首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
AUSGeoid2020 is a combined gravimetric–geometric model (sometimes called a “hybrid quasigeoid model”) that provides the separation between the Geocentric Datum of Australia 2020 (GDA2020) ellipsoid and Australia’s national vertical datum, the Australian Height Datum (AHD). This model is also provided with a location-specific uncertainty propagated from a combination of the levelling, GPS ellipsoidal height and gravimetric quasigeoid data errors via least squares prediction. We present a method for computing the relative uncertainty (i.e. uncertainty of the height between any two points) between AUSGeoid2020-derived AHD heights based on the principle of correlated errors cancelling when used over baselines. Results demonstrate AUSGeoid2020 is more accurate than traditional third-order levelling in Australia at distances beyond 3 km, which is 12 mm of allowable misclosure per square root km of levelling. As part of the above work, we identified an error in the gravimetric quasigeoid in Port Phillip Bay (near Melbourne in SE Australia) coming from altimeter-derived gravity anomalies. This error was patched using alternative altimetry data.  相似文献   

2.
 The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on a 2 by 2 arc-minute grid with respect to the GRS80 ellipsoid, and residual geoid heights were computed using the 1-D fast Fourier transform technique. This has been adapted to include a deterministically modified kernel over a spherical cap of limited spatial extent in the generalised Stokes scheme. Comparisons of AUSGeoid98 with GPS and Australian Height Datum (AHD) heights across the continent give an RMS agreement of ±0.364 m, although this apparently large value is attributed partly to distortions in the AHD. Received: 10 March 2000 / Accepted: 21 February 2001  相似文献   

3.
The geoid gradient over the Darling Fault in Western Australia is extremely high, rising by as much as 38 cm over only 2 km. This poses problems for gravimetric-only geoid models of the area, whose frequency content is limited by the spatial distribution of the gravity data. The gravimetric-only version of AUSGeoid98, for instance, is only able to resolve 46% of the gradient across the fault. Hence, the ability of GPS surveys to obtain accurate orthometric heights is reduced. It is described how further gravity data were collected over the Darling Fault, augmenting the existing gravity observations at key locations so as to obtain a more representative geoid gradient. As many of the gravity observations were collected at stations with a well-known GRS80 ellipsoidal height, the opportunity arose to compute a geoid model via both the Stokes and the Hotine approaches. A scheme was devised to convert free-air anomaly data to gravity disturbances using existing geoid models, followed by a Hotine integration to geoid heights. Interestingly, these results depended very weakly upon the choice of input geoid model. The extra gravity data did indeed improve the fit of the computed geoid to local GPS/Australian Height Datum (AHD) observations by 58% over the gravimetric-only AUSGeoid98. While the conventional Stokesian approach to geoid determination proved to be slightly better than the Hotine method, the latter still improved upon the gravimetric-only AUSGeoid98 solution, supporting the viability of conducting gravity surveys with GPS control for the purposes of geoid determination. AcknowledgementsThe author would like to thank Will Featherstone, Ron Gower, Ron Hackney, Linda Morgan, Geoscience Australia, Scripps Oceanographic Institute and the three anonymous reviewers of this paper. This research was funded by the Australian Research Council.  相似文献   

4.
A new gravimetric geoid model, USGG2009 (see Abbreviations), has been developed for the United States and its territories including the Conterminous US (CONUS), Alaska, Hawaii, Guam, the Commonwealth of the Northern Mariana Islands, American Samoa, Puerto Rico and the US Virgin Islands. USGG2009 is based on a 1′ × 1′ gravity grid derived from the NGS surface gravity data and the DNSC08 altimetry-derived anomalies, the SRTM-DTED1 3′′ DEM for its topographic reductions, and the global geopotential model EGM08 as a reference model. USGG2009 geoid heights are compared with control values determined at 18,398 Bench Marks over CONUS, where both the ellipsoidal height above NAD 83 and the Helmert orthometric height above NAVD 88 are known. Correcting for the ellipsoidal datum difference, this permits a comparison of the geoid heights to independent data. The standard deviation of the differences is 6.3 cm in contrast to 8.4 cm for its immediate predecessor— USGG2003. To minimize the effect of long-wavelength errors that are known to exist in NAVD88, these comparisons were made on a state-by-state basis. The standard deviations of the differences range from 3–5 cm in eastern states to about 6–9 cm in the more mountainous western states. If the GPS/Bench Marks-derived geoid heights are corrected by removing a GRACE-derived estimate of the long-wavelength NAVD88 errors before the comparison, the standard deviation of their differences from USGG2009 drops to 4.3 cm nationally and 2–4 cm in eastern states and 4–8 in states with a maximum error of 26.4 cm in California and minimum of −32.1 cm in Washington. USGG2009 is also compared with geoid heights derived from 40 tide-gauges and a physical dynamic ocean topography model in the Gulf of Mexico; the mean of the differences is 3.3 cm and their standard deviation is 5.0 cm. When USGG2009-derived deflections of the vertical are compared with 3,415 observed surface astro-geodetic deflections, the standard deviation of the differences in the N–S and E–W components are 0.87′′ and 0.94′′, respectively.  相似文献   

5.
We propose a methodology for local gravity field modelling from gravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniques. The latter is represented as a linear combination of spherical radial basis functions (SRBFs). A data-adaptive strategy is used to select the optimal number, location, and depths of the SRBFs using generalized cross validation. Variance component estimation is used to determine the optimal regularization parameter and to properly weight the different data sets. In the second step, the gravimetric height anomalies are combined with observed differences between global positioning system (GPS) ellipsoidal heights and normal heights. The data combination is written as the solution of a Cauchy boundary-value problem for the Laplace equation. This allows removal of the non-uniqueness of the problem of local gravity field modelling from terrestrial gravity data. At the same time, existing systematic distortions in the gravimetric and geometric height anomalies are also absorbed into the combination. The approach is used to compute a height reference surface for the Netherlands. The solution is compared with NLGEO2004, the official Dutch height reference surface, which has been computed using the same data but a Stokes-based approach with kernel modification and a geometric six-parameter “corrector surface” to fit the gravimetric solution to the GPS-levelling points. A direct comparison of both height reference surfaces shows an RMS difference of 0.6 cm; the maximum difference is 2.1 cm. A test at independent GPS-levelling control points, confirms that our solution is in no way inferior to NLGEO2004.  相似文献   

6.
This paper investigates the normal-orthometric correction used in the definition of the Australian Height Datum, and also computes and evaluates normal and Helmert orthometric corrections for the Australian National Levelling Network (ANLN). Testing these corrections in Australia is important to establish which height system is most appropriate for any new Australian vertical datum. An approximate approach to assigning gravity values to ANLN benchmarks (BMs) is used, where the EGM2008-modelled gravity field is used to ‘re-construct’ observed gravity at the BMs. Network loop closures (for first- and second-order levelling) indicate reduced misclosures for all height corrections considered, particularly in the mountainous regions of south eastern Australia. Differences between Helmert orthometric and normal-orthometric heights reach 44 cm in the Australian Alps, and differences between Helmert orthometric and normal heights are about 26 cm in the same region. Normal-orthometric heights differ from normal heights by up to 18 cm in mountainous regions >2,000 m. This indicates that the quasigeoid is not compatible with normal-orthometric heights in Australia.  相似文献   

7.
We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia’s offshore territories and maritime boundaries using newer datasets comprising an additional \({\sim }\)280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at \(1^{\prime \prime }\times 1^{\prime \prime }\) resolution. The error propagation uses a remove–restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50–60 mm across most of the Australian landmass, increasing to \({\sim }100\) mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.  相似文献   

8.
A detailed gravimetric geoid in the North Atlantic Ocean, named DGGNA-77, has been computed, based on a satellite and gravimetry derived earth potential model (consisting in spherical harmonic coefficients up to degree and order 30) and mean free air surface gravity anomalies (35180 1°×1° mean values and 245000 4′×4′ mean values). The long wavelength undulations were computed from the spherical harmonics of the reference potential model and the details were obtained by integrating the residual gravity anomalies through the Stokes formula: from 0 to 5° with the 4′×4′ data, and from 5° to 20° with the 1°×1° data. For computer time reasons the final grid was computed with half a degree spacing only. This grid extends from the Gulf of Mexico to the European and African coasts. Comparisons have been made with Geos 3 altimetry derived geoid heights and with the 5′×5′ gravimetric geoid derived byMarsh andChang [8] in the northwestern part of the Atlantic Ocean, which show a good agreement in most places apart from some tilts which porbably come from the satellite orbit recovery.  相似文献   

9.
蒋涛  党亚民  郭春喜  陈斌  章传银 《测绘学报》2022,51(8):1757-1767
2020珠峰高程测量,首次确定并发布了基于国际高程参考系统(IHRS)的珠峰正高。在珠峰地区实现国际高程参考系统,采用的方案是建立珠峰区域高精度重力大地水准面。利用地球重力场谱组合理论和基于数据驱动的谱权确定方法,测试优选参考重力场模型及其截断阶数和球冠积分半径等关键参数,联合航空和地面重力等数据建立了珠峰区域重力似大地水准面模型,61点高精度GNSS水准高程异常检核表明,模型精度达3.8 cm,加入航空重力数据后模型精度提升幅度达51.3%。提出顾及高差改正的峰顶高程异常内插方法,采用顾及地形质量影响的高程异常——大地水准面差距转换改正严密公式,使用峰顶实测地面重力数据,基于国际高程参考系统定义的重力位值W0和GRS80参考椭球,最终确定了国际高程参考系统中的高精度珠峰峰顶大地水准面差距。  相似文献   

10.
为解决世界各国高程基准差异的问题,提出联合卫星重力场模型、地面重力数据、GNSS大地高、局部高程基准的正高或正常高,按大地边值问题法确定局部高程基准重力位差的方法。首先推导了利用传统地面"有偏"重力异常确定高程基准重力位差的方法;接着利用改化Stokes核函数削弱"有偏"重力异常的影响,并联合卫星重力场模型和地面"有偏"重力数据,得到独立于任何局部高程基准的重力水准面,以此来确定局部高程基准重力位差;最后利用GNSS+水准数据和重力大地水准面确定了美国高程基准与全球高程基准W0的重力位差为-4.82±0.05 m2s-2。  相似文献   

11.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

12.
A global geopotential model, like EGM2008, is not capable of representing the high-frequency components of Earth’s gravity field. This is known as the omission error. In mountainous terrain, omission errors in EGM2008, even when expanded to degree 2,190, may reach amplitudes of 10 cm and more for height anomalies. The present paper proposes the utilisation of high-resolution residual terrain model (RTM) data for computing estimates of the omission error in rugged terrain. RTM elevations may be constructed as the difference between the SRTM (Shuttle Radar Topography Mission) elevation model and the DTM2006.0 spherical harmonic topographic expansion. Numerical tests, carried out in the German Alps with a precise gravimetric quasigeoid model (GCG05) and GPS/levelling data as references, demonstrate that RTM-based omission error estimates improve EGM2008 height anomaly differences by 10 cm in many cases. The comparisons of EGM2008-only height anomalies and the GCG05 model showed 3.7 cm standard deviation after a bias-fit. Applying RTM omission error estimates to EGM2008 reduces the standard deviation to 1.9 cm which equates to a significant improvement rate of 47%. Using GPS/levelling data strongly corroborates these findings with an improvement rate of 49%. The proposed RTM approach may be of practical value to improve quasigeoid determination in mountainous areas without sufficient regional gravity data coverage, e.g., in parts of Asia, South America or Africa. As a further application, RTM omission error estimates will allow refined validation of global gravity field models like EGM2008 from GPS/levelling data.  相似文献   

13.
1 IntroductionDifferentgeoidsolutionswerecarriedoutforE gyptusingheterogeneousdataanddifferentmethodologies (El_Tokhey ,1 993) .ThemaingoalofthispaperistodetermineamostaccuratenewgeoidforEgypttakingadvantageofanewupdatedgravitydatabase,theinformationgivenby…  相似文献   

14.
The separation between the reference surfaces for orthometric heights and normal heights—the geoid and the quasigeoid—is typically in the order of a few decimeters but can reach nearly 3 m in extreme cases. The knowledge of the geoid–quasigeoid separation with centimeter accuracy or better, is essential for the realization of national and international height reference frames, and for precision height determination in geodetic engineering. The largest contribution to the geoid–quasigeoid separation is due to the distribution of topographic masses. We develop a compact formulation for the rigorous treatment of topographic masses and apply it to determine the geoid–quasigeoid separation for two test areas in the Alps with very rough topography, using a very fine grid resolution of 100 m. The magnitude of the geoid–quasigeoid separation and its accuracy, its slopes, roughness, and correlation with height are analyzed. Results show that rigorous treatment of topographic masses leads to a rather small geoid–quasigeoid separation—only 30 cm at the highest summit—while results based on approximations are often larger by several decimeters. The accuracy of the topographic contribution to the geoid–quasigeoid separation is estimated to be 2–3 cm for areas with extreme topography. Analysis of roughness of the geoid–quasigeoid separation shows that a resolution of the modeling grid of 200 m or less is required to achieve these accuracies. Gravity and the vertical gravity gradient inside of topographic masses and the mean gravity along the plumbline are modeled which are important intermediate quantities for the determination of the geoid–quasigeoid separation. We conclude that a consistent determination of the geoid and quasigeoid height reference surfaces within an accuracy of few centimeters is feasible even for areas with extreme topography, and that the concepts of orthometric height and normal height can be consistently realized and used within this level of accuracy.  相似文献   

15.
Mean gravity anomalies, deflections of the vertical, and a geopotential model complete to degree and order180 are combined in order to determine geoidal heights in the area bounded by [34°≦ϕ≤42°, 18°≦λ≦28°]. Moreover, employing point gravity anomalies simultaneously with the above data, an attempt is made to predict deflections of the vertical in the same area. The method used in the computations is least squares collocation. Using empirical covariance functions for the data, the suitable errors for the different sources of observations, and the optimum cap radius around each point of evaluation, an accuracy better than±0.60m for geoidal heights and±1″.5 for deflections of the vertical is obtained taking into account existing systematic effects. This accuracy refers to the comparison between observed and predicted values.  相似文献   

16.
This paper addresses implementation issues in order to apply non-stationary least-squares collocation (LSC) to a practical geodetic problem: fitting a gravimetric quasigeoid to discrete geometric quasigeoid heights at a local scale. This yields a surface that is useful for direct GPS heighting. Non-stationary covariance functions and a non-stationary model of the mean were applied to residual gravimetric quasigeoid determination by planar LSC in the Perth region of Western Australia. The non-stationary model of the mean did not change the LSC results significantly. However, elliptical kernels in non-stationary covariance functions were used successfully to create an iterative optimisation loop to decrease the difference between the gravimetric quasigeoid and geometric quasigeoid at 99 GPS-levelling points to a user-prescribed tolerance.  相似文献   

17.
Fitting gravimetric geoid models to vertical deflections   总被引:2,自引:2,他引:0  
Regional gravimetric geoid and quasigeoid models are now commonly fitted to GPS-levelling data, which simultaneously absorbs levelling, GPS and quasi/geoid errors due to their inseparability. We propose that independent vertical deflections are used instead, which are not affected by this inseparability problem. The formulation is set out for geoid slopes and changes in slopes. Application to 1,080 astrogeodetic deflections over Australia for the AUSGeoid98 model shows that it is feasible, but the poor quality of the historical astrogeodetic deflections led to some unrealistic values.  相似文献   

18.
 Two numerical techniques are used in recent regional high-frequency geoid computations in Canada: discrete numerical integration and fast Fourier transform. These two techniques have been tested for their numerical accuracy using a synthetic gravity field. The synthetic field was generated by artificially extending the EGM96 spherical harmonic coefficients to degree 2160, which is commensurate with the regular 5 geographical grid used in Canada. This field was used to generate self-consistent sets of synthetic gravity anomalies and synthetic geoid heights with different degree variance spectra, which were used as control on the numerical geoid computation techniques. Both the discrete integration and the fast Fourier transform were applied within a 6 spherical cap centered at each computation point. The effect of the gravity data outside the spherical cap was computed using the spheroidal Molodenskij approach. Comparisons of these geoid solutions with the synthetic geoid heights over western Canada indicate that the high-frequency geoid can be computed with an accuracy of approximately 1 cm using the modified Stokes technique, with discrete numerical integration giving a slightly, though not significantly, better result than fast Fourier transform. Received: 2 November 1999 / Accepted: 11 July 2000  相似文献   

19.
New Zealand uses 13 separate local vertical datums (LVDs) based on geodetic levelling from 12 different tide-gauges. We describe their unification using a regional gravimetric quasigeoid model and GPS-levelling data on each LVD. A novel application of iterative quasigeoid computation is used, where the LVD offsets computed from earlier models are used to apply additional gravity reductions from each LVD to that model. The solution converges after only three iterations yielding LVD offsets ranging from 0.24 to 0.58 m with an average standard deviation of ±0.08 m. The so-computed LVD offsets agree, within expected data errors, with geodetically levelled height differences at common benchmarks between adjacent LVDs. This shows that iterated quasigeoid models have a role in vertical datum unification.  相似文献   

20.
Recently, four global geopotential models (GGMs) were computed and released based on the first 2 months of data collected by the Gravity field and steady-state Ocean Circulation Explorer (GOCE) dedicated satellite gravity field mission. Given that GOCE is a technologically complex mission and different processing strategies were applied to real space-collected GOCE data for the first time, evaluation of the new models is an important aspect. As a first assessment strategy, we use terrestrial gravity data over Switzerland and Australia and astrogeodetic vertical deflections over Europe and Australia as ground-truth data sets for GOCE model evaluation. We apply a spectral enhancement method (SEM) to the truncated GOCE GGMs to make their spectral content more comparable with the terrestrial data. The SEM utilises the high-degree bands of EGM2008 and residual terrain model data as a data source to widely bridge the spectral gap between the satellite and terrestrial data. Analysis of root mean square (RMS) errors is carried out as a function of (i) the GOCE GGM expansion degree and (ii) the four different GOCE GGMs. The RMS curves are also compared against those from EGM2008 and GRACE-based GGMs. As a second assessment strategy, we compare global grids of GOCE GGM and EGM2008 quasigeoid heights. In connection with EGM2008 error estimates, this allows location of regions where GOCE is likely to deliver improved knowledge on the Earth’s gravity field. Our ground truth data sets, together with the EGM2008 quasigeoid comparisons, signal clear improvements in the spectral band ~160–165 to ~180–185 in terms of spherical harmonic degrees for the GOCE-based GGMs, fairly independently of the individual GOCE model used. The results from both assessments together provide strong evidence that the first 2 months of GOCE observations improve the knowledge of the Earth’s static gravity field at spatial scales between ~125 and ~110 km, particularly over parts of Asia, Africa, South America and Antarctica, in comparison with the pre-GOCE-era.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号