首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re-examination of the measured Ca/Mg activity ratios and consideration of the mineralogical composition of the Opalinus Clay suggested that Ca/Mg cation exchange rather than dolomite saturation may control the ratio of these ions in solution. This re-examination also suggests that the Ca/Mg ratio decreases with increasing pore-water salinity. Several possible reasons for this are proposed. Moreover, it is demonstrated that feldspar equilibria must not be included in Opalinus Clay modelling because feldspars are present only in very small quantities in the formation and because Na/K ratios measured in pore water samples are inconsistent with feldspar saturation. The principal need to improve future modelling is additional or better data on rock properties, in particular: (i) a more detailed identification of phases in the Opalinus Clay that include redox-sensitive elements together with evaluation of their thermodynamic properties; (ii) an improved understanding of the distribution of celestite throughout the Opalinus Clay for Sr/SO4 concentrations control; (iii) improvements in analytic and thermodynamic data for Ca-Mg rock cation exchange and mineral chemical properties and (iv) the measurement of composition and stability constants of clay minerals actually present in the formation.  相似文献   

2.
地球化学模拟方法确定黏性土孔隙水化学组分   总被引:1,自引:1,他引:0       下载免费PDF全文
黏性土孔隙水的地球化学行为对于弱透水层水质水量研究、污染物在黏性土中的迁移、核废物储存场址评价及油气储层的盖层评价等均具有重要作用。受低渗透性限制,传统方法提取黏性土孔隙水非常困难。通过实验测定黏性土的物化特性,利用PHREEQC软件模拟计算了孔隙水组成。通过浸提实验,利用阴离子可通过孔隙度(50%总孔隙度)确定模型中孔隙水的Cl-和SO2-4含量;根据岩土的阳离子交换量及各离子的交换选择系数,矿物沉淀 溶解平衡,确定了孔隙水的主要化学组分。结果显示,模拟的孔隙水化学组分与压榨液(相当于原位孔隙水)相近,不同于浸提液。传统的浸提方法不可直接换算为孔隙水,受矿物可交换点阳离子的释出与矿物溶解影响,各离子含量被明显高估。模拟所得天津滨海区黏性土阳离子交换量为13.4~37.8 meq/100g土,可交换离子以Na、Mg、Ca为主。所得孔隙水为还原环境,且随着深度增加,还原性增强。模型中所选矿物均为平衡状态,溶液中可能存在的矿物大部分为未饱和或平衡状态,仅部分含Fe、Al矿物过饱和。由结果可知Fe含量偏高,对控制Fe元素的矿物需进一步精确测定。本方法在低渗透,超固结,低含水量介质的孔隙水相关研究中将发挥重要作用。  相似文献   

3.
The pore-water geochemistry and mineralogy of tailings derived from a granitic tungsten deposit were characterized by collecting pore-water samples at discrete depth intervals throughout the tailings for the analysis of major and minor element concentrations. Mineralogical samples from the oxidation zone were analyzed by X-ray diffraction, scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM/EDS), electron microprobe (EMP) combined with wavelength dispersive X-ray spectroscopy (WDS), and transmission electron microscopy (TEM). The oxidation of sulfide minerals in the near-surface tailings leads to a decrease in pore-water pH and elevated SO4, As, and metal concentrations. The unusual mineralogy of this deposit, compared with that of commonly studied base-metal and gold deposits, results in several unique geochemical characteristics. The dissolution of fluorite releases F into the pore water; the F forms strong complexes with Al and enhances the dissolution of aluminosilicate minerals within the oxidation zone. As a result, high Al concentrations (up to 151.7 mg/L) are detected in the near-neutral pore water in the oxidation zone. The combined dissolution of aluminosilicates and carbonate minerals maintains the pH near 10 in the pore water at depth. Elevated concentrations of W (up to 7.1 mg/L) are detected in the pore water throughout the tailings, likely as a result of the dissolution of wolframite. Consistent with geochemical model calculations, results from SEM/EDS, EMP/WDS and TEM/EDS analyses indicate that secondary minerals, which occur as orange-brown coatings on grains of primary-minerals, are Fe oxyhydroxides. Examples of these secondary minerals display a fibrous habit at high resolution in the TEM. One of these minerals, which contains substantial amounts of Al, As, and Si as impurities, was identified by selected-area electron diffraction (SAED) analyses to be goethite. Another mineral contains relatively high amounts of Si, Pb, Bi, and As, and SAED analyses suggest that the mineral is two-line ferrihydrite.  相似文献   

4.
Tailings generated during processing of sulfide ores represent a substantial risk to water resources. The oxidation of sulfide minerals within tailings deposits can generate low-quality water containing elevated concentrations of SO4, Fe, and associated metal(loid)s. Acid generated during the oxidation of pyrite [FeS2], pyrrhotite [Fe(1−x)S] and other sulfide minerals is neutralized to varying degrees by the dissolution of carbonate, (oxy)hydroxide, and silicate minerals. The extent of acid neutralization and, therefore, pore-water pH is a principal control on the mobility of sulfide-oxidation products within tailings deposits. Metals including Fe(III), Cu, Zn, and Ni often occur at high concentrations and exhibit greater mobility at low pH characteristic of acid mine drainage (AMD). In contrast, (hydr)oxyanion-forming elements including As, Sb, Se, and Mo commonly exhibit greater mobility at circumneutral pH associated with neutral mine drainage (NMD). These differences in mobility largely result from the pH-dependence of mineral precipitation–dissolution and sorption–desorption reactions. Cemented layers of secondary (oxy)hydroxide and (hydroxy)sulfate minerals, referred to as hardpans, may promote attenuation of sulfide-mineral oxidation products within and below the oxidation zone. Hardpans may also limit oxygen ingress and pore-water migration within sulfide tailings deposits. Reduction–oxidation (redox) processes are another important control on metal(loid) mobility within sulfide tailings deposits. Reductive dissolution or transformation of secondary (oxy)hydroxide phases can enhance Fe, Mn, and As mobility within sulfide tailings. Production of H2S via microbial sulfate reduction may promote attenuation of sulfide-oxidation products, including Fe, Zn, Ni, and Tl, via metal-sulfide precipitation. Understanding the dynamics of these interrelated geochemical and mineralogical processes is critical for anticipating and managing water quality associated with sulfide mine tailings.  相似文献   

5.
《Applied Geochemistry》2004,19(3):343-358
Ion-exchange batch experiments were run on Cretaceous (Magothy aquifer) clay cores from a nearshore borehole and an inland borehole on Long Island, NY, to determine the origin of high SO42− concentrations in ground water. Desorption batch tests indicate that the amounts of SO42− released from the core samples are much greater (980–4700 μg/g of sediment) than the concentrations in ground-water samples. The locally high SO42− concentrations in pore water extracted from cores are consistent with the overall increase in SO42− concentrations in ground water along Magothy flow paths. Results of the sorption batch tests indicate that SO42− sorption onto clay is small but significant (40–120 μg/g of sediment) in the low-pH (<5) pore water of clays, and a significant part of the SO42− in Magothy pore water may result from the oxidation of FeS2 by dissolved Fe(III). The acidic conditions that result from FeS2 oxidation in acidic pore water should result in greater sorption of SO42− and other anions onto protonated surfaces than in neutral-pH pore water. Comparison of the amounts of Cl released from a clay core sample in desorption batch tests (4 μg/g of sediment) with the amounts of Cl sorbed to the same clay in sorption tests (3.7–5 μg/g) indicates that the high concentrations of Cl in pore water did not originate from connate seawater but were desorbed from sediment that was previously in contact with seawater. Furthermore, a hypothetical seawater transgression in the past is consistent with the observed pattern of sorbed cation complexes in the Magothy cores and could be a significant source of high SO42− concentrations in Magothy ground water.  相似文献   

6.
Field and laboratory investigations were performed to identify the principal mechanisms of the hydrochemical groundwater evolution among low mineralised groundwater in the Triassic Bunter sandstone aquifer of the Odenwald low mountain range, central Germany. Hydrochemical composition comprises low pH, SO4-rich shallow groundwaters issued by springs (Ca-Mg-SO4-type) grading to SO4-poor deep groundwaters with near-neutral pH (Ca-HCO3-type). Batch experiments of the original rock were run to determine primary mineral alteration reactions and the origin of dissolved ions. Principal experimental reactions comprise the decomposition of anorthite, K-feldspar, biotite and jarosite as mineral components of the original sandstone rock and the formation of clay minerals of the smectite group (Ca-montmorillonite, beidellite), and iron hydroxides as secondary minerals. Mobilisation of fluid inclusion in quartz grains contributes to Na and Cl concentrations in the leachates. The evolution of deep groundwater circulation proceeds by mineral alteration reactions calculated by the inverse modelling of both primary and secondary minerals to produce low-T mineral phases. The dissolution of K-feldspar converts Ca-montmorillonite to illite (illitisation). The formation of Na-beidellite correlates with decreasing concentration of Na in solution. Mineral reactions further proceed to the formation of kaolinite as stable mineral phase. As indicated by modelled adsorption curves, the decrease of SO4 concentrations during groundwater evolution relates to the adsorption of SO4 on iron hydroxides. The leaching of calcite indicated for individual groundwaters relates to the distribution of loess in the appropriate catchment areas.  相似文献   

7.
Pore water chemistry and 234U/238U activity ratios from fine-grained sediment cored by the Ocean Drilling Project at Site 984 in the North Atlantic were used as constraints in modeling in situ rates of plagioclase dissolution with the multicomponent reactive transport code Crunch. The reactive transport model includes a solid-solution formulation to enable the use of the 234U/238U activity ratios in the solid and fluid as a tracer of mineral dissolution. The isotopic profiles are combined with profiles of the major element chemistry (especially alkalinity and calcium) to determine whether the apparent discrepancy between laboratory and field dissolution rates still exists when a mechanistic reactive transport model is used to interpret rates in a natural system. A suite of reactions, including sulfate reduction and methane production, anaerobic methane oxidation, CaCO3 precipitation, dissolution of plagioclase, and precipitation of secondary clay minerals, along with diffusive transport and fluid and solid burial, control the pore fluid chemistry in Site 984 sediments. The surface area of plagioclase in intimate contact with the pore fluid is estimated to be 6.9 m2/g based on both grain geometry and on the depletion of 234U/238U in the sediment via α-recoil loss. Various rate laws for plagioclase dissolution are considered in the modeling, including those based on (1) a linear transition state theory (TST) model, (2) a nonlinear dependence on the undersaturation of the pore water with respect to plagioclase, and (3) the effect of inhibition by dissolved aluminum. The major element and isotopic methods predict similar dissolution rate constants if additional lowering of the pore water 234U/238U activity ratio is attributed to isotopic exchange via recrystallization of marine calcite, which makes up about 10-20% of the Site 984 sediment. The calculated dissolution rate for plagioclase corresponds to a rate constant that is about 102 to 105 times smaller than the laboratory-measured value, with the value depending primarily on the deviation from equilibrium. The reactive transport simulations demonstrate that the degree of undersaturation of the pore fluid with respect to plagioclase depends strongly on the rate of authigenic clay precipitation and the solubility of the clay minerals. The observed discrepancy is greatest for the linear TST model (105), less substantial with the Al-inhibition formulation (103), and decreases further if the clay minerals precipitate more slowly or as highly soluble precursor minerals (102). However, even several orders of magnitude variation in either the clay solubility or clay precipitation rates cannot completely account for the entire discrepancy while still matching pore water aluminum and silica data, indicating that the mineral dissolution rate conundrum must be attributed in large part to the gradual loss of reactive sites on silicate surfaces with time. The results imply that methods of mineral surface characterization that provide direct measurements of the bulk surface reactivity are necessary to accurately predict natural dissolution rates.  相似文献   

8.
Seal or cap-rock integrity is a safety issue during geological carbon dioxide capture and storage (CCS). Industrial impurities such as SO2, O2, and NOx, may be present in CO2 streams from coal combustion sources. SO2 and O2 have been shown recently to influence rock reactivity when dissolved in formation water. Buoyant water-saturated supercritical CO2 fluid may also come into contact with the base of cap-rock after CO2 injection. Supercritical fluid-rock reactions have the potential to result in corrosion of reactive minerals in rock, with impurity gases additionally present there is the potential for enhanced reactivity but also favourable mineral precipitation.The first observation of mineral dissolution and precipitation on phyllosilicates and CO2 storage cap-rock (siliciclastic reservoir) core during water-saturated supercritical CO2 reactions with industrial impurities SO2 and O2 at simulated reservoir conditions is presented. Phyllosilicates (biotite, phlogopite and muscovite) were reacted in contact with a water-saturated supercritical CO2 containing SO2, or SO2 and O2, and were also immersed in the gas-saturated bulk water. Secondary precipitated sulfate minerals were formed on mineral surfaces concentrated at sheet edges. SO2 dissolution and oxidation resulted in solution pH decreasing to 0.74 through sulfuric acid formation. Phyllosilicate dissolution released elements to solution with ∼50% Fe mobilized. Geochemical modelling was in good agreement with experimental water chemistry. New minerals nontronite (smectite), hematite, jarosite and goethite were saturated in models. A cap-rock core siltstone sample from the Surat Basin, Australia, was also reacted in water-saturated supercritical CO2 containing SO2 or in pure supercritical CO2. In the presence of SO2, siderite and ankerite were corroded, and Fe-chlorite altered by the leaching of mainly Fe and Al. Corrosion of micas in the cap-rock was however not observed as the pH was buffered by carbonate dissolution. Ca-sulfate, and Fe-bearing precipitates were observed post SO2-CO2 reaction, mainly centered on surface cracks and an illite rich illite-smectite precipitate quantified. Water saturated impure supercritical CO2 was observed to have reactivity to rock-forming biotite, muscovite and phlogopite mineral separates. In the cap-rock core however carbonates and chlorite were the main reacting minerals showing the importance of assessing actual whole core.  相似文献   

9.
《Applied Geochemistry》1997,12(4):473-481
A compacted clay block of montmorillonite clay has been simultaneously subjected to heating and hydration by parallel and opposite fronts, in order to determine the physico-chemical effects of the thermohydraulic process on the clay and on its pore water.The pore waters of the clay have been extracted at ambient temperature after the thermal-hydration treatment by a compaction at high pressure (60 MPa) technique. They have been analyzed, and the chemistry has been evaluated by using the speciation program EQ3NR. The movement of salts towards hot areas has been observed as a result of the thermo-hydraulic gradients, but it is conditioned by anionic retention processes, which mainly affect the mobility of SO42− anions. The distributrion of the exchangeable cations is modified by the thermal gradient.  相似文献   

10.
Cs migration in the environment is mainly controlled by sorption onto mineral surfaces, in particular on clay minerals. With the objective of designing a geochemical reactive barrier to treat 137Cs accidental pollution in an industrial waste repository, different natural clayrocks were studied to analyse their capacity to retain Cs.The simple semi-empiric Kd-approach for experimental data analysis, is unsatisfactory to describe the variability of sorption upon chemical changes. Indeed, due to the high salinity of the site, the effects of competitive ions must be evaluated and quantified. Thus, the development of sorption models, capable of reproducing experimental data obtained under conditions representative of the contaminated site, and applicable to reactive transport studies, is needed.In this study, a model for Cs sorption, which takes into account the main mineralogy of the sorbent, the composition of the natural water (and ion competition) was successfully applied to interpret the non-linear Cs sorption under natural conditions.The selectivity coefficients of Cs with respect to the most important cations present in the site water (Na, K, NH4, Ca) were derived by means of experiments in single clay minerals and synthetic mono-component solutions. Then, these parameters were tested in systems of increasing complexity.Considering the mineralogical composition of raw materials, it was shown that the principal contribution to Cs sorption is given by the mineral illite, while smectite starts to be relevant only at very high Cs loadings. Kaolinite, even in concentrations around 10 wt% of the clayey fraction, played only a minor role.With respect to the solution composition, the model was able to predict Cs sorption in electrolyte concentrations up to twice than that of seawater and up to 500 mg/L NH4+. The effect of highly competing ions, especially NH4+ and K+, on Cs retention is more important at low ionic strengths and low Cs loadings, where adsorption is dominated by illite selective frayed edge sites, FES. Divalent cations are not especially relevant as competing cations for Cs.  相似文献   

11.
Textural variational pattern of economic and accessible Quaternary aquifer repositories and its conductivity in the south-eastern Nigeria have been assessed through the integration of vertical electrical sounding and laboratory measurements. The results have shown the lithological attributes, pore-water and amount of residual clay minerals in the assumed clean sand; mechanism of charge fixation at the fluid - surface interface; intricate geometry of pores and pore channels; formation’s ability to transmit pore-water and cation exchange capacity.The connections of electrical and hydraulic properties and their distributions have been established. The average interface conductivity contributed by residual clay minerals in assumed clean sands of the aquifer repositories in the study area have been estimated as 30µS/m. Intrinsic average porosity and formation factor have been respectively deduced as 12% and 14.75. Comparing the simulated aquifer formation factor obtained from the observed porosity data with the observed aquifer formation factor, indicates the that study area has 0.5 ≤ a ≤ 0.8 pore geometry factor and 1.5 ≤ m ≤ 2.0 cementation factor as the best fitting values. The interrelations between aquifer parameters have been established through different plots and the aquifer have been empirically proved to be associated with residual clay minerals as the interface conductivity Cq is not equal to zero. The wide ranges of parameters estimated are an indication of variations in grain size. The estimated intrinsic average porosity, formation factor and the average BQv are viable in characterizing the aquifer flow dynamics and contaminant modelling in the associated aquifer sands For low pore geometry factors a (0.2) and low cementation factor m (0.5) the formation factor remains fairly constant. However, marked variability is noticed at higher a (1.0) and m (2.5). Despite the observed variability in formation factors at the indicated porosities, the spatial or geometrical spread of the formation factor remains unchanged in the aquifer units. The Tables for geoelectric and petrophysical parameters and the associated mathematical models generated in this study can be used for groundwater contaminant modelling and simulation of pore space parameters with reasonable accuracy.  相似文献   

12.
Undisturbed core samples of Recent sediments from the Wash tidal flats, East Anglia, England, obtained using a Delft corer, were studied with special reference to the diagenesis and geochemical behaviour of iron. The Mössbauer effect in 57Fe was used to monitor the distribution of Fe between different phases as a function of depth, together with the magnetic mineralogy and palaeomagnetic properties.The cores consist of, successively downwards: 0.36 m brown clay; 1.5 m finely laminated silts and fine sands, and 7.14 m homogeneous fine sands. The dominant minerals are quartz, feldspar, calcite and clay minerals, and chemical analysis for Al, Si, Mg, Mn, Ca, Fe, Na, K showed variations closely linked to lithological changes. Illite is the most abundant clay mineral (mean 48%), followed by mixed layer illite-montmorillonite and montmorillonite, kaolinite and chlorite. Chlorite is the major iron-bearing clay mineral and represents 4 to 10% of the <2 μm fraction throughout the core. Sulphide minerals are present throughout the core, including framboidal pyrite.Computer fit analysis of the Mössbauer spectra of best quality showed contributions from Fe2+ and Fe3+ in clay minerals (essentially chlorite), low-spin Fe2+ in pyrite, and magnetically ordered iron in greigite (Fe3S4). Systematic variations, as a function of sample depth, indicate a relative increase in the amount of Fe in pyrite at the expense of the clay minerals.Magnetite and titanium-bearing magnetite are the carriers of natural magnetic remanence in these sediments.The direction and intensity of natural remanence in the samples compare well with the known secular variation of the Earth's magnetic field derived from the historic-archaeomagnetic record and this enables the samples to be dated and sedimentation rates to be determined (1.5 mm yr?1 for the upper 2 m and ~7.7 mm yr?1 for the lower 7 m).  相似文献   

13.
Significant amounts of sulfuric acid (H2SO4) rich saline water can be produced by the oxidation of sulfide minerals contained in inland acid sulfate soils (IASS). In the absence of carbonate minerals, the dissolution of phyllosilicate minerals is one of very few processes that can provide long-term acid neutralisation. It is therefore important to understand the acid dissolution behavior of naturally occurring clay minerals from IASS under saline–acidic solutions. The objective of this study was to investigate the dissolution of a natural clay-rich sample under saline–acidic conditions (pH 1–4; ionic strengths = 0.01 and 0.25 M; 25 °C) and over a range of temperatures (25–45 °C; pH 1 and pH 4). The clay-rich sample referred to as Bottle Bend clay (BB clay) used was from an IASS (Bottle Bend lagoon) in south-western New South Wales (Australia) and contained smectite (40%), illite (27%), kaolinite (26%) and quartz (6%). Acid dissolution of the BB clay was initially rapid, as indicated by the fast release of cations (Si, Al, K, Fe, Mg). Relatively higher Al (pH 4) and K (pH 2–4) release was obtained from BB clay dissolution in higher ionic strength solutions compared to the lower ionic strength solutions. The steady state dissolution rate (as determined from Si, Al and Fe release rates; RSi, RAl, RFe) increased with decreasing solution pH and increasing temperature. For example, the highest log RSi value was obtained at pH 1 and 45 °C (−9.07 mol g−1 s−1), while the lowest log RSi value was obtained at pH 4 and 25 °C (−11.20 mol g−1 s−1). A comparison of these results with pure mineral dissolution rates from the literature suggests that the BB clay dissolved at a much faster rate compared to the pure mineral samples. Apparent activation energies calculated for the clay sample varied over the range 76.6 kJ mol−1 (pH 1) to 37.7 kJ mol−1 (pH 4) which compare very well with the activation energy values for acidic dissolution of monomineralic samples e.g. montmorillonite from previous studies. The acid neutralisation capacity (ANC) of the clay sample was calculated from the release of all structural cations except Si (i.e. Al, Fe, K, Mg). According to these calculations an ANC of 1.11 kg H2SO4/tonne clay/day was provided by clay dissolution at pH 1 (I = 0.25 M, 25 °C) compared to an ANC of 0.21 kg H2SO4/tonne clay/day at pH 4 (I = 0.25 M, 25 °C). The highest ANC of 6.91 kg H2SO4/tonne clay/day was provided by clay dissolution at pH 1 and at 45 °C (I = 0.25 M), which is more than three times higher than the ANC provided under the similar solution conditions at 25 °C. In wetlands with little solid phase buffering available apart from clay minerals, it is imperative to consider the potential ANC provided by the dissolution of abundantly occurring phyllosilicate minerals in devising rehabilitation schemes.  相似文献   

14.
The dominant reaction determining the chemistry of fluids in a geothermal system of the New Zealand type consists of the conversion of primary plagioclase by CO2 to calcite and clays with log pco2 = 15.26 ? 7850/(t + 273.2), temperature t in °C. Subsequent reactions involving secondary minerals control relative CO2-H2S-contents. The distribution of mineral phases throughout a geothermal system reflects the stepwise conversion of thermodynamically unstable primary phases through a series of intermediate, metastable phases to a thermodynamically stable, secondary assemblage. The relative stabilities of these phases was evaluated on the basis of their solubilities, the least soluble aluminiumsilicate representing the thermodynamically most stable phase under a given set of conditions. Observed assemblages of secondary minerals in geothermal systems represent indicators allowing mineral/fluidinteraction conditions to be evaluated on the basis of multi-component mineral stability diagrams.  相似文献   

15.
Hierarchical cluster analysis (HCA) and inverse modeling (PH REdox EQuilibrium (in C language) (PHREEQC)) were simultaneously useful approaches in interpreting surface water hydrochemistry within Talkhab River in the Tang-Bijar oilfield, Iran, where large uncertainties exist in the understanding of the water quality system. Q-mode HCA applied to the data revealed three major surface water associations distinguished on the basis of the major causes of variation in the hydrochemistry. The three water groups were classified as upstream waters (group 1: Ca–SO4), intermediate waters (group 2: Ca–SO4–Cl), and downstream waters (group 3: Na–Cl). Geochemical reaction models were constructed using PHREEQC to establish the reactions associated with the different mineral phases through inverse modeling. The hydrochemical compositions of the water groups and the mass balance calculations indicate that the dominant processes and reactions responsible for the hydrochemical evolution in the system are (1) dissolution of evaporites, (2) precipitation of carbonate minerals, (3) silicate weathering reactions, (4) limited mixing with saline water, and (5) ion exchange.  相似文献   

16.
In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site.Additionally, observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO2(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.  相似文献   

17.
Aluminum phosphate-sulfate (APS) minerals are present as small, disseminated crystals in the upper Cretaceous shallow marine ooidal ironstones, E-NE Aswan area, southern Egypt. Their association with the ironstones is considered as a proxy of subaerial weathering and post-diagenetic meteoric water alteration. The mineralogical composition of the ooidal ironstones was investigated by optical and scanning electron microscopes, X-ray diffraction, Fourier transform infrared and Raman spectroscopy. The ooidal ironstones are composed mainly of ooids and groundmass, both of which consist of a mixture of detrital (quartz) and diagenetic (fluorapatite, chamosite and pyrite) mineral assemblages. These mineral assemblages are destabilized under acidic and oxidizing, continental conditions. These conditions resulted from the oxidation of pyrite and probably organic matter under warm and humid, tropical climate followed the Santonian Sea regression and subaerial exposure. These pedogenic conditions promoted corrosion of quartz, dissolution of chamosite and apatite and hydrolysis of feldspars of the nearby exposed granitoids. The released Si, Al and Sr from quartz, chamosite and feldspars; Fe and S from pyrite and P, Ca and light rare earth elements (LREE) from apatite are reprecipitated as hematite, kaolinite, apatite and APS minerals from the pore fluids or along fractures. The paragenetic sequence and textural relationships of this post-diagenetic mineral assemblage indicate that hematite was formed by replacement of chamosite followed by formation of a secondary generation of pore filling chlorapatite and APS minerals and finally the precipitation of kaolinite in the remaining pore spaces. The formation of APS minerals and chlorapatite is simultaneous, but APS minerals are stable at shallow depths under acidic to neutral pH conditions, whereas chlorapatite is stable under alkaline pH conditions. Alkaline conditions were maintained at greater depths when the infiltrated acidic fluids reacted with chamosite. The APS minerals display a homogeneous chemical composition in all ironstone locations in Aswan area, corresponding to a solid solution between crandallite (CaAl3(PO4)2(OH)5·H2O), goyazite (SrAl3(PO4)2(OH)5·H2O), svanbergite (SrAl3(PO4)(SO4)(OH)6) and woodhouseite (CaAl3(PO4)(SO4)(OH)6) end-members. The variations in the APS mineral chemistry (AB3(XO4)2(OH)6) are essentially due to variable substitutions of Sr and LREE for Ca at the A site and limited S for P at the X site. The spatial distribution of APS minerals and their composition in the ooidal ironstones of Aswan area permitted to consider them as good tracers of physicochemical and paleoenvironmental changes, in particular those associated with subaerial exposure and pedogenesis. The post-diagenetic phosphatization and kaolinization of the Aswan ironstones decrease their economic potentiality; thus, understanding paragenetic sequence and textural relationships is essential for the iron ore beneficiation.  相似文献   

18.
A detailed characterization of the pore space is crucial for understanding of transport and element transfer in rocks. Here, the effect of differences in texture and content of secondary minerals on transport in pore systems was determined for two rocks of widespread occurrence, mid-ocean ridge basalts (MORB) and granites. Pore space characteristics were analyzed by Hg-porosimetry, intrusion of a molten alloy, and synchrotron-based X-ray tomographic microscopy. For evaluating the role of pore space characteristics for the prediction of diffusive transport, data on porosity, and the effective diffusion coefficient (D eff) were compared. Extended connective pore systems due to cracks and mineral dissolution are present in samples of both rocks, indicating high internal specific surface area. Uneven pore size distributions in altered MORB samples can be assigned to secondary minerals. Pore spaces determined by X-ray tomography, used to determine main direction of pores in the 3-D orthogonal system, suggest a slight anisotropy. In log–log plots, both rocks show roughly a linear dependence of D eff for H2O and compounds with comparable diffusivities (D2O, monovalent cations, and anions) on porosity, but at same porosity D eff is clearly higher in granitic than in basaltic samples. This difference is increasing with decreasing porosity, indicating that at low porosities the efficiency of element transport in basaltic samples is diminished, mainly inherited by the presence of small pores slowing down diffusion. The fact that diffusive transport in basaltic rocks is stronger dependent on porosity than in granitic rocks shows that also other rock characteristics such as pore size distribution and tortuosity of the pore network, highly affected by the alteration degree, can markedly affect transport and reactivity of pore solution.  相似文献   

19.
文章通过对泥质岩的黏土质矿物组分、成岩作用中黏土质矿物变化综合研究,认为泥质岩中存在大量黏土矿物,且泥质沉积物由松散到固结成岩实质上是黏土矿物组成的变化。泥质岩中主要黏土矿物包括高岭石、蒙皂石、绿泥石、伊利石以及其组成的混层型矿物伊利石/蒙皂石、绿泥石/蒙皂石,其成岩过程可划分为成岩早期的压实阶段、成岩晚期的黏土矿物转化阶段。压实阶段的泥质沉积物中黏土矿物具有物源的继承性、沉积水体古环境指示意义;受压实作用孔隙水、层间水被排出,原生絮凝团被压破,使片状质点趋于平行排列,黏土矿物与孔隙水发生反应,亦形成少量的新生作用矿物,因而黏土矿物具继承源和新生作用源特性。成岩晚期阶段发生层间水释放及层间阳离子交换,从而使得矿物晶体结构与成分发生变化,主要表现为一元黏土矿物向二元混层型转化,最后再到一元型黏土矿物的转化,最终形成转变源黏土矿物。  相似文献   

20.
《Applied Geochemistry》2000,15(8):1085-1095
The pore space of deep saline aquifers in the Alberta (sedimentary) Basin offers a significant volume for waste storage by “hydrodynamic trapping”. Furthermore, given the slow regional fluid flow in these deep saline aquifers, ample time exists for waste-water/rock chemical reactions to take place. A geochemical computer model (PATHARC) was used to compute the interaction of industrial waste streams comprising CO2, H2SO4 and H2S with the minerals in typical carbonate and sandstone aquifers from the Alberta Basin. The results support the idea that these acids can be neutralized by such reactions and that new mineral products are formed, such as calcite, siderite, anhydrite/gypsum and pyrrhotite, thereby trapping the CO3, SO4 and S ions that are formed when the acid gases dissolve in the formation water. Siliciclastic aquifers appear to be a better host for “mineral trapping” than carbonate aquifers, especially with regard to CO2. Carbonate aquifers may be more prone to leakage due to high CO2 pressures generated by reaction with H2SO4 and H2S. Even though permeability decreases are expected due to this “mineral trapping”, they can be partially controlled so that plugging of the aquifer does not occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号