首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Ultraviolet spectrometer measurements of the reflectance at 3050 Å are modeled to give pressure-altitudes for Mars assuming a quiescent atmosphere. Ultraviolet light that is Rayleigh-scattered by the Mars molecular atmosphere, with allowance for uniform turbidity, is proportional to surface pressure independent of atmospheric temperature structure. All model constants except the over-all scaling factors are found by requiring ultraviolet spectrometer pressures of 47 locations on the planet to be the same when measured at different geometries. The overall scaling factor is found by intercomparison with Mariner 9 occultation pressures. Comparison with other Mars pressure-altitude measurements show deviations from the assumption of uniform turbidity to occur over the Hesperia plateau for ultraviolet measurements obtained during the 13–26 February 1972 time period.  相似文献   

2.
《Icarus》1986,68(3):462-480
Hydrodynamic escape of hydrogen from a planetary atmosphere can remove heavier gases as well as hydrogen, provided that the escape rate is sufficiently large. Here, analytic approximations for the degree of mass fractionation of a trace species during hydrodynamic escape are compared with accurate numerical solutions for the case of transonic outflow. Even the simplest analytic approximation is found to be surprisingly good, despite numerous assumptions made in the course of its derivation. The analytic approximations are most accurate when the ratio of molecular weights of the heavier and lighter constituents is large so that nonlinear terms in the momentum equation for the heavy constituent become small. The simplest analytic formula is readily generalized to the case where a heavy constituent is also a major species. Application of the generalized formula to hypothetical episodes of hydrodynamic escape from Venus and Mars suggests that both hydrogen and oxygen could have escaped; thus, substantial quantities of water may have been lost without the need to oxidize large amounts of the crust. Mars could have lost large amounts of rare gases in this manner, but if so it may also have lost significant quantities of carbon dioxide and nitrogen. Venusian argon and neon isotope ratios indicate that Venus lost little or no argon and 50% or less of its original complement of neon. Terrestrial noble gas patterns resemble those that would have resulted had an initially Venus-like Earth undergone a short-lived but locally very energetic escape event.  相似文献   

3.
To investigate the occurrence of low temperatures and the formation of noctilucent clouds in the summer mésosphere a one-dimensional time-dependent photochemical-thermal numerical model of the atmosphere between 50 and 120 km has been constructed. The model includes the important chemistry of the hydrogen and oxygen species and transport by eddy and molecular processes. The thermal balance incorporates: heating by solar ultraviolet radiation; transport of chemical potential energy; eddy diffusion and dissipation; molecular conduction; airglow emissions; and infrared cooling by carbon dioxide. A non- LTE parameterization is used to calculate 15 μm band cooling by carbon dioxide. The model self-consistently solves the coupled photochemical and thermal equations as perturbation equations from a reference state assumed to be in equilibrium and is used to consider the effect of variability in water vapor in the lower mesosphere on the temperature in the region of noctilucent cloud formation. It is found that change in water vapor from an equilibrium value of 5 ppm at 50 km to a value of 10 ppm, a variation consistent with observations, can produce a ~ 15 K drop in temperature at 82 km. It is suggested that this process may produce long periods (weeks) of cold temperatures and influence noctilucent cloud formation.  相似文献   

4.
Nair H  Allen M  Anbar AD  Yung YL  Clancy RT 《Icarus》1994,111(1):124-150
The factors governing the amounts of CO, O2, and O3 in the martian atmosphere are investigated using a minimally constrained, one-dimensional photochemical model. We find that the incorporation of temperature-dependent CO2 absorption cross sections leads to an enhancement in the water photolysis rate, increasing the abundance of OH radicals to the point where the model CO abundance is smaller than observed. Good agreement between models and observations of CO, O2, O3, and the escape flux of atomic hydrogen can be achieved, using only gas-phase chemistry, by varying the recommended rate constants for the reactions CO + OH and OH + HO2 within their specified uncertainties. Similar revisions have been suggested to resolve discrepancies between models and observations of the terrestrial mesosphere. The oxygen escape flux plays a key role in the oxygen budget on Mars; as inferred from the observed atomic hydrogen escape, it is much larger than recent calculations of the exospheric escape rate for oxygen. Weathering of the surface may account for the imbalance. Quantification of the escape rates of oxygen and hydrogen from Mars is a worthwhile objective for an upcoming martian upper atmospheric mission. We also consider the possibility that HOx radicals may be catalytically destroyed on dust grains suspended in the atmosphere. Good agreement with the observed CO mixing ratio can be achieved via this mechanism, but the resulting ozone column is much higher than the observed quantity. We feel that there is no need at this time to invoke heterogeneous processes to reconcile models and observations.  相似文献   

5.
Mariner 9 ultraviolet spectra of the 1971 dust clouds were analyzed to obtain the phase function times single scattering albedo of the dust particles. The phase functions were matched with Mie scattering calculations for size distributions of spheres of homogeneous and isotropic material. The absorption index of the dust particles was found to increase with decreasing wavelenght from 350 nm down to about 210 nm, and drop off shortward of this wavelength. A structural shoulder occurs in the absorption spectrum between 240 and 250 nm. Titanium dioxide (anatase) has the correct transitions at 210 and 250 nm to match the absorption curve of Martian dust, and is proposed as a candidate constituent in Martian surface material. The spectral neutrality of TiO2 between 0.5 and 4 μm is consistent with visible and infrared observations of Mars. The high refractive index of TiO2 can explain the large refringence of Martian dust. The titanium dioxide content of the dust particles is estimated to be a few percent or less. Uncertainties in the results due to limitations in the model and data are discussed.  相似文献   

6.
Mariner 9 was inserted into orbit about Mars on November 14, 1971, to study that planet for a period of 90 days. Observations and measurements made by Mariner 9 continued beyond the planned 90 days, providing data to meet all science objectives. The new knowledge of Mars gained from this mission has made obsolete all previous concepts of Mars.A general background of the Mariner Mars 1971 Project and the significant events of the Mariner 9 mission are presented.  相似文献   

7.
John Caldwell 《Icarus》1973,18(3):489-496
Ultraviolet albedos of Mars in the region γγ2000–3600 Å are discussed. When the reflectivity due to the known amount of CO2 on Mars is accounted for, the remaining reflectivity may be used to set an upper limit for the surface albedo. The result disagrees qualitatively with published ultraviolet reflectivities of limonite and carbon suboxide. An alternate interpretation of the observations leads to the conclusion that CO2 comprises at least 60% of the molecular atmosphere of Mars, assuming the remainder to be argon. A comparison of the OAO results with 1969 Mariner ultraviolet data reveals some important areas of conflict.Attempts to detect Mars at wavelengths less than γ2000 Å were unsuccessful, with only very high upper limits being set.  相似文献   

8.
The European Space Agency’s Rosetta spacecraft, en route to a 2014 encounter with comet 67P/Churyumov-Gerasimenko, made a gravity assist swing-by of Mars on 25 February 2007, closest approach being at 01:54 UT. The Alice instrument on board Rosetta, a lightweight far-ultraviolet imaging spectrograph optimized for in situ cometary spectroscopy in the 750-2000 Å spectral band, was used to study the daytime Mars upper atmosphere including emissions from exospheric hydrogen and oxygen. Offset pointing, obtained five hours before closest approach, enabled us to detect and map the H i Lyman-α and Lyman-β emissions from exospheric hydrogen out beyond 30,000 km from the planet’s center. These data are fit with a Chamberlain exospheric model from which we derive the hydrogen density at the 200 km exobase and the H escape flux. The results are comparable to those found from the Ultraviolet Spectrometer experiment on the Mariner 6 and 7 fly-bys of Mars in 1969. Atomic oxygen emission at 1304 Å is detected at altitudes of 400-1000 km above the limb during limb scans shortly after closest approach. However, the derived oxygen scale height is not consistent with recent models of oxygen escape based on the production of suprathermal oxygen atoms by the dissociative recombination of .  相似文献   

9.
Dissociative recombination (DR) of ionospheric O2+ ions is an important source of suprathermal atomic oxygen in the exosphere as previous studies about the Martian upper atmosphere have shown. Because of the weaker gravitational attraction a hot oxygen corona on Mars should be denser than that observed on Venus. Since the most important mechanism for the production of the hot oxygen atoms in the Martian exosphere is DR, we investigated the variability of this production mechanism depending of solar activity. The Japanese Nozomi spacecraft will have the possibility to detect with the neutral mass spectrometer (NMS) for the first time in-situ the theoretically predicted hot oxygen corona on Mars, if the corona number density above the cold background atmosphere is of the order of 10,000 cm−3. Due to a problem in the propulsion system Nozomi failed its planned arrival rendevouzs with Mars in October 1999 and will, therefore, arrive at the red planet not before January 2004. Solar activity will reach its maximum in 2001, so the related production rate of hot oxygen atoms will be in the medium range during the new arrival date of Nozomi. We used the ionospheric profiles from the Viking mission for low solar activity conditions (F10.7≈70) and the Mariner 9 mission with a solar activity of about 120 for medium solar wind activity. The latter is comparable to the level we expect for the Mars arrival of Nozomi. The resulting influence of the hot oxygen corona number density distribution was calculated with a Monte Carlo technique. This technique is used to compute a hot particle density distribution function. We studied the atomic diffusion process in the Martian atmosphere by simulating the collision probability, particle direction and energy loss after collisions by generating random numbers. Compared to previous studies we have improved the Monte Carlo model by using more and smaller altitude steps and more detailed treatment of particles with a temporary downward motion. This has resulted in an increased amount of collisions and a shift to lower energies in the energy spectrum. Our results show that the hot oxygen component should begin to dominate above the cold background atmosphere at an altitude of about 500 km above the Martian surface. The NMS instrument on board of Nozomi should detect the hot oxygen component after its arrival at Mars in January 2004, at an altitude of about 600 km above the Martian surface. Since the solar activity will decrease during the mission the measurements during the first orbits will be the most significant ones. The first in-situ measurements of the hot oxygen number density would be very important for adjusting atmospheric escape models by separating ballistic, satellite and escape trajectories of the hot oxygen atoms, which are significant for studies of the evolution and solar wind interaction of the Martian atmosphere.  相似文献   

10.
A rocket experiment was conducted which measured the infrared bands of the excited hydroxyl radical in the night airglow. The OH emission was found in a layer centered at 87 km having a half-width of 6 km and a total emission of 1.1 MR. The atomic oxygen altitude profile, ranging from 1.3 × 1010 atoms/cm3 at 83 km to 3 × 1011 atoms/cm3 at 90 km is determined from the hydroxyl airglow measurements. This derivation is based on the steady state balance between ozone formation from atomic oxygen and its destruction by hydrogen which produces the OH infrared emission.  相似文献   

11.
Photoelectron peaks in the atmosphere of Mars caused by the ionization of carbon dioxide and atomic oxygen by solar 30.4 nm photons have been observed by the Electron Spectrometer (ELS), a component of the Mars Express (MEx) Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment. Ionization mostly occurs at the Mars exobase with the majority of the photoionized electron flux trapped in the remanent and induced magnetic field, with a portion of that flux escaping the planet down its tail. Since Mars is overall charge neutral, the number of electrons must be identical to the number of ion charges which escape the planet. An estimate of the fraction of the total number of escaping electrons is obtained for the year 2004, specifically those produced by the ionization of carbon dioxide and atomic oxygen by solar 30.4 nm photons. In achieving this process, an illustrative example pass is used to show how the electron spectrum is adjusted for the potential on the spacecraft; then the region of the electron spectrum which shows photoelectron peaks is integrated over energy, yielding a flux of 5.74 × 106 electrons/(cm2 s sr). This technique is then applied to a subset of 22 sample averaged spectra from the 2004 data (5 January 2004 through 25 January 2005), yielding an average result of 4.15 × 106 electrons/(cm2 s sr) for the 22 cases. The observation cone of 33.75° is used to integrate over solid angle (assuming the flux is constant), giving 4.39 × 106 electrons/(cm2 s). This average value was taken as representative of the full data interval. Frequency of occurrence statistics showing about a 6.2% occurrence rate for the 2004 data is applied to give an average escape flux from Mars of 2.72 × 105 electrons/(cm2 s) during 2004. By estimating the outflow area as 1.16 × 1018 cm2 at X = −1.5 RMars the electron escape rate of 3.14 × 1023 electrons/s is obtained. Thus about 9.92 × 1030 electrons or 16.5 Mmole of electrons escaped Mars during 2004 due to the ionization of carbon dioxide and atomic oxygen by the He 30.4 nm line. Due to the caveats of the analysis, these derived escape rates should be considered lower limits on the total electron escape rate from Mars.  相似文献   

12.
This is a study of the kinetics and transport of hot oxygen atoms in the transition region (from the thermosphere to the exosphere) of the Martian upper atmosphere. It is assumed that the source of the hot oxygen atoms is the transfer of momentum and energy in elastic collisions between thermal atmospheric oxygen atoms and the high-energy protons and hydrogen atoms precipitating onto the Martian upper atmosphere from the solar-wind plasma. The distribution functions of suprathermal oxygen atoms by the kinetic energy are calculated. It is shown that the exosphere is populated by a large number of suprathermal oxygen atoms with kinetic energies up to the escape energy 2 eV; i.e., a hot oxygen corona is formed around Mars. The transfer of energy from the precipitating solar-wind plasma protons and hydrogen atoms to the thermal oxygen atoms leads to the formation of an additional nonthermal escape flux of atomic oxygen from the Martian atmosphere. The precipitation-induced escape flux of hot oxygen atoms may become dominant under the conditions of extreme solar events, such as solar flares and coronal mass ejections, as shown by recent observations onboard NASA’s MAVEN spacecraft (Jakosky et al., 2015).  相似文献   

13.
On 15 August 1994 we launched the EUVS sounding rocket payload to observe the 825-1110 angstrom region of Venus's far ultraviolet airglow spectrum. The EUVS telescope/spectrograph obtained good data at five times higher spectral resolution than was previously available in the far ultraviolet. We present these data and compare our results to those obtained by the Galileo UVS and Venera 11/12 UV spectrophotometers. We identify several new spectral emission features, including both singly ionized nitrogen and molecular nitrogen in Venus's spectrum. We also see evidence for electron-impact-induced emission from CO. Finally, the EUVS data indicate that the "Ar" emissions detected in Venus's far ultraviolet spectrum by Venera 11/12 spectrophotometers are in fact not due to argon, thus eliminating the discrepancy between in situ and remote sensing measurements.  相似文献   

14.
Mariner 9 ultraviolet spectra of the 1971 Mars dust storm were studied to determine the cloud particle size distribution and complex index of refraction. The method consisted of matching the observed single particle scattering albedo and phase function with Mie scattering calculations for size distributions of spheres of homogeneous and isotropic material. Preliminary results indicate that the effective particle radius is 1 μm with an effective variance (a measure of distribution width) ?0.2. The real component of the index of refraction is ?1.8 at both 268 and 305 nm. For the imaginary index, a value of 0.02 was found at 268 nm and 0.01 at 305nm. These ultraviolet refractive indices are compatible with measurements at visible wavelengths which indicate that the real part of the refractive index is 1.75 with a negligible imaginary term. The rapid increase of refractive index and absorption coefficient with decreasing wavelength are indicative of an ultraviolet absorption band.An ultraviolet absorption band is not only diagnostic of the composition of the Mars material, but may have important implications for the development and evolution of life on Mars. A 30 μm layer of material that absorbs uv but transmits visible light can shield organisms from harmful irradiation while providing for photosynthesis.Comparison of the Mars ultraviolet refractive indices with laboratory measurements indicates that none of the terrestrial analog samples of limonite, basalt, andesite, or montmorrillonite have the required ultraviolet properties.  相似文献   

15.
R.M. Batson  J.L. Inge 《Icarus》1976,27(4):531-536
A map of “albedo” boundaries (light and dark markings) on Mars was prepared from Mariner 9 images. After special digital processing, these pictures provide detailed locations of albedo boundaries, which is significant in interpreting recent eolian activity. Derivation of absolute albedo values from the spacecraft data was not attempted. The map correlates well with telescopic observations of Mars after the 1971 dust storm.  相似文献   

16.
New measurements of the Herzberg I emission height profile in the night airglow are reported and indicate a peak emission height near 96 km in agreement with previous measurements. Using an atomic oxygen concentration profile determined from the oxygen green line profile measured on the same rocket it is concluded that the O2(A3Σu+) state is not excited in the direct three body recombination of atomic oxygen. It is suggested that the excitation mechanism is a two step process, similar to the Barth mechanism for the atomic oxygen green lineand that the excited intermediate state is C3Δu.  相似文献   

17.
J.F Carbary  J.-H Yee 《Icarus》2003,161(2):223-234
During the Leonid meteor shower on 18 November 1999, the five spectrographic imagers onboard the Midcourse Space Experiment (MSX) satellite recorded the first complete meteor spectra from 110 to 860 nm. The observation occurred at 00:23:36.2 UT, at which time the satellite was pointed at a tangent altitude of 100 km over 37.2°N and 78.2°E. The spectrograph slits were oriented approximately parallel to the horizon at a tangent altitude of 100 km, and the meteor passed approximately perpendicular through the slits’ fields of view. All five spectrographic imagers observed the passage of a bright object (mv < −2.8 at 100 km) and each recorded several frames of data. In the visible, common meteor emissions were observed from iron, sodium, and oxygen. However, the ultraviolet spectrum displayed a wealth of more intense features, some of which actually caused saturation in the spectrographs. The most intense features appeared between 220 and 300 nm and are attributed to neutral and singly ionized iron and ionized magnesium. Some unknown emissions, possibly from an unidentified molecular species such as iron oxide, appear between 180 and 220 nm. In the far ultraviolet from 110 to 130 nm, oxygen and nitrogen features appear in the spectrum, with some features from ionized iron and magnesium. In particular, the FUV spectrum showed an intense emission from hydrogen Lyman alpha and a much weaker emission from what appeared to be neutral carbon. The atmospheric emissions can be associated with the heating within the meteor shock, while the metallic emissions originate from the fireball of the meteor proper. The ultraviolet emissions were much stronger than those in the visible and near-infrared parts of the spectrum. The energy of emissions in the ultraviolet (110 < λ < 337 nm) exceeded the energy of the visible (337 < λ < 650 nm) by a factor of at least 5.  相似文献   

18.
Rocket observations of the extreme ultraviolet dayglow   总被引:1,自引:0,他引:1  
The ultraviolet dayglow in the wavelength region 750–1050 Å was investigated over the altitude range 100–800 km using a thin film filter photometer. From the airglow spectrum obtained by Carruthers and Page, one of the dominant features in this wavelength range is OII 834 Å. It is pointed out that the major excitation mechanism for this transition is photoionization excitation of atomic oxygen. Solution of the radiative transfer problem for this excitation process shows good agreement with the observed dayglow in the 300–800 km region. At lower altitudes additional components are present and are interpreted as the N2, OI and possibly HI emissions observed by Carruthers and Page.  相似文献   

19.
Merton E. Davies 《Icarus》1974,21(3):230-236
Mariner 9 took many pictures of the giant Olympus Mons during its year in orbit around Mars. Control points have been identified on the top of Olympus Mons, on the volcanic shield, and on the surrounding plains, and their locations have been measured on the television pictures. These measurements were used to compute the aerographic coordinates and the planetary radii of the points. The radii at some of the points were derived from radar elevation measurements and from radio occultation measurements. The mountain rises about 21 km above its base.  相似文献   

20.
Infrared spectra of Mars are made up of three separate components, each of which may dominate the spectrum under different Martian meteorological and observational conditions. By means of laboratory examples we show that both the shape and spectral contrast of the spectral curves change dramatically, depending on which component is dominant. Each experimental condition has been experienced during either the Mariner 69 or 71 observations. Comparing the preliminary Mariner 71 radiance data with laboratory transmission spectra, we suggest that the clay mineral montmorillonite could be the major component of the Martian dust cloud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号