首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paleo-environmental implication of clumped isotopes in land snail shells   总被引:1,自引:0,他引:1  
Clumped isotopes analyses in modern land snail shells are reported and used to interpret shell oxygen isotopes within the context of terrestrial paleo-climatology. Carbonate clumped isotopes thermometry is a new technique for estimating the temperature of formation of carbonate minerals. It is most powerful as an indicator of environmental parameters in combination with δ18O, allowing the partitioning of the δ18O signal into its temperature and water components. Results indicate that snail shell calcification temperatures are typically higher than either the mean annual or the snail activity season ambient temperatures. Small inter- and intra-snail variability suggests that shell aragonite forms at isotopic equilibrium so that the derived temperatures are an eco-physiological parameter reflecting snail body temperature at the time of calcification. We attribute these higher body temperatures to snail eco-physiological adaptations through shell color, morphology, and behavior. In combination with shell oxygen isotope composition, these temperatures allow us to calculate snail body water composition, which is in turn interpreted as a paleo-hydrological indicator, reflecting isotopic composition of local precipitation modified by local evaporation.  相似文献   

2.
The isotopic composition of land snail shells was analyzed to investigate environmental changes in the eastern Canary Islands (28–29°N) over the last ~ 50 ka. Shell δ13C values range from −8.9‰ to 3.8‰. At various times during the glacial interval (~ 15 to ~ 50 ka), moving average shell δ13C values were 3‰ higher than today, suggesting a larger proportion of C4 plants at those periods. Shell δ18O values range from −1.9‰ to 4.5‰, with moving average δ18O values exhibiting a noisy but long-term increase from 0.1‰ at ~ 50 ka to 1.6–1.8‰ during the LGM (~ 15–22 ka). Subsequently, the moving average δ18O values range from 0.0‰ at ~ 12 ka to 0.9‰ at present. Calculations using a published snail flux balance model for δ18O, constrained by regional temperatures and ocean δ18O values, suggest that relative humidity at the times of snail activity fluctuated but exhibited a long-term decline over the last ~ 50 ka, eventually resulting in the current semiarid conditions of the eastern Canary Islands (consistent with the aridification process in the nearby Sahara). Thus, low-latitude oceanic island land snail shells may be isotopic archives of glacial to interglacial and tropical/subtropical environmental change.  相似文献   

3.
δ13C and δ18O analyses have been performed on the aragonite shells of a variety of modern land snails from a number of different geographic and climatic locales. The δ18O values of the waters assumed to be in isotopic equilibrium with the shell carbonate were calculated. These calculated δ18O values are more positive than the δ18O values of the average meteoric waters in the locales in which the snails lived. The 18O enrichment appears to be linearly related to the reciprocal of the local relative humidity, which is consistent with the notion that these ambient waters have undergone isotopic steady-state evaporation. Measurements of the δ18O values of ancient land snail shells from the excavation of Sudden Shelter (42SV6) at Ivie Creek, Utah, suggest that the climate at this site was probably warmer and/or drier around 7100–7800 BP than at present.  相似文献   

4.
A simple flux balance model with a diffusive, evaporative boundary layer indicates that the time constant (characteristic time) for approach to oxygen isotope steady state in the body fluid of land snails is ∼19 min or less. These comparatively short times support an assumption that the snail’s aragonitic shell is commonly precipitated from a body fluid that is at, or near, isotopic steady state. The model indicates that the steady-state δ18O value of snail shell carbonate depends upon the temperature, relative humidity, δ18O of the input liquid water, and δ18O of ambient water vapor. Model shell δ18O values were calculated for the warm, wet months corresponding to times of snail activity at some European sites. Linear regression of these predicted values against published, measured values yielded the expression: δ18Ocalc = 0.93(±0.13) δ18Omeas −0.9(±0.2), with r2 = 0.65. As indicated by the value of r2, there is scatter in the relationship, but the slope and intercept are close to one and zero, respectively, which lends credence to the model. Therefore, temporal or spatial changes recorded in the δ18O values of land snail shells appear to be selectively seasonal—commonly the warm, wet months—and include the effects of relative humidity.For carbon, the time constant for approach to isotopic steady state in the bicarbonate dissolved in the body fluid of land snails is predicted to be ∼16 min or less. New and published δ13C measurements of aragonite shell and associated organic matter exhibit an overall correlation, but with considerable scatter. As noted by previous workers, 13C-rich dietary “limestone” may account for some of the scatter. Additional scatter, according to the model presented herein, could arise from changes in the proportion of total oxidized carbon that is expelled by the snail as bicarbonate dissolved in body fluid (i.e., effects of relative changes in metabolic rates). These results affirm the need for caution in the interpretation of δ13C values of land snail aragonite shells solely in terms of dietary proportions of C3 and C4 plants.  相似文献   

5.
鲍睿  盛雪芬  陈骏 《第四纪研究》2021,41(4):903-915

陆生蜗牛响应气候环境变化敏感,其壳体化石碳氧同位素组成(δ13C和δ18O)具有重建古生态和古大气水文条件的巨大潜力。然而目前针对中国黄土古土壤沉积序列中蜗牛化石碳氧同位素组成开展的古环境古气候重建研究却仍然不足,根源在于对蜗牛壳体δ13C和δ18O指标气候意义的认识仍不明确。文章从现代过程研究着手,综述了目前有关蜗牛壳体δ13C和δ18O气候环境意义的研究进展,并指出各自指标存在受控因子的复杂性和多解性等问题。通过总结这些研究认为:陆生蜗牛壳体δ13C值主要通过反映植物(尤其C3δ13C值变化来进一步响应当地降水量变化,进而指示环境的干湿程度,但同时需要考虑环境碳酸盐、大气CO2等额外因子对壳体δ13C的影响;壳体δ18O值可以在较大程度上反映大气降水δ18O值变化,但同时需要考虑蒸发作用和温度等因素对壳体δ18O的影响;壳体δ13C和δ18O在作为气候指标时常受区域和蜗牛种属等因素影响。此外,还介绍了目前中国北方黄土地层中蜗牛壳体化石稳定同位素组成重建季风变化的研究进展和近十年来有关蜗牛壳体团簇同位素新方法的研究进展。最后,论文针对壳体δ13C和δ18O指标存在的问题提出可能的解决办法,并对以后蜗牛碳氧同位素古环境研究方向进行展望。

  相似文献   

6.
Variations of stable isotopic ratios of carbon (13C/12C) and oxygen (18O/16O) were investigated in modern shells of two species of Rabdotus land snails (R. dealbatus and R. alternatus) in the southern Great Plains. Geographic variation in relation to climate and vegetation, microgeographic variation, variability among individuals, and detailed records of seasonal variations within individual shells were studied. Stable carbon isotopic ratios in shell carbonate are primarily a function of the isotopic composition of the diet of the snails, as represented by the isotopic composition of shell organic matter. This in turn reflects the presence or absence of CAM (Crassulacean Acid Metabolism) or C4 plants. Vegetation density may have a small effect on the carbon isotope ratios. Microgeographic variation (samples within 25 to 300 m) is greater than that seen across different climatic regions and points to very local control of isotopic variations, predominantly related to vegetation. Seasonal variations, as assessed through serial analysis of individual shells (up to 35 samples per shell), may provide a means for distinguishing between isotopic influences of perennial CAM vs. annual C4 plants. Carbon isotopic variations in time-series of shells from a site provide a means of reconstructing temporal changes in environment and climate.Oxygen isotopic values of shell carbonate are uniform across the region and also show no significant microgeographic variation. The oxygen isotopic composition appears to be mainly a function of the rainwater isotopic composition, with no direct influence of rainfall amount or evaporative effects. The δ18O values are only 2‰ enriched relative to estimated equilibrium with rainwater. Variability is low (SD of 0.8‰ among sites), so the isotopic composition of fossil Rabdotus shells can provide a precise record of changes in the isotopic composition of rain over time.  相似文献   

7.
This study explores the potential of intertidal Protothaca staminea shells as high-resolution geochemical archives of environmental change in a coastal upwelling region. Mg/Ca and Sr/Ca ratios were analyzed by excimer laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) at sub-weekly temporal resolution in shells growing ∼1 mm per month. Growth patterns of a modern P. staminea shell from Humboldt Bay, California, collected in December 1999 made it possible to infer a lifespan from 1993 to 1998. Growth hiatuses in the shell may have excluded records of extreme events. Mg/Ca ratios appeared to be partly controlled by water temperature; the correlation coefficient between temperature and Mg/Ca was r = 0.71 in one of four growth increments. Significant year-to-year differences in the sensitivity of Mg/Ca to temperature in P. staminea could not be explained, however. Sr/Ca ratios appeared to be more closely related to shell growth rate. Oxygen isotopes, measured at 2-week temporal resolution in the same shell, did not show a clear relation to local temperature in summer, possibly because temperatures were higher and less variable at the King Salmon mudflat, where the shell was collected, than in the main channel of Humboldt Bay, where water properties were monitored. Negative shell δ13C values (<−0.5‰) marked spring and summer coastal upwelling events.The Mg contents of P. staminea midden shells dated to ∼3 ka and ∼9 ka were significantly lower than in the modern shell. This may have resulted from degradation of a Mg-rich shell organic matrix and precluded quantitative interpretation of the older high-resolution records. Elevated δ13C values in the ∼3 ka shell suggested that the individual grew in highly productive or stratified environment, such as a shallow coastal embayment or lagoon.  相似文献   

8.
生物对环境元素和稳定同位素的选择性及研究实例   总被引:1,自引:0,他引:1  
利用现代生物学最新研究成果和研究模式,对生物及其生活环境中的元素和稳定同位素之间存在的对应关系进行总结和分析认为,生物因生理、地化环境、元素形态及其利用原则等内外因子而对其生活环境中的元素和稳定同位素存在不同程度的选择性吸收、利用和富集,具体的选择性利用机制均可以从生物的形态构造直至分子水平上加以解释.当环境中元素、同位素含量发生变化时,生物因其对各元素生态幅和耐受限度的差异而并不完全对环境中化学因子的变化产生一致性的响应,分别表现为时代效应、耐受限度效应和生态幅重叠等效应等.部分生物壳体"第二层"与其围岩碳、氧同位素比值及其变化趋势保持着较好的一致性.上述认识不同程度地在泥盆纪腕足类Rhynchospirifer属和Stringocephalus属为代表的生物壳体"第二层"及其围岩的研究中得到验证.  相似文献   

9.
Past ocean pH and pCO2 are critical parameters for establishing relationships between Earth's climate and the carbon cycle. Previous pCO2 estimates are associated with large uncertainties and are debated. In this study, laboratory cultures of the foraminiferan genus Amphistegina were performed in order to examine the possible factors that control the Li isotope composition (δ7Li) of their shells. δ7Li is insensitive to temperature and pH variations but correlates positively with the Dissolved Inorganic Carbon (DIC) of seawater. Li/Ca ratio in the shells shows negative correlation with δ7Li, consistent with published data for planktonic foraminifera from core tops and from short periods during the Cenozoic. We propose that the sensitivity of δ7Li and Li/Ca ratio to DIC is a biological phenomenon and is related to biomineralization mechanisms in foraminifera. We used the published foraminiferal δ7Li records, and our experimental results, to determine the paleo-ocean DIC and pH for the last glacial–interglacial cycle. The results are consistent with published estimates of pH and pCO2 based on boron isotopes and ice cores. We suggest Li and its isotopes may serve as a new complementary proxy for the paleo-ocean carbonate chemistry.  相似文献   

10.
Strong contrasts in ambient isotope ratios and in diet suggest stable isotopes in the otoliths of oceanic fish can resolve water masses and geographic areas, promising a powerful multivariate approach for examining population structure and provenance. To test this, whole otoliths were taken from Patagonian toothfish (Dissostichus eleginoides) sampled off the Patagonian Shelf and South Georgia, on either side of a population boundary, and otolith δ18O and δ13C values were measured to see if they could distinguish South American-caught fish from those taken in the Antarctic. Values of otolith δ18O and δ13C predicted capture area with 100% success, validating their use for distinguishing provenance and corroborating the prior evidence of population isolation. Values of δ18O in the otoliths reflected ambient values as well as seawater temperature: low values in Patagonian Shelf fish were consistent with exposure to Antarctic Intermediate Water (AAIW), and high values in South Georgia fish were consistent with exposure to Circumpolar Deep Water (CDW). In contrast, differences in otolith δ13C appeared to reflect diet: relative depletion of otolith δ13C at South Georgia compared to the Patagonian Shelf were most likely linked to differences in sources of metabolic carbon, as well as δ13C in dissolved inorganic carbon (DIC) of seawater. These contrasting properties strongly suggest that stable isotopes can resolve the provenance of toothfish from Antarctic sampling areas that hitherto have been difficult to separate. These results show that, by using the chemistry recorded in otoliths, researchers can exploit biogeochemical variation in fully marine environments to examine the spatial ecology of oceanic fish.  相似文献   

11.
Well-preserved aragonitic land snail shells (Vallonia) from late Pleistocene Eolian sediment in the Folsom archaeological site in New Mexico exhibit an overall decrease of δ18OPDB from maximum values of +2.7‰ (more positive than modern) to younger samples with lower average values of about −3.6‰ (within the modern range). The age of the samples (approximately 10,500 14C yr B.P.) suggests that the decrease in δ18O may manifest climatic changes associated with the Younger Dryas. Some combination of increased relative humidity and cooler temperatures with decreased δ18O of precipitation during the times of snail activity can explain the decrease in shell δ18O. A well-known Paleoindian bison kill occurred at the Folsom site during this inferred environmental transition.Average δ13C values of the aragonite shells of the fossil Vallonia range from −7.3 to −6.0‰ among different archaeological levels and are not as negative as modern values. This suggests that the proportion of C4 vegetation at the Folsom site approximately 10,500 14C yr B.P. was greater than at present; a result which is consistent with other evidence for higher proportions of C4 plants in the region at that time.  相似文献   

12.
13.
The long term recharge in Gobi Desert from Hexi Corridor to Inner Mongolia Plateau was estimated to be 1 mm year−1 by using the chloride mass balance method from one unsaturated zone profile, which shows that no effective modern recharge is taking place. A good rainfall database from Zhangye provides definition of the stable isotopic composition of modern rainfall. The signature of groundwater from the late Pleistocene differs markedly from that of the Holocene, shown clearly by the compositions of −10.5‰ δ18O as compared with values of −7‰ at the present day. It is apparent that the groundwaters in the Minqin Basin, Ejina Basin and feeding the lake system of the Badain Jaran are part of a regional flow network related to a wetter past climate as source of recharge. The recharge source in the past and to a limited extent in the more arid conditions of the present day included the foothills of the mountains of the Tibetan Plateau. The tritium age determinations accurate to the year are impossible and of no meaning to groundwater studies. A tritium value in the groundwater means multiple recharge ages in this region.  相似文献   

14.
Detailed racemization analyses were carried out on samples of the land snail Rabdotus mooreanus from archaeological sites at Fort Hood, in central Texas. D -alloisoleucine/L -isoleucine (A/I) values were determined for 260 individual shells from 29 proveniences, including sites in alluvium, colluvium, and rockshelters, as well as burned rock middens. A/I values show a good correlation with radiocarbon age, and so provide reasonably precise estimates of ages. Analyses indicate the presence of redeposited material in a large number of proveniences. These result from sedimentary processes involved in burial of the sites as well as from later disturbance (aboriginal or recent) of site stratigraphy. Because amino acid racemization analyses are relatively easy to carry out, this method lends itself to very detailed chronostratigraphic analyses of archaeological sites, thus permitting assessment of site integrity and assisting in the interpretation of site formation processes. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The isotopic composition of the organically bonded hydrogen in micro plankton and zoo-plankton samples collected monthly from Lake Kinneret during 1972 and 1973 ranges between ?90 and ?130%. The temporal variations which have been observed in the deuterium content of the plankton samples, seem to be controlled by metabolic processes and not by variations in the temperature and in the deuterium content of the lake water. The organic material of the Zooplankton is consistently enriched in deuterium, by about 20%., as compared to that of the phytoplankton.  相似文献   

16.
Acquiring crude oils that have been expelled from the same rock unit at different levels of thermal maturation is currently not feasible in the natural system. This prevents direct correlation of compositional changes between the organic matter retained in a source rock and its expelled crude oil at different levels of thermal maturation. Alleviation of this deficiency in studying the natural system requires the use of laboratory experiments. Natural generation of petroleum from amorphous type-II kerogen in the Woodford Shale may be simulated by hydrous pyrolysis, which involves heating crushed rock in contact with water at subcritical temperatures (<374°C). Four distinct stages of petroleum generation are observed from this type of pyrolysis; (1) pre-oil generation, (2) incipient-oil generation, (3) primary-oil generation, and (4) post-oil generation.The effects of thermal maturation on the δ13C values of kerogen, bitumen, and expelled oil-like pyrolysate from the Woodford Shale have been studied through these four stages of petroleum generation. Similar to the natural system, the kerogens isolated from the pyrolyzed rock showed no significant change in δ13C. This suggests that the δ13C value of kerogens may be useful in kerogen typing and oil-to-source rock correlations. δ13C values of bitumens extracted from the pyrolyzed rock showed an initial decrease during the incipient-oil generation stage, followed by depletion during the primary- and post-oil generation stages. This reversal is not favorable for geochemical correlation or maturity evaluation. Saturated and polar components of the bitumen show the greatest δ13C variations with increasing thermal maturation. The difference between the δ13C of these two components gives a unidirectional trend that serves as a general indicator of thermal maturation and is referred to as the bitumen isotope index (BII).δ13C values of the expelled pyrolysates show a unidirectional increase with increasing thermal maturation. The constancy and similarity of δ13C values of the aromatic components in the expelled pyrolysates and bitumens, with increasing thermal maturation, encourages their use in oil-to-oil and oil-to-source rock correlations. Isotopic type-curves for expelled pyrolysates indicate that they may be useful in oil-to- oil correlations, but have a limited use in oil-to-source rock correlations.  相似文献   

17.
Stable oxygen and carbon isotope profiles from modern bivalve shells were investigated in order to reconstruct short-term hydrographical changes in the river-shelf system of the Laptev Sea. Oxygen isotopic profiles obtained from the aragonitic species Astarte borealis exhibit amplitude cycles interpreted as annual hydrographical cycles. These records reflect the strong contrast between summer and winter bottom water conditions in the Laptev Sea. The seasonal variations in δ18O are mainly controlled by the riverine freshwater discharge during summer with 0.5‰ per salinity unit. Corrected for a defined species-dependent fractionation offset of -0.37‰, time-dependent salinity records were reconstructed from these δ18O profiles. They indicate a good correspondence to seasonal hydrographic changes and synoptical data. Persistent trends with shell growth towards more negative δ13C values are observed in all specimens and appear to be related to metabolic changes of the bivalves during ontogeny. In contrast, short-term fluctuations are likely linked to seasonal variabilities of the river water outflow patterns and enhanced phytoplankton productivity during summer. This is corroborated by a clear watermass-related distinction of the various δ13C records made on the basis of water depth and distance from the riverine source.  相似文献   

18.
19.
On the basis of different photosynthetic pathways.there is an obvious difference in δ^13C values between C3 and C4 plants,In terms of this characteristic,we analyzed the organic carbon content (forestlands:1.81%-16.00%;farmland:0.45%-2.22%) and δ^13C values(forestlands:-23.86‰--27.12‰;farmland:-19.66‰--23.26‰)of three profile-soil samples either in farmland or in forestland near the Maolan Karst virgin forest,where there were developed plant C3 plants previously and now are C4 plants.Results showed that the deforestation has accelerated the decomposition rate of soil organic matter and reduced the proportion of active components in soil organic matter and thus soil fertility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号