首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use the recorded seismicity, confined to the Dead Sea basin and its boundaries, by the Dead Sea Integrated Research (DESIRE) portable seismic network and the Israel and Jordan permanent seismic networks for studying the mechanisms of earthquakes in the Dead Sea basin. The observed seismicity in the Dead Sea basin is divided into nine regions according to the spatial distribution of the earthquakes and the known tectonic features. The large number of recording stations and the adequate station distribution allowed the reliable determinations of 494 earthquake focal mechanisms. For each region, based on the inversion of the observed polarities of the earthquakes, we determine the focal mechanisms and the associated stress tensor. For 159 earthquakes, out of the 494 focal mechanisms, we could determine compatible fault planes. On the eastern side, the focal mechanisms are mainly strike-slip mechanism with nodal planes in the N-S and E-W directions. The azimuths of the stress axes are well constrained presenting minimal variability in the inversion of the data, which is in agreement with the Eastern Boundary fault on the east side of the Dead Sea basin and what we had expected from the regional geodynamics. However, larger variabilities of the azimuthal and dip angles are observed on the western side of the basin. Due to the wider range of azimuths of the fault planes, we observe the switching of σ1 and σ2 or the switching of σ2 and σ3 as major horizontal stress directions. This observed switching of stress axes allows having dip-slip and normal mechanisms in a region that is dominated by strike-slip motion.  相似文献   

2.
3.
The228Ra concentrations of the Dead Sea waters range from 0.13 to 1.48 dpm kg−1, two to three orders of magnitude higher than those of ocean waters and lake waters. However, the228Ra/226Ra activity ratios, (0.12–1.29) × 10−2, are in the range reported for the hydrosphere.The surface waters of the Dead Sea are enriched in228Ra by a factor of about three over the near-bottom waters. There is a factor of about two spatial variability in the mid-depth Ra concentrations at the two profile stations. The near-bottom228Ra gradients yield vertical eddy diffusivity coefficient (K) of 2.0 and 0.4 cm2 s−1 at profile locations 1 and 2 respectively. These values are comparable to those measured in oceans and lakes.  相似文献   

4.
Tritium data in the Dead Sea for the period 1960–1979 are given. Tritium levels have increased until 1965 in the upper layers of the Dead Sea reaching a level of 170 TU, in response to the atmospheric buildup of tritium from thermonuclear testing. The levels have been decreasing ever since, both because of rapidly declining atmospheric concentrations of tritium and because of mixing of the surface layers with tritium deficient, deeper water masses. The depth of penetration of the tracer delineated the depth of meromictic stratification and successfully monitored the deepening of the pycnocline, until the overturn in 1979 homogenised the entire tritium profile. Modelling the changing tritium inventory over this period showed the predominance of the direct exchange across the air/sea interface, both in the buildup of tritium in the lake and also in its subsequent removal from it. The good fit between calculated and measured tritium inventories confirmed the evaporation estimate of 1.46 m/yr (the mean value for the period) with a precision unattained by other methods.  相似文献   

5.
The distributions of dissolved and of particulate iron in the Dead Sea during the period which preceeded its overturn and thereafter (1977–1980) are reported. During 1977–1978, the vertical profiles of the iron phases revealed facets of the mixing pattern: the progressive deepening of the pycnocline, restricted mixing within the upper water mass and penetration of surface waters into the deepest layer. The inventories of particulate iron suggest resuspension of bottom sediments in November 1978 and after the overturn the gradual disappearance from the water column of iron sulfides and iron oxy-hydroxides. Fluxes of iron from and to the lake in the undisturbed meromictic Dead Sea have been estimated: it appears that diffusion of divalent iron from bottom sediments was the major source for the standing crop of iron in the lower water mass. Low settling velocities of solid particles in the dense and viscous Dead Sea is one of the causes for the relatively large concentrations of particulate iron. The rate constant for oxidation of divalent iron in Dead Sea sediment interstitial waters is larger by two orders of magnitude than in other natural waters.  相似文献   

6.
A project to link the Dead Sea to the Red Sea via a canal is undergoing extensive study. In previous works, a generalized mathematical model describing the state of the Dead Sea and a simulation model to implement it have been developed. The model is extended to include the proposed canal project and investigates two alternative modelling canal scenarios: (1) introducing the canal water inflow into the bottom layer or (2) the top layer of the sea. The predicted general effects of the canal are the restoration of the water level of the sea to pre‐1970s level; an increase in the total evaporation rate and a decrease in the top layer salinity. Implementing scenario 1, the model predicts that: the water level of the Dead Sea will exceed the desired level design value and therefore shorter filling time can be used; seasonal stratification will persist; total evaporation rate will increase Modestly; there will a small decrease in the salinity of the top layer but a substantial decrease in the salinity of the bottom layer, which will hurt industries severely; there will be a continuation of seasonal crystallization of aragonite and gypsum. Implementing scenario 2 the model predicts that: the water level of the Dead Sea will be maintained at the desired level design value; stratification will be re‐established, with the formation of a permanent two‐layer system; there will be a substantial increase in the total evaporation rate; the salinity of the top layer will decrease significantly but there will be continuous slower salinity increase in the bottom layer; the crystallization of aragonite will cease, but seasonal gypsum crystallization can be expected to continue as soon as the filling period ends and the canal shifts into normal operation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The Dead Sea is a hypersaline terminal lake located in the Rift Valley between Jordan and Israel. In this work a generalised mathematical model describing the behaviour of the Dead Sea has been developed. The model established the condition of the Sea by evaluating a series of ordinary differential equations describing mass balances on the water and major chemical species in the Sea. The Sea was modelled as a two-layer system. The model was validated by comparing its predictions to measured level records. The results obtained highlighted the importance of detailed evaporation modelling, showed the necessity to model the Sea as a two-layer system, validated the usage of average distribution data to estimate the flowrates of rivers, and justified ignoring diffusion effects in further modelling. The model predicted that in the case of continuing current conditions, the level will continue to decline, at a decelerating rate, because the area and evaporation rate are both decreasing. Under these conditions, the model shows that the salinity of both layers will continue to increase, and that seasonal stratification and seasonal crystallisation of gypsum and aragonite will continue.  相似文献   

8.
We have measured Ba in Dead Sea samples collected before and after the 1979 overturn, and226Ra in nine samples collected after the overturn. Before this overturn, Ba and the226Ra data measured by Chung and Craig [4] show that a distinct two-layer structure existed, with higher concentrations in the upper layer. After the overturn, both elements were uniformly distributed in the water column. The inventories of Ba and Ra calculated from these data are the same for the periods before and after the overturn. If the inventories were constant during the last meromictic phase then the input rate must be balanced by the removal rate, and a mass balance model can be constructed to estimate physical parameters based on known or deduced sources and sinks. The sources include inputs from the Jordan River, springs around the Dead Sea, and submerged springs or seepages, etc. The sinks include coprecipitation with aragonite, gypsum, precipitation of barite, coprecipitation of Ra with barite, particulate scavenging, and radioactive decay for Ra. Our data include measurements of Ba and226Ra in gypsum, aragonite and halite from the Dead Sea, as well as in some of the inflowing rivers and springs.The inclusion of particulate scavenging as a sink is a major element of the model. We find that, without inclusion of a Ba scavenging term in the deep water, the lake volume at the previous overturn as calculated from the Ba data would be unrealistically high in comparison with historical records. The inclusion of particulate scavenging for Ra in the model reduces the calculated duration of the last meromictic phase significantly.Our model excludes internal mixing between the upper and lower water masses. With this restriction, various sets of model parameters were calculated as a function of theRa/Ba scavenging rate ratio. If the ratio is one, the calculated age of the last meromictic phase is about a hundred years. A substantial increase in the Ra input rate is required to balance the removal rate by particulate scavenging as well as decay. If the ratio is zero, i.e. no particulate scavenging for Ra, the age is about 260 years, as obtained by Stiller and Chung [2].  相似文献   

9.
A project to link the Dead Sea to the Red Sea via a canal is undergoing extensive study. As part of this study, a method to estimate evaporation from the Dead Sea is required as it is a hypersaline lake in which standard methods cannot be applied. Two methods based on Penman and Dalton formulae were examined. The method derived here is a modified Penman model that estimates the evaporation as a function of salinity, humidity, air temperature and wind speed. Other parameters such as water temperature are included implicitly in the model. The results obtained were verified as satisfactory agreement was achieved by comparison with previous measurements. A short‐cut relationship to estimate evaporation as a function of salinity only was also derived. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Clastic dikes are formed either by passive deposition of clastic material into pre-existing fissures (depositional dikes), or by fracturing and injection of clastics during earthquakes (injection dikes). We proposed to use optically stimulated luminescence (OSL) dating to distinguish between the two modes of formation and hypothesized that (1) depositional dikes filled from above show OSL ages younger than the host rock; and (2) injection dikes filled from below show the same OSL ages as that of the host rock. We studied the mechanisms of clastic-dike formation and their ages within the seismically active Dead Sea basin, where hundreds of dikes crosscut the late Pleistocene (70–15 ka) lacustrine sediments of the Lisan Formation. Field observations and analysis of magnetic tensors show unequivocally that most of these dikes were emplaced by injection, inferred to be due to seismically triggered fluidization–liquefaction during earthquakes. Twenty-eight samples were collected from the Lisan source material and dikes that, based on field observations, are unmistakably either depositional dikes or injection dikes.

Quartz single aliquot OSL ages of the source Lisan layers are between 43 and 34 ka, and are typical for the Lisan Formation. The ages of both depositional and injection dikes are between 15 and 17 ka, younger than the Lisan host rock. Depositional dikes show a highly scattered distribution of single grain ages, suggesting several episodes of infill. Single grain ages of injection dikes are of latest Pleistocene to Holocene, and do not contain recently bleached grains that infiltrated from above. These results imply that the OSL signals were reset at the time of fluidization–liquefaction and buildup of fluid pressure within the injection dikes. If this resetting mechanism has a physical ground, then OSL dating is an important tool for constraining the ages of earthquake-induced injection dikes and recovering paleoseismic data from them.  相似文献   


11.
A bottom photographic and temperature study was carried out in the Dead Sea using a miniature version of the unmanned camera system ANGUS (mini-ANGUS). Due to the low transparency of the Dead Sea water, the bottom photographs provide very poor results. Only in a very few locations was the floor visible and in those cases it was found to be a white undulating sedimentary surface.The bottom temperature measurements, which were made continuously along the ship track, indicate the presence of a large zone of temperature anomalies. This zone is located in the deep part of the north basin at a water depth of over 330 m. The anomalies occur above a portion of an east-west fault which cuts through the Dead Sea suggesting the presence of hydrothermal activity.  相似文献   

12.
The most important source of dissolved manganese, Mn(II), to the Dead Sea is by upward diffusion from bottom sediments. This source contributes about 80 tons of Mn(II) each year. The concentration of dissolved manganese in the Dead Sea is extraordinarily high (7.03 mg 1?1). It appears that the content (some 1.026 × 106 tons) of dissolved manganese in the sea has remained constant during 1977–1979, although oxygen was introduced into deeper layers during the deepening of the pycnocline (1977–1978) and during the overturn of its water masses in the winter of 1978/79. The rate of oxidation of Mn(II) in Dead Sea water is extremely slow hence Mn(II) may practically be considered as the stable form of Mn in Dead Sea waters. Dilution by fresh water causes a pH rise and may facilitate faster oxidation of the dissolved divalent manganese. It is shown here that the shape of the Mn(II) profile, observed in the lake during 1963, may have developed by oxidation of Mn(II) in the more diluted upper layers and subsequent reduction of the oxidation products in the anoxic and more saline deeper layers during 260 years of continuous meromixis.  相似文献   

13.
The geochemical backgrounds and origins of soil gases in the Yanhuai basin are discussed based on the regional seismogeological data and concentrations of Rn, Hg, CO<sub<2</sub<, H<sub<2</sub<, He and CH<sub<4</sub< in soil gas measured at 422 investigating sites in field during September to October 2007. The geochemical background values of Rn, Hg, CO<sub<2</sub<, H<sub<2</sub<, He and CH<sub<4</sub< are (8105.8?±5937.4) Bq/m<sup<3</sup<, (9.7?±5.8) ng/m<sup<3</sup<, (395.9?±35.3)?×10<sup<?6</sup<, (4.0?±2.3)?×10<sup<?6</sup<, (15.9?±10.4)×?10<sup<?6</sup< and (12.7?±8.1)?×10<sup<?6</sup<, respectively. The geochemical backgrounds of the soil gases are higher in the eastern part of the Yanhuai basin. The main factors affecting the gasgeochemical backgrounds are gaseous origins, structure of the crust, faults, stratum and microbe activity. The higher values of gasgeochemical backgrounds in the eastern part are attributed to the existence of low-velocity zones in the upper crust, stronger tectonic activity and more contributions of Hg and He derived from the deep-earth and Rn originated from granite, corresponding to stronger seismic activity. The results can be applied to identifying seismic precursor from monitoring data of gases in the studied area.  相似文献   

14.
The geochemical backgrounds and origins of soil gases in the Yanhuai basin are discussed based on the regional seismogeological data and concentrations of Rn,Hg,CO2,H2,He and CH4 in soil gas measured at 422 investigating sites in field during September to October 2007.The geochemical background values of Rn,Hg,CO2,H2,He and CH4 are(8105.8±5937.4) Bq/m3,(9.7±5.8) ng/m3,(395.9±35.3)×10-6,(4.0±2.3)×10-6,(15.9±10.4)×10-6 and(12.7±8.1)×10-6,respectively.The geochemical backgrounds of the soil gases are higher in...  相似文献   

15.
16.
The relationship between the distribution of Pliocene basaltic volcanism and the Dead Sea Transform fault is studied in the Korazim block, north of the Sea of Galilee. In this area, the Dead Sea Transform is divided into two segments. Early (Miocene) slip occurred along the western segment, while recent (Plio-Pleistocene) slip was mainly restricted to the eastern segment. Late Pliocene alkali-basalts from the Korazim block are geochemically distinct (concentrations of silica and alkalis and ratios of incompatible elements) from the Late Pliocene basanites of the nearby Upper Galilee to their west but are similar to Late Pliocene basalts from the adjacent Golan to the east. It is argued that the geochemical differences are due to derivation of magmas from different lithospheric domains and that these domains were emplaced next to each other during an early sinistral movement along the western segment of the transform. It is suggested that though being less active, the western segment formed a sharp boundary and prevented intermixing of lithospheric magmas ascending on both its sides during the Late Pliocene. During the Early Pliocene, alkali basalts erupted in southern Korazim, but not in the adjacent areas to the east and west (restoring for the 25–30 km along the eastern segment). These basalts were probably channeled from the south with both western and the eastern segments acting as barriers.  相似文献   

17.
延怀盆地土壤气体地球化学特征   总被引:25,自引:5,他引:20  
报道了延怀盆地422个测点的土壤气测量结果,讨论了各气体组分的区域地球化学特征及其控制因素,并探讨了气体地球化学背景场与区域地震地质的关系.2007年9-10月在首都圈西北部延怀盆地进行了野外土壤气体测量,获得该地区土壤气中Rn,Hg,CO2,H2He和CH4的地球化学背景值分别为8105.8(±5937.4)Bq/m3,9.7(±5.8)ng/m3,395.9(士35.3×10-6 ,4.0(士2.3×10-6,15.9(±10.4)×10-6和12.7(±8.1,×10-6.延怀盆地土壤Rn,Hg,He和CO2气体地球化学背景场在空间上呈现东部高、西部低(以延矾盆地北缘断裂为界)的特征.控制土壤气体地球化学背景场的主要因素是气体组分的来源、地壳结构、断裂构造、地层和微生物作用.延怀盆地内东部上地壳内存在的低速体,构造活动性较强,深部来源的Hg和He,以及来源于花岗岩的Rn等对土壤气的贡献较大,是盆地东部土壤地球化学背景值较高的原因.这与延怀盆地东部地震活动性较强相对应.研究结果为研究区地震地球化学流动测量和异常判识奠定了基础.  相似文献   

18.
19.
20.
Fresh-Saline Ground Water Interface in the Western Dead Sea Area   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号