pyrolysis” conditions in the presence of various minerals in order to investigate the influence of the latter on the organic products. In addition to three clay minerals (montmorillonite, illite, kaolinite), calcium carbonate and limonite were also employed as inorganic substrates. Kerogen (Type II) isolated from the Kimmeridge Blackstone band was heated in the presence of water and a 20-fold excess of mineral phase at two different temperatures (280 and 330°C) for 72 hr. Control experiments were also carried out using kerogen and water only and kerogen under anhydrous conditions. This preliminary study describes the bulk composition of the pyrolysates with detailed analyses of the aliphatic hydrocarbon distributions being provided by gas chromatography and combined gas chromatography-mass spectrometry.In the 280°C experiments, considerably more organic-soluble pyrolysate (15% by weight of original kerogen) was produced when calcium carbonate was the inorganic phase. At 330°C, all samples generated much greater amounts of organic-soluble products with calcium carbonate again producing a large yield (40% wt/wt). Biomarker epimerisation reactions have also proceeded further in the 330°C pyrolysate formed in the presence of calcium carbonate than with other inorganic phases. Implications of these and other observations are discussed. 相似文献
5.
Isothermal (670–700°C) solubility of corundum in supercritical water, within the stability range of corundum as a phase of the system Al2O3-H2O, has been determined by the weight loss method. Experiments were performed in the pressure range 2.5 to 6 kbar in cold seal hydrothermal equipment at 670 ± 5°C using gold tubing. The overall uncertainty of the solubility values obtained was 8%. Experiments in the pressure range 10 to 20 kbar were performed in a piston cylinder apparatus at 700°C using sealed gold capsules held by supporting steel containers. The overall uncertainty of the solubility values obtained was estimated to be 10%.All data could be fitted by the linear equation S[ppmAl2O3] = ?12.37 + 7.24 · p[kbar] with correlation coefficient r = 0.9963. Separate fits of hydrothermal and piston cylinder results yielded a small difference between the two data sets, which is due rather to the experimental uncertainty than to the small temperature difference. 相似文献
6.
To characterise the water retention behaviour of fine soils, high suction values are applied. In this range of values, the
vapour equilibrium technique is usually used. This paper presents an innovative device, a sorption bench that permits the
determination of the water retention curve of soil. With this new testing method, the time required for testing is significantly
reduced. In addition, this apparatus enables the thermal conditions of a test to be controlled; thus, the applied suction
can be better controlled, and the water retention curve for different temperatures can be determined. Another valuable aspect
of the device is the adopted technical solution that permits weighing of the samples inside the desiccators at any time. Consequently,
the water content kinetics can be defined without disturbing the drying or wetting processes. 相似文献
7.
Tests on specimens of reconstituted illitic clay have examined the influence of temperature on the mechanical behaviour of clay soils. The program involved consolidation to effective confining pressures up to 1.5 MPa, heating to 100°C, and tests on normally consolidated and overconsolidated specimens with OCR = 2. The tests included isotropic consolidation, undrained triaxial compression with pore water pressure measurement, drained tests along controlled stress paths to investigate yielding behaviour, and undrained tests which involved heating and measurement of the resulting induced pore water pressures. The large strain strength envelope is independent of temperature. However, peak undrained strengths increase with temperature because smaller pore water pressures are generated during shearing. An important contribution from the study is a series of results for the yielding of illitic clay at three different temperatures. For the first time, there is clear evidence of yield loci decreasing in size with increasing temperature. An associated flow rule can be assumed without serious error. The results contribute to the confirmation of a thermal elastic-plastic soil model developed by the authors from cam clay following the addition of a small number of extra assumptions. Depending on the initial stress state, heating under undrained conditions may produce shear failure. 相似文献
8.
The water retention capacity of geomaterials, and especially clayey soils, is sensitive to temperature changes as the physical mechanisms of retention, such as capillarity or adsorption, are affected by it. It is therefore a major issue to be able to define temperature-dependent behaviour of materials, especially for geo-energy and geo-environmental applications involving non-isothermal conditions. This paper presents results of experiments conducted on two representative materials: a hard clay (Opalinus clay) and a plastic clay (Boom clay), both of which have been considered as buffer materials for underground radioactive waste disposal, in Switzerland and Belgium, respectively. Two new devices were developed for this purpose to permit the analysis of water retention behaviour at different temperatures. The behaviour of these two materials at ambient (20 °C) and high temperature (80 °C) was observed and described through the evolution of the degree of saturation, the water content and the void ratio with respect to suction. It appears that the retention capability of the clays reduces significantly with an increase in temperature; on the other hand, the change in temperature had less of an effect on the total volume variation. 相似文献
9.
Sigurdur Jakobsson 《Contributions to Mineralogy and Petrology》1997,127(1-2):129-135
The concentrations of water and carbon dissolved in an icelandite glass quenched from 1400 °C and 10 kbar were measured using
Fourier transform infra-red spectroscopy and elemental analyses of carbon and hydrogen. Only carbon dioxide and water were
observed in the fluid phase as analysed after quenching with a qudrupole mass analyser. The mole fraction of carbon dioxide
in the fluid phase ranged from 0.36 to 0.95. Carbon is dissolved as carbonate except at the highest CO2 fluid fugacity, where a small amount of molecular CO2 is observed. Dissolved carbon in the glasses, calculated as CO2, remained constant at approximately 1 wt %, in spite of the different CO2 fluid fugacities. Water was dissolved as molecular water and as hydroxyl groups, the hydroxyl concentration in the quenched
glasses remaining almost constant over the whole interval, whereas the molecular water dissolves in accordance with Henry's
law. Molecular water peaks at 5200␣cm−1 and 1630 cm−1, the hydroxyl peak at 4500␣cm−1, and the carbonate peaks at 1400 cm−1–1550 cm−1 have been calibrated using elemental analyses of C and H in the quenched glasses. As molecular water decreases in the melt
the higher wavenumber carbonate peak is observed to move towards the molecular water peak at 1630 cm−1 causing a split of the carbonate peaks, ranging from 45 cm−1 to 100 cm−1.
Received: 15 November 1995 / Accepted: 21 September 1996 相似文献
10.
11.
Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300°C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H2SO04 and H2O at low pH, and between HSO?4 and H2O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 109 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. 相似文献
12.
M.M. Miedaner A.A. Migdisov A.E. Williams-Jones 《Geochimica et cosmochimica acta》2005,69(23):5511-5516
The solubility of metallic mercury in dodecane, octane and toluene has been investigated experimentally at temperatures up to 200°C and pressures up to 6 bars (toluene). The equilibrium Hg concentrations are very similar in octane and dodecane, reaching values of 821 ppm and 647 ppm, respectively at 200°C, whereas they are significantly lower in toluene (e.g., 280 ppm at 200°C). The behavior of Hg in toluene is nevertheless similar to that in the alkanes. There is a strong prograde dependence of Hg concentration on temperature in both types of solvent, which can be described by the following experimentally determined relationships:
13.
14.
Bjorn O. Mysen Kathryn Kumamoto Marilyn L. Fogel 《Geochimica et cosmochimica acta》2011,75(20):6183-6199
Solubility and solution mechanisms in silicate melts of oxidized and reduced C-bearing species in the C-O-H system have been determined experimentally at 1.5 GPa and 1400 °C with mass spectrometric, NMR, and Raman spectroscopic methods. The hydrogen fugacity, fH2, was controlled in the range between that of the iron-wüstite-H2O (IW) and the magnetite-hematite-H2O (MH) buffers. The melt polymerization varied between those typical of tholeiitic and andesitic melts.The solubility of oxidized (on the order of 1-2 wt% as C) and reduced carbon (on the order of 0.15-0.35 wt% as C) is positively correlated with the NBO/Si (nonbridging oxygen per silicon) of the melt. At given NBO/Si-value, the solubility of oxidized carbon is 2-4 times greater than under reducing conditions. Oxidized carbon dioxide is dissolved as complexes, whereas the dominant reduced species in melts are CH3-groups forming bonds with Si4+ together with molecular CH4. Formation of complexes results in silicate melt polymerization (decreasing NBO/Si), whereas solution of reduced carbon results in depolymerization of melts (increasing NBO/Si).Redox melting in the Earth’s interior has been explained with the aid of the different solution mechanisms of oxidized and reduced carbon in silicate melts. Further, effects of oxidized and reduced carbon on melt viscosity and on element partitioning between melts and minerals have been evaluated from relationships between melt polymerization and dissolved carbon combined with existing experimental data that link melt properties and melt polymerization. With total carbon contents in the melts on the order of several mol%, mineral/melt element partition coefficients and melt viscosity can change by several tens to several hundred percent with variable redox conditions in the range of the Earth’s deep crust and upper mantle. 相似文献
15.
C. D’Oriano M. Pompilio A. Bertagnini R. Cioni M. Pichavant 《Contributions to Mineralogy and Petrology》2013,165(5):863-883
A set of experiments have been performed on volcanic materials from Etna, Stromboli and Vesuvius in order to evaluate how the exposure to thermal and redox conditions close to that of active craters affects the texture and composition of juvenile pyroclasts. Selected samples were placed within a quartz tube, in presence of air or under vacuum, and kept at T between 700 and 1,130 °C, for variable time (40 min to 12 h). Results show that reheating reactivates the melt, which, through processes of chemical and thermal diffusion, reaches new equilibrium conditions. In all the experiments performed at T = 700–750 °C, a large number of crystal nuclei and spherulites grows in the groundmass, suggesting conditions of high undercooling. This process creates textural heterogeneities at the scale of few microns but only limited changes of groundmass composition, which remains clustered around that of the natural glasses. Reheating at T = 1,000–1,050 °C promotes massive groundmass crystallization, with a different mineral assemblage as a function of the redox conditions. Morphological modifications of clasts, from softening to sintering as temperature increases, occur under these conditions, accompanied by progressive smoothing of external surfaces, and a reduction in size and abundance of vesicles, until the complete obliteration of the pre-existing vesicularity. The transition from sintering to welding, characteristic of high temperature, is influenced by redox conditions. Experiments at T = 1,100–1,130 °C and under vacuum produce groundmass textures and glass compositions similar to that of the respective starting material. Collapse and welding of the clasts cause significant densification of the whole charge. At the same temperature, but in presence of air, experimental products at least result sintered and show holocrystalline groundmass. In all experiments, sublimates grow on the external surfaces of the clasts or form a lining on the bubble walls. Their shape and composition is a function of temperature and fO2 and the abundance of sublimates shows a peak at 1,000 °C. The identification of the features recorded by pyroclasts during complex heating–cooling cycles allows reconstructing the complete clasts history before their final emplacement, during weakly explosive volcanic activity. This has a strong implication on the characterization of primary juvenile material and on the interpretation of eruption dynamics. 相似文献
16.
17.
利用自主研发的含瓦斯煤热-流-固耦合三轴伺服渗流装置,对不同温度条件下型煤试件在气体压力升降过程的渗流特性进行了试验研究,以模拟随采深增加引起的地温升高条件下煤的渗透特性。同时,为探讨低渗储层的滑脱效应进行了相同条件下氦气的平行试验。研究结果表明:(1)升压阶段,轴向应变增大,径向应变减小,近似呈线性变化;降压阶段,随气体压力降低,应变呈现出与升压阶段相同的变化趋势。随温度升高,应变随气体压力变化的斜率增大。(2)升压阶段,随气体压力升高,渗透率呈二次抛物线型变化,约在气体压力为3.0 MPa左右到达最小;降压阶段,随气体压力减小,渗透率先略有减小后增大,升压阶段渗透率大于降压阶段渗透率。(3)升压阶段滑脱效应引起的渗透率变化量大于降压阶段的变化量,且滑脱效应所引起的渗透率变化量随气体压力增加呈幂指数函数降低。 相似文献
18.
不同温度条件下冻结兰州黄土单轴试验的CT实时动态监测 总被引:1,自引:0,他引:1
改进了与CT扫描系统配套使用的三轴仪。改进后三轴仪由控温精度达到±0.1℃的压力罐和加载装置组成,能够实现对冻土力学试验过程真正的CT实时动态监测。对不同温度条件下的冻结兰州黄土单轴压缩过程进行了CT动态扫描, 得到如下结论,应变0~0.7%的阶段,试样发生弹性变形,CT数轻微增大;应变0.7%~6.5%的阶段,开始发生塑性变形,但还没有发生损伤,CT数变化不大;当应变大于6.5%时,试样的CT数明显变小,损伤开始发生,直至应变达到10%时,试样发生破坏,随后CT数也急剧减小。因此,冻结兰州黄土的屈服应变为0.7%,损伤应变临界值为6.5%,破坏应变临界值为10%。另外,温度对试样的CT数也有影响,在-0.6~-1.7 ℃的温度范围内,试样CT数变化具有很明显的规律,即温度越低,CT数越小,在-1.7 ℃和-5 ℃试验条件下CT数变化不大。 相似文献
19.
针铁矿-四方纤铁矿-水体系氧同位素分馏的实验研究 总被引:3,自引:0,他引:3
针铁矿是非常重要的三价铁氧化物之一,其氧同位素组成对于古环境再造具有很大的价值。以4种不同的铁化合物作为Fe3+离子的源物质,于30~120℃范围内,采用强迫水解方法,在不同同位素组成的水中分别实验合成针铁矿和四方纤铁矿。结果表明,以Fe(NO3)3·9H2O、NH4Fe(SO4)2·12H2O、Fe(SO4)3·7H2O为Fe3+源物质合成的是纯针铁矿,而以FeCl3·6H2O为Fe3+源物质合成的是四方纤铁矿。氧同位素分析显示,在30~120℃范围内实验测定的针铁矿-水体系和四方纤铁矿-水体系氧同位素分馏几乎不可区分,并且满足下列分馏关系:103lnα针铁矿-水=9.59×103/T-26.39103lnα四方纤铁矿-水=8.85×103/T-24.44实验测定的针铁矿-水体系氧同位素分馏不仅与前人实验结果一致,而且与增量方法理论计算相近。由于实验采用不同反应途径得到了一致的分馏结果,因此所测定的针铁矿-水体系氧同位素分馏代表了热力学平衡。 相似文献
20.
高放核废料地下处置、城市供热管道及埋地高压电缆等工程建设的进行,使得考虑温度影响的非饱和土渗透性能越来越受到人们的重视。在考虑温度效应的非饱和土土-水特征曲线研究基础上,结合利用土-水特征曲线预测非饱和土相对渗透系数的方法,建立了一种预测不同温度下非饱和土相对渗透系数的间接方法。所建立的表达式是针对土-水特征曲线的整个吸力范围,从而使得其在应用上更具一般意义。利用MX-80班脱土和黄土土样的试验结果,对不同温度下相对渗透系数随吸力的变化进行了预测,得到了令人满意的结果 相似文献