首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several successful applications of optimal control theory (OCT) based on the Pontryagin's minimum principle have been recorded in literature. These applications were focused on optimizing the operating policy of multi-reservoir systems. In this study, the performance of OCT algorithm in designing multi-reservoir system is investigated. Three deterministic optimization models based on the OCT were developed to design the best storage strategies in a multi-reservoir system to supply water. Multi-objective programming methods were implemented in the three models in order to consider the two non-commensurate objectives of minimizing cost and water deficit. The applications of these models to a multi-reservoir system were compared to an existing dynamic programming model. The result of this study showed that in all cases, the developed OCT models presented sub-optimal solution in designing multi-reservoir systems.  相似文献   

2.
Aquifers show troubling signs of irreversible depletion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. One strategy to sustain the groundwater supply is to recharge aquifers artificially with reclaimed water or stormwater via managed aquifer recharge and recovery (MAR) systems. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data‐driven, real‐time control. This paper presents a laboratory scale proof‐of‐concept study that demonstrates the capability of a real‐time, simulation‐based control optimization algorithm to ease the operational challenges of MAR systems. Central to the algorithm is a model that simulates water flow and transport of dissolved chemical constituents in the aquifer. The algorithm compensates for model parameter uncertainty by continually collecting data from a network of sensors embedded within the aquifer. At regular intervals the sensor data is fed into an inversion algorithm, which calibrates the uncertain parameters and generates the initial conditions required to model the system behavior. The calibrated model is then incorporated into a genetic algorithm that executes simulations and determines the best management action, for example, the optimal pumping policy for current aquifer management goals. Experiments to calibrate and validate the simulation‐optimization algorithm were conducted in a small two‐dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. Results from initial experiments validated the feasibility of the approach and suggested that our system could improve the operation of full‐scale MAR facilities.  相似文献   

3.
The need for irrigation water in arid and semi-arid regions is mostly supplied by groundwater. Furthermore, the agricultural development in these areas is not generally based on a comprehensive plan, which can cause aquifers depletion. On the other hand, to properly manage an aquifer and to have an optimal crop plan, the stochastic nature of the different parameters of a groundwater system such as groundwater recharge and water demands should be taken into consideration. In this paper, we develop an explicit stochastic optimization model for Firouzabad aquifer in Iran. This formulation is based on the first and second moment analysis for groundwater head which has been initially proposed for surface water resources management by Fletcher and Ponnambalam. We extend the model to create a new random withdrawal policy for conjunctive use setting in which the randomness in available precipitation is taken into account. The interesting point is that the model provides the respective probabilities of shortage and surplus without imposing the extra decision variables into the optimization model. A genetic-based algorithm is used to solve the stochastic nonlinear and non-convex formulation. The outcome results indicate that the current crop pattern should be changed, that is, the allocated areas of some crops have to be meaningfully reduced. Finally, to validate our model efficiency, we demonstrate that how much close the statistical characteristics obtained from the optimization model are to those estimated from the Monte Carlo simulation. Furthermore, the optimal benefits obtained using the proposed optimization model are as suitable as the benefits achieved using the corresponding Monte Carlo-based optimization model.  相似文献   

4.
Stochastic control of a micro-dam irrigation scheme for dry season farming   总被引:1,自引:1,他引:0  
Micro-dams are expected to be feasible options for water resources development in semi-arid regions such as the Guinea savanna agro-ecological zone of West Africa. An optimal water management strategy in a micro-dam irrigation scheme supplying water from an existing reservoir to a potential command area is discussed in this paper based on the framework of stochastic control. Water intake facilities are assumed to consist of photovoltaic pumping system units and hoses. The knowledge of current states of the storage volume of the reservoir and the soil moisture in the command area is fed-back to the intake flow rate. A system of two stochastic differential equations is proposed as a model for the dynamics of the micro-dam irrigation scheme, so that temporally backward solution of the Hamilton–Jacobi–Bellman equation determines an optimal control, which represents the optimal water management strategy. A computational procedure using the finite element method is successfully implemented to provide comprehensive information on the optimal control. The results indicate that the water initially stored in the reservoir can support full irrigation for about 80 days under the optimal water management strategy, which is predominantly based on the demand-side principle. However, the volatility of the soil moisture in the command area must be reasonably small.  相似文献   

5.
The comparison between two series of optimal remediation designs using deterministic and stochastic approaches showed a number of converging features. Limited sampling measurements in a supposed contaminated aquifer formed the hydraulic conductivity field and the initial concentration distribution used in the optimization process. The deterministic and stochastic approaches employed a single simulation–optimization method and a multiple realization approach, respectively. For both approaches, the optimization model made use of a genetic algorithm. In the deterministic approach, the total cost, extraction rate, and the number of wells used increase when the design must satisfy the intensified concentration constraint. Growing the stack size in the stochastic approach also brings about same effects. In particular, the change in the selection frequency of the used extraction wells, with increasing stack size, for the stochastic approach can indicate the locations of required additional wells in the deterministic approach due to the intensified constraints. These converging features between the two approaches reveal that a deterministic optimization approach with controlled constraints is achievable enough to design reliable remediation strategies, and the results of a stochastic optimization approach are readily available to real contaminated sites.  相似文献   

6.
This paper presents a Bayesian Monte Carlo method for evaluating the uncertainty in the delineation of well capture zones and its application to a wellfield in a heterogeneous, multiaquifer system. In the method presented, Bayes' rule is used to update prior distributions for the unknown parameters of the stochastic model for the hydraulic conductivity, and to calculate probability-based weights for parameter realizations using head residuals. These weights are then assigned to the corresponding capture zones obtained using forward particle tracking. Statistical analysis of the set of weighted protection zones results in a probability distribution for the capture zones. The suitability of the Bayesian stochastic method for a multilayered system is investigated, using the wellfield Het Rot at Nieuwrode, Belgium, located in a three-layered aquifer system, as an example. The hydraulic conductivity of the production aquifer is modeled as a spatially correlated random function with uncertain parameters. The aquitard and overlying unconfined aquifer are assigned random, homogeneous conductivities. The stochastic results are compared with deterministic capture zones obtained with a calibrated model for the area. The predictions of the stochastic approach are more conservative and indicate that parameter uncertainty should be taken into account in the delineation of well capture zones.  相似文献   

7.
This paper presents a chance-constrained programming model for optimal control of a multipurpose reservoir and its modification to a model for single reservoir design. An algorithm is developed for solving complex stochastic problems of multipurpose reservoir planning and design. The complexity of the problem is resolved by a two-step algorithm: (1) transformation of chance constraints on the state and control variables is performed at the first step; and (2) the choice of optimum control or optimal reservoir storage is carried out in the second step. The method of iterative convolution is chosen for the first step, while linear programming is selected for the second step. The algorithm allows the use of random inflows and random demands together with other deterministic demands. The reservoir design problem is presented as a modified optimal control problem. The procedure is illustrated with an example of a hypothetical reservoir design problem with three different types of downstream releases (hydropower production, municipal water supply, and irrigation).  相似文献   

8.
Gravity Recovery and Climate Experiment (GRACE) satellite mission is ground-breaking information hotspot for the evaluation of groundwater storage. The present study aims at validating the sensitivity of GRACE data to groundwater storage variation within a basaltic aquifer system after its statistical downscaling on a regional scale. The basaltic aquifer system which covers 82.06% area of Maharashtra state in India, is selected as the study area. Five types of basaltic aquifer systems with varying groundwater storage capacities, based on hydrologic characteristics, have been identified within the study area. The spatial and seasonal trend analysis of observed in situ groundwater storage anomalies (ΔGWSano) computed from groundwater level data of 983 wells from the year 2002 to 2016, has been performed to analyze the variation in groundwater storages in the different basaltic aquifer system. The groundwater storage anomalies (ΔGWSDano) have been derived from GRACE Release 05 (RL05) after removing the soil moisture anomaly (ΔSMano) and canopy water storage anomaly (ΔCNOano) obtained from Global Land Data Assimilation System (GLDAS) land surface models (NOAH, MOSAIC, CLM and VIC). The artificial neural network technique has been used to downscale the GRACE and GLDAS data at a finer spatial resolution of 0.125°. The study shows that downscaled GRACE and GLDAS data at a finer spatial resolution is sensitive to seasonal groundwater storage variability in different basaltic aquifer systems and the regression coefficient R has been found satisfactory in the range of 0.696 to 0.818.  相似文献   

9.
A new approximate method of solution for stochastic optimal control problems with many state and control variables is introduced. The method is based on the expansion of the optimal control into the deterministic feedback control plus a caution term. The analytic, small-perturbation calculation of the caution term is at the heart of the new method. The developed approximation depends only on the first two statistical moments of the random inputs and up to the third derivatives of the cost functions. Its computational requirements do not exhibit the exponential growth exhibited by discrete stochastic DP and can be used as a suboptimal solution to problems for which application of stochastic DP is not feasible. The method is accurate when the cost-to-go functions are approximately cubic in a neighbourhood around the deterministic trajectory whose size depends on forecasting uncertainty. Furthermore, the method elucidates the stochastic optimization problem yielding insights which cannot be easily obtained from the numerical application of discrete DP.  相似文献   

10.
This study applies implicit stochastic optimization (ISO) to develop monthly operating rules for a reservoir located in Northeast Brazil. The proposed model differs from typical ISO applications as it uses the forecast of the mean inflow for a future horizon instead of the current-month inflow. Initially, a hundred different 100-year monthly inflow scenarios are synthetically generated and employed as input to a deterministic operation optimization model in order to build a database of optimal operating data. Later, such database is used to fit monthly reservoir rule curves by means of nonlinear regression analysis. Finally, the established rule curves are validated by operating the system under 100 new inflow ensembles. The performance of the proposed technique is compared with those provided by the standard reservoir operating policy (SOP), stochastic dynamic programming (SDP) and perfect-forecast deterministic optimization (PFDO). Different forecasting horizons are tested. For all of them, the results indicate the feasibility of using ISO in view of its lower vulnerability in contrast to the SOP as well as the proximity of its operations with those by PFDO. The results also reveal that there is an optimal choice for the forecasting horizon. The comparison between ISO and SDP shows small differences between both, justifying the adoption of ISO for its simplified mathematics as opposed to SDP.  相似文献   

11.
The hydraulic properties of lake beds control the interactions between lakes and ground water systems, but these properties are normally difficult to measure directly. The authors'method combines seismic reflection and electrical measurements to map the relative hydraulic conductivity of lake bed sediments. A shipboard seismic profiling system provides sediment thickness, while a towed electrical array yields longitudinal conductance and electrical chargeability. The sediment's leakance (hydraulic conductivity/thickness) can be calculated from the longitudinal conductance data. Leakance may then be converted to relative hydraulic conductivity through the seismically derived sediment thicknesses. Simultaneously acquired electrical chargeability provides an independent measure of clay content. The seismic and electrical systems are computer automated and yield production rates of approximately five line-kilometers/hour or 300 electrical soundings/hour. The systems provide continuous hydraulic information along the ship track rather than the point information derived from coring.
The procedure and systems have been used to map the bed of Lake Michigan offshore from an area of heavy pumpage. This location has been chosen to test the method because lake water has intruded the aquifer in plumes largely controlled by lake bed hydraulics. Mapping these plumes onshore permits the inference of the spatial distribution of offshore hydraulic conductivities. Offshore seepage measurements and numerical, chemical transport modeling of this site have confirmed the reliability of the geophysically derived hydraulic conductivities and have also demonstrated the improvement in numerical results achieved through the availability of spatially determined hydraulic conductivities.  相似文献   

12.
随机动力系统最优控制准则研究   总被引:2,自引:0,他引:2  
根据线性二次最优控制理论,给出了系统随机最优控制的控制律一般形式。从目标控制量的物理意义出发,提出了基于系统概率密度演化分析的最优控制准则,建立了递阶层次的演化过程控制准则类。以线性单自由度体系随机地震反应最优控制为例,分析了各控制准则类的权矩阵参数优化结果,并根据最优控制律进行了系统随机最优控制研究。结果表明,本文提出的系统随机最优控制的控制律确定方法可以对系统性态进行有效的控制。  相似文献   

13.
Y. Chebud  A. Melesse 《水文研究》2013,27(10):1475-1483
Lake Tana is the largest fresh water body situated in the north‐western highlands of Ethiopia. In addition to its ecological services, it serves for local transport, electric power generation, fishing, recreational purposes, and source of dry season irrigation water supply. Evidence shows that the lake has dried at least once at about 15,000–17,000 before present owing to a combination of high evaporation and low precipitation events. Past attempts to understand and simulate historical fluctuation of Lake Tana based on simplistic water balance approach of inflow, outflow, and storage have failed to capture well‐known events of drawdown and rise of the lake that have happened in the last 44 years. This study tested different stochastic methods of lake level and volume simulation for supporting Lake Tana operational planning decision support. Three stochastic methods (perturbations approach, Monte Carlo methods, and wavelet analysis) were employed for lake level and volume simulation, and the results were compared with the stage level measurements. Forty‐four years of daily, monthly, and mean annual lake level data have shown a Gaussian variation with goodness of fit at 0.01 significant levels of the Kolmogorov–Smirnov test. The stochastic simulations predicted the lake stage level of the 1972, 1984, and 2002/2003 historical droughts 99% of the time. The information content (frequency) of fluctuation of Lake Tana for various periods was resolved using Wigner's Time‐Frequency Decomposition method. The wavelet analysis agreed with the perturbations and Monte Carlo simulations resolving the time (1970s, 1980s, and 2000s) in which low frequency and high spectral power fluctuation has occurred. The Monte Carlo method has shown its superiority for risk analysis over perturbation and deterministic method whereas wavelet analysis reconstructed historical record of lake stage level at daily and monthly time scales. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
彭勇波  李杰 《地震学刊》2011,(5):483-489
本研究发展了结构地震反应性态的随机最优控制理论和方法。这一研究建立在物理随机系统思想的新理论框架下,突破了以I^to随机微分方程描述动力系统的经典随机最优控制的藩篱。提出了基于系统二阶统计量评价、单目标超越概率和多目标能量均衡的控制器参数设计准则,以及基于概率可控指标的控制器位置设计准则,并将它们统一为物理随机最优控制的广义最优控制律。数值算例分析表明,本文发展的物理随机最优控制方法能够实现结构地震反应性态的精细化控制。  相似文献   

15.
David F. Boutt 《水文研究》2017,31(7):1479-1497
This study analyzes a long‐term regional compilation of water table response to climate variability based on 124 long‐term groundwater wells distributed across New England, USA, screened in a variety of geologic materials. The New England region of the USA is located in a humid‐temperature climate underlain by low‐storage‐fractured metamorphic and crystalline bedrock dissected by north–south trending valleys filled with glacial and post‐glacial valley fill sediments. Uplands are covered by thin glacial till that comprises more than 60% of the total area. Annual and multi‐annual responses of the water table to climate variability are assessed to understand how local hydraulic properties and hydrogeologic setting (located in recharge/discharge region) of the aquifer influence the hydrologic sensitivity of the aquifer system to climate variability. This study documents that upland aquifer systems dominated by thin deposits of surface till comprise ~70% of the active and dynamic storage of the region. Total aquifer storage changes of +5 to ?7 km3 occur over the region during the study interval. The storage response is dominated by thin and low permeability surficial till aquifer that fills and drains on a multi‐annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Whereas the till aquifer system is traditionally neglected as an important storage reservoir, this study highlights the importance of a process‐based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region.  相似文献   

16.
Xi Chen  Xunhong Chen   《Journal of Hydrology》2003,280(1-4):246-264
During a flood period, stream-stage increases induce infiltration of stream water into an aquifer; subsequent declines in stream stage cause a reverse motion of the infiltrated water. This paper presents the results of the water exchange rate between a stream and aquifer, the storage volume of the infiltrated stream water in the surrounding aquifer (bank storage), and the storage zone. The storage zone is the part of aquifer where groundwater is replaced by stream water during the flood. MODFLOW was used to simulate stream–aquifer interactions and to quantify rates of stream infiltration and return flow. MODPATH was used to trace the pathlines of the infiltrated stream water and to determine the size of the storage zone. Simulations were focused on the analyses of the effects of the stream-stage fluctuation, aquifer properties, the hydraulic conductivity of streambed sediments, regional hydraulic gradients, and recharge and evapotranspiration (ET) rates on stream–aquifer interactions. Generally, for a given stream–aquifer system, larger flow rates result from larger stream-stage fluctuations; larger storage volumes and storage zones are produced by larger and longer-lasting fluctuations. For a given stream-stage hydrograph, a lower-permeable streambed, an aquitard, or an anisotropic aquifer of low vertical hydraulic conductivity can significantly reduce the rate of infiltration and limit the size of the storage zone. The bank storage solely caused by the stage fluctuation differs slightly between gaining and losing streams. Short-term rainfall recharge and ET loss in the shallow groundwater slightly influence on the flow rate, but their effects on bank storage in a larger area for a longer period can be considerable.  相似文献   

17.
As more aquifer storage and recovery (ASR) systems are employed for management of water resources, the skillful operation of multiwell ASR systems has become very important to improve their performance. In this study, we developed MODFLOW and MT3DMS models to simulate a multiwell ASR system in a synthetic aquifer to assess effects of hydrogeological and operational factors on the performance of the multiwell ASR system. We evaluated a simplified (dual well) ASR system in comparison with complex system (three-, four-, five-, and seven-well systems). Recovery and energy efficiencies were calculated using the model simulations. Factors such as higher hydraulic conductivity and longitudinal dispersivity significantly reduced the recovery and energy efficiencies of the system. In contrast, increasing the volume of recharged water increased the recovery efficiency; however, the energy efficiency was reduced. Recovery and energy efficiencies also plummet when there is an increase in the underlying regional gradient and the designed storage duration. Operating the system multiple times can yield higher volume of potable water, but the energy efficiency may not vary significantly after the second operating cycle. Single-well systems and multiwell systems exhibit similar responses to changes in physical factors, although operational factors have a more pronounced effect on the multiwell systems. One of the major findings was that fewer wells in a multiwell ASR system can yield higher volume of potable water and better output with respect to the electrical power being consumed. The results provide design engineers with guidelines for optimizing performance of the multiwell ASR systems.  相似文献   

18.
The Mississippi River Valley Alluvial Aquifer ranks among the most overdrafted aquifers in the United States due to intensive irrigation. Concern over declining water levels has increased focus on understanding the sources of recharge. Numerous oxbow lakes overlie the aquifer that are often considered hydraulically disconnected from the groundwater system due to fine-grained bottom sediments. In the current study, groundwater levels in and around a 445-ha oxbow lake-wetland in Mississippi were monitored for a 2-year period that included an unusually long low-water condition in the lake (>17 months), followed by a high-water event lasting over 4 months before returning to earlier low-water levels. The high-water pulse (>4 m rise) provided a unique opportunity to track the impact in the underlying alluvial aquifer. During low-water conditions, groundwater flowed westward beneath the lake. Following the lake rise, groundwater beneath and near the perimeter responded as quickly as the same day, with more delayed responses moving away from the lake. Within 2 months, a groundwater mound formed near the centre of the oxbow (>3 m increase), with a reversal in the local hydraulic gradient towards the east. Flow returned to a westward gradient when the lake level dropped back below 0.3 m. Analysis of precipitation and nearby river stage could not account for the observed behavior. Recharge to the aquifer is attributed to rising water levels spreading over point bar deposits and into the surrounding forested wetlands where preferential flow pathways are likely to exist due to buried and decomposing tree remains. An earlier study in the wetland demonstrated an increasing redox potential in isolated zones, consistent with the existence of preferential flow pathways through the bottom sediments (Lahiri & Davidson, 2020). Retaining high-water levels in oxbow lakes could be a relatively low-cost water management practice for enhancing aquifer recharge.  相似文献   

19.
Two different deterministic and two alternative stochastic (i.e., geostatistical) approaches to modeling the distribution of hydraulic conductivity (K) in a nonuniform (sigma2ln(K)) = 0.29) glacial sand aquifer were used to explore the influence of conceptual model selection on simulations of three-dimensional tracer movement. The deterministic K models employed included a homogeneous effective K and a perfectly stratified 14 layer model. Stochastic K models were constructed using sequential Gaussian simulation and sequential i ndicator simulation conditioned to available K values estimated from measured grain size distributions. Standard simulation software packages MODFLOW, MT3DMS, and MODPATH were used to model three-dimensional ground water flow and transport in a field tracer test, where a pulse of bromide was injected through an array of three fully screened wells and extracted through a single fully screened well approximately 8 m away. Agreement between observed and simulated transport behavior was assessed through direct comparison of breakthrough curves (BTCs) and selected breakthrough metrics at the extraction well and at 26 individual multilevel sample ports distributed irregularly between the injection and extraction wells. Results indicate that conceptual models incorporating formation variability are better able to capture observed breakthrough behavior. Root mean square (RMS) error of the deterministic models bracketed the ensemble mean RMS error of stochastic models for simulated concentration vs. time series, but not for individual BTC characteristic metrics. The spatial variability models evaluated here may be better suited to simulating breakthrough behavior measured in wells screened over large intervals than at arbitrarily distributed observation points within a nonuniform aquifer domain.  相似文献   

20.
This paper presents a new methodology for optimal operation of inter-basin water transfer systems by conjunctive use of surface water resources in water donor basin and groundwater resources in water receiving basin. To incorporate the streamflow uncertainty, an integrated stochastic dynamic programming (ISDP) model is developed. In the ISDP, the monthly inflow to the reservoir in the water donor basin, the water storage of the reservoir, and the water storage of the aquifer in the water receiving basin are considered as state variables. A water allocation optimization model is embedded in the main structure of ISDP and a new ensemble streamflow prediction model based on K-nearest-neighbourhood algorithm is also developed and linked to the ISDP. By using a new reoptimization process, the ISDP model provides monthly policies for water allocation to users in water donor and receiving basins. As water users can form a coalition to increase their benefits, several solution concepts in cooperative game theory, namely Nash–Harsanyi, Shapley, Nucleolus, Weak Nucleolus, Proportional Nucleolus, Separable Costs Remaining Benefits (SCRBs) and Minimum Costs Remaining Savings are utilized to determine the profit of each water user. In the last step, stakeholders make negotiation over these solution concepts using the Fallback bargaining theory to reach a unanimous agreement on the final distribution of the total benefit. The methodology is applied to an inter-basin water transfer project and the results show that the Shapley and SCRB solutions concepts can provide better distributions for the total benefit and the total benefit of water users is increased by a factor of 1.6 when they participate in a grand coalition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号