首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge about saturation and pressure distributions in a reservoir can help in determining an optimal drainage pattern, and in deciding on optimal well designs to reduce risks of blow‐outs and damage to production equipment. By analyzing time‐lapse PP AVO or time‐lapse multicomponent seismic data, it is possible to separate the effects of production related saturation and pressure changes on seismic data. To be able to utilize information about saturation and pressure distributions in reservoir model building and simulation, information about uncertainty in the estimates is useful. In this paper we present a method to estimate changes in saturation and pressure from time‐lapse multicomponent seismic data using a Bayesian estimation technique. Results of the estimations will be probability density functions (pdfs), giving immediate information about both parameter values and uncertainties. Linearized rock physical models are linked to the changes in saturation and pressure in the prior probability distribution. The relationship between the elastic parameters and the measured seismic data is described in the likelihood model. By assuming Gaussian distributed prior uncertainties the posterior distribution of the saturation and pressure changes can be calculated analytically. Results from tests on synthetic seismic data show that this method produces more precise estimates of changes in effective pressure than a similar methodology based on only PP AVO time‐lapse seismic data. This indicates that additional information about S‐waves obtained from converted‐wave seismic data is useful for obtaining reliable information about the pressure change distribution.  相似文献   

2.
An approach is developed to estimate pore‐pressure changes in a compacting chalk reservoir directly from time‐lapse seismic attributes. It is applied to data from the south‐east flank of the Valhall field. The time‐lapse seismic signal of the reservoir in this area is complex, despite the fact that saturation changes do not have an influence. This complexity reflects a combination of pressure depletion, compaction and stress re‐distribution throughout the reservoir and into the surrounding rocks. A simple relation is found to link the time‐lapse amplitude and time‐shift attributes to variations in the key controlling parameter of initial porosity. This relation is sufficient for an accurate estimation of pore‐pressure change in the inter‐well space. Although the time‐lapse seismic estimates mostly agree with reservoir simulation, unexplained mismatches are apparent at a small number of locations with lower porosities (less than 38%). The areas of difference between the observations and predictions suggest possibilities for simulation model updating or a better understanding of the physics of the reservoir.  相似文献   

3.
Ghawar, the largest oilfield in the world, produces oil from the Upper Jurassic Arab‐D carbonate reservoir. The high rigidity of the limestone–dolomite reservoir rock matrix and the small contrast between the elastic properties of the pore fluids, i.e. oil and water, are responsible for the weak 4D seismic effect due to oil production. A feasibility study was recently completed to quantify the 4D seismic response of reservoir saturation changes as brine replaced oil. The study consisted of analysing reservoir rock physics, petro‐acoustic data and seismic modelling. A seismic model of flow simulation using fluid substitution concluded that time‐lapse surface seismic or conventional 4D seismic is unlikely to detect the floodfront within the repeatability of surface seismic measurements. Thus, an alternative approach to 4D seismic for reservoir fluid monitoring is proposed. Permanent seismic sensors could be installed in a borehole and on the surface for passive monitoring of microseismic activity from reservoir pore‐pressure perturbations. Reservoir production and injection operations create these pressure or stress perturbations. Reservoir heterogeneities affecting the fluid flow could be mapped by recording the distribution of epicentre locations of these microseisms or small earthquakes. The permanent borehole sensors could also record repeated offset vertical seismic profiling surveys using a surface source at a fixed location to ensure repeatability. The repeated vertical seismic profiling could image the change in reservoir properties with production.  相似文献   

4.
Fluid depletion within a compacting reservoir can lead to significant stress and strain changes and potentially severe geomechanical issues, both inside and outside the reservoir. We extend previous research of time‐lapse seismic interpretation by incorporating synthetic near‐offset and full‐offset common‐midpoint reflection data using anisotropic ray tracing to investigate uncertainties in time‐lapse seismic observations. The time‐lapse seismic simulations use dynamic elasticity models built from hydro‐geomechanical simulation output and a stress‐dependent rock physics model. The reservoir model is a conceptual two‐fault graben reservoir, where we allow the fault fluid‐flow transmissibility to vary from high to low to simulate non‐compartmentalized and compartmentalized reservoirs, respectively. The results indicate time‐lapse seismic amplitude changes and travel‐time shifts can be used to qualitatively identify reservoir compartmentalization. Due to the high repeatability and good quality of the time‐lapse synthetic dataset, the estimated travel‐time shifts and amplitude changes for near‐offset data match the true model subsurface changes with minimal errors. A 1D velocity–strain relation was used to estimate the vertical velocity change for the reservoir bottom interface by applying zero‐offset time shifts from both the near‐offset and full‐offset measurements. For near‐offset data, the estimated P‐wave velocity changes were within 10% of the true value. However, for full‐offset data, time‐lapse attributes are quantitatively reliable using standard time‐lapse seismic methods when an updated velocity model is used rather than the baseline model.  相似文献   

5.
P‐wave data from a time‐lapse 3D OBC survey have been analysed to estimate and interpret azimuthal seismic anisotropy. This is achieved by careful processing to preserve the azimuthal signature. The survey images a major reservoir body in a channelized turbidite field in the Gulf of Mexico. Three distinct and significant anisotropy anomalies are discovered on or around this particular ‘4500‐ft sand’, all of which change intensity but not orientation with hydrocarbon production. These anomalies are distributed along the highest concentration of cumulative sand thickness, with their symmetry axes aligned with the main channel axis. We suspect that this time‐lapse anisotropy could be caused by the alignment of the depositional grain fabric. Theoretical calculation predicts that this mechanism, when combined with fluid‐saturation changes, can generate the observed pattern of behaviour. If further supported by other researchers, this result would indicate that appropriately designed seismic surveys could be a useful tool for palaeo‐direction studies in clastic reservoirs and also a useful constraint for directional permeability in the reservoir flow simulation model.  相似文献   

6.
Quantitative detection of fluid distribution using time-lapse seismic   总被引:1,自引:0,他引:1  
Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time‐lapse seismic data remains a challenge. In most cases of time‐lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time‐lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time‐lapse seismic data. In this approach, we derive the physical properties of the water‐saturated sandstone reservoir, based on the following inputs: VP, VS, ρ and the shale volume from seismic analysis, the average properties of sand grains, and formation‐water properties. Next, by comparing the in‐situ fluid‐saturated properties with the 100% formation‐water‐saturated reservoir properties, we determine the bulk modulus and density of the in‐situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time‐lapse seismic data set from an oilfield in the North Sea for a case study.  相似文献   

7.
The possibility of using 4D seismic data for monitoring pressure depletion in the low‐porosity, tight gas‐bearing Rotliegende sandstones of the UK Southern Gas Basin is investigated. The focus here is on whether fractures in the upper part of the reservoir, known to enhance productivity, can also enhance the time‐lapse seismic response. The study uses laboratory data to evaluate core‐plug stress sensitivity, published data for the stress behaviour of the fractures, followed by petro‐elastic and 4D seismic modelling of both the fractured and unfractured formation. The magnitude of the resultant 4D signatures suggests that production‐induced changes in the unfractured sands are unlikely to be observed except perhaps with highly repeatable time‐lapse surveys. On the other hand, the presence of fractures could render production effects visible in dedicated 4D acquisition or prestack parallel processed data. If present however, the signature will be sporadic, as fractures in the area are known to exist in clusters. The 4D signature may be enhanced further by certain classes of vertical geological variability and also areas of high reservoir pressure. The strongest evidence of depletion is expected to be time‐shifts seen at the base of the Rotliegende reservoir.  相似文献   

8.
Updating of reservoir models by history matching of 4D seismic data along with production data gives us a better understanding of changes to the reservoir, reduces risk in forecasting and leads to better management decisions. This process of seismic history matching requires an accurate representation of predicted and observed data so that they can be compared quantitatively when using automated inversion. Observed seismic data is often obtained as a relative measure of the reservoir state or its change, however. The data, usually attribute maps, need to be calibrated to be compared to predictions. In this paper we describe an alternative approach where we normalize the data by scaling to the model data in regions where predictions are good. To remove measurements of high uncertainty and make normalization more effective, we use a measure of repeatability of the monitor surveys to filter the observed time‐lapse data. We apply this approach to the Nelson field. We normalize the 4D signature based on deriving a least squares regression equation between the observed and synthetic data which consist of attributes representing measured acoustic impedances and predictions from the model. Two regression equations are derived as part of the analysis. For one, the whole 4D signature map of the reservoir is used while in the second, 4D seismic data is used from the vicinity of wells with a good production match. The repeatability of time‐lapse seismic data is assessed using the normalized root mean square of measurements outside of the reservoir. Where normalized root mean square is high, observations and predictions are ignored. Net: gross and permeability are modified to improve the match. The best results are obtained by using the normalized root mean square filtered maps of the 4D signature which better constrain normalization. The misfit of the first six years of history data is reduced by 55 per cent while the forecast of the following three years is reduced by 29 per cent. The well based normalization uses fewer data when repeatability is used as a filter and the result is poorer. The value of seismic data is demonstrated from production matching only where the history and forecast misfit reductions are 45% and 20% respectively while the seismic misfit increases by 5%. In the best case using seismic data, it dropped by 6%. We conclude that normalization with repeatability based filtering is a useful approach in the absence of full calibration and improves the reliability of seismic data.  相似文献   

9.
Seismic conditioning of static reservoir model properties such as porosity and lithology has traditionally been faced as a solution of an inverse problem. Dynamic reservoir model properties have been constrained by time‐lapse seismic data. Here, we propose a methodology to jointly estimate rock properties (such as porosity) and dynamic property changes (such as pressure and saturation changes) from time‐lapse seismic data. The methodology is based on a full Bayesian approach to seismic inversion and can be divided into two steps. First we estimate the conditional probability of elastic properties and their relative changes; then we estimate the posterior probability of rock properties and dynamic property changes. We apply the proposed methodology to a synthetic reservoir study where we have created a synthetic seismic survey for a real dynamic reservoir model including pre‐production and production scenarios. The final result is a set of point‐wise probability distributions that allow us to predict the most probable reservoir models at each time step and to evaluate the associated uncertainty. Finally we also show an application to real field data from the Norwegian Sea, where we estimate changes in gas saturation and pressure from time‐lapse seismic amplitude differences. The inverted results show the hydrocarbon displacement at the times of two repeated seismic surveys.  相似文献   

10.
Numerous examples of reservoir fields from continental and marine environments involve thin‐bedded geology, yet, the inter‐relationship between thin‐bedded geology, fluid flow and seismic wave propagation is poorly understood. In this paper, we explore the 4D seismic signature due to saturation changes of gas within thin layers, and address the challenge of identifying the relevant scales and properties, which correctly define the geology, fluid flow and seismic wave propagation in the field. Based on the study of an outcrop analogue for a thin‐bedded turbidite, we model the time‐lapse seismic response to fluid saturation changes for different levels of model scale, and explore discrepancies in quantitative seismic attributes caused by upscaling. Our model reflects the geological complexity associated with thin‐bedded turbidites, and its coupling to fluid flow, which in turn affects the gas saturation distribution in space, and its time‐lapse seismic imprint. Rock matrix and fluid properties are modelled after selected fields to reproduce representative field models with realistic impedance contrasts. In addition, seismic modelling includes multiples, in order to assess their contribution in seismic propagation through thin gas layers. Our results show that multiples could contribute significantly to the measured amplitudes in the case of thin‐bedded geology. This suggests that forward/inverse modelling involving the flow simulation and seismic domains used in time‐lapse seismic interpretation should account for thin layers, when these are present in the geological setting.  相似文献   

11.
With the increasing use of permanently installed seismic installations, many of the issues in time‐lapse seismic caused by the lack of repeatability can be reduced. However, a number of parameters still influence the degree of reliability of 4D seismic data. In this paper, the specific impact of seawater velocity variations on time‐lapse repeatability is investigated in a synthetic study. A zero‐lag time‐lapse seabed experiment with no change in the subsurface but with velocity changes in the water column is simulated. The velocity model in the water column is constant for the baseline survey while the model for the repeat survey is heterogeneous, designed from sea salinity and temperature measurements in the West of Shetlands. The difference section shows up to 80% of residual amplitude, which highlights the poor repeatability. A new dynamic correction which removes the effect of seawater velocity variations specifically for permanent installations is developed. When applied to the synthetic data, it reduces the difference residual amplitude to about 3%. This technique shows substantial improvement in repeatability beyond conventional time‐lapse cross‐equalization.  相似文献   

12.
Time-lapse seismic analysis of pressure depletion in the Southern Gas Basin   总被引:1,自引:0,他引:1  
In the Southern Gas Basin (SGB) of the North Sea there are many mature gas fields where time‐lapse monitoring could be very beneficial in extending production life. However, the conditions are not immediately attractive for time‐lapse seismic assessment. This is primarily because the main production effect to be assessed is a pore pressure reduction and frame stiffening because of gas production in tight sandstone reservoirs that also have no real seismic direct hydrocarbon indicators. Modelling, based on laboratory measurements, has shown that such an effect would be small and difficult to detect in seismic data. This paper makes two main contributions. Firstly, this is, to our knowledge, the first time‐lapse study in the SGB and involves a real‐data assessment of the viability for detecting production in such an environment. Secondly, the feasibility of using markedly different legacies of data in such a study is addressed, including an assessment of the factors influencing the crossmatching. From the latter, it is found that significant, spatially varying time shifts need to be, and are successfully, resolved through 3‐D warping. After the warping, the primary factors limiting the crossmatching appear to be residual local phase variations, possibly induced by the differing migration strategies, structure, reverberations and different coherencies of the volumes, caused by differences in acquisition‐structure azimuth and acquisition fold. Despite these differences, a time‐lapse amplitude signature is observed that is attributable to production. The character of the 4‐D amplitude anomalies may also indicate variations in stress sensitivity, e.g. because of zones of fracturing. Additionally, warping‐derived time attributes have been highlighted as a potential additional avenue for detection of pressure depletion in such reservoirs. Although the effects are subtle, they may indicate changes in stress/pressure in and around the reservoir because of production. However, to fully resolve the subtle time‐lapse effects in such a reservoir, the data differences need to be better addressed, which may be possible by full re‐processing and pre‐stack analysis, but more likely dedicated 4‐D acquisition would be required.  相似文献   

13.
Discrete wavelet transforms are useful in a number of signal processing applications. To improve the scale resolution, a joint function of time, scale and eigenvalue that describes the energy density or intensity of a signal simultaneously in the wavelet and eigenimage domains is constructed. A hybrid method, which decomposes eigenimages in the wavelet domain, is developed and tested on field data with a variety of noise types. Several illustrative examples examine the ability of wavelet transforms to resolve features at several scales. Successful applications to time‐lapse seismic reservoir monitoring are presented. In reservoir monitoring, the scale‐dependent properties of the eigenstructure of the 4D data covariance matrix enable us to extract the low‐frequency time‐lapse signal that is the result of internal diffusive losses caused by fluid flow.  相似文献   

14.
This article addresses the question whether time‐lapse seismic reflection techniques can be used to follow and quantify the effects of solution salt mining. Specifically, the production of magnesium salts as mined in the north of the Netherlands is considered. The use of seismic time‐lapse techniques to follow such a production has not previously been investigated. For hydrocarbon production and CO2 storage, time‐lapse seismics are used to look at reservoir changes mainly caused by pressure and saturation changes in large reservoirs, while for solution mining salt is produced from caverns with a limited lateral extent, with much smaller production volumes and a fluid (brine) replacing a solid (magnesium salt). In our approach we start from the present situation of the mine and then study three different production scenarios, representing salt production both in vertical and lateral directions of the mine. The present situation and future scenarios have been transformed into subsurface models that were input to an elastic finite‐difference scheme to create synthetic seismic data. These data have been analysed and processed up to migrated seismic images, such that time‐lapse analyses of intermediate and final results could be done. From the analyses, it is found that both vertical and lateral production is visible well above the detection threshold in difference data, both at pre‐imaging and post‐imaging stages. In quantitative terms, an additional production of the mine of 6 m causes time‐shifts in the order of 2 ms (pre‐imaging) and 4 ms (post‐imaging) and amplitude changes of above 20% in the imaged sections. A laterally oriented production causes even larger amplitude changes at the edge of the cavern due to replacement of solid magnesium salt with brine introducing a large seismic contrast. Overall, our pre‐imaging and post‐imaging time‐lapse analysis indicates that the effects of solution salt mining can be observed and quantified on seismic data. The effects seem large enough to be observable in real seismic data containing noise.  相似文献   

15.
We present an approach that creates the possibility of reservoir monitoring on a quasi‐continuous basis using surface seismic data. Current strategies and logistics for seismic data acquisition impose restrictions on the calendar‐time temporal resolution obtainable for a given surface‐seismic time‐lapse monitoring program. One factor that restricts the implementation of a quasi‐continuous monitoring program using conventional strategies is the time it takes to acquire a complete survey. Here quasi‐continuous monitoring describes the process of reservoir monitoring at short‐time intervals. Our approach circumvents the restriction by requiring only a subset of complete survey data each time an image of the reservoir is needed using surface seismic data. Ideally, the time interval between survey subset acquisitions should be short so that changes in the reservoir properties are small. The accumulated data acquired are used to estimate the unavailable data at the monitor survey time and the combined recorded and estimated data are used to produce an image of the subsurface for monitoring. We will illustrate the effectiveness of our approach using 2D and 3D synthetic seismic data and 3D field seismic data. We will explain the benefits and drawbacks of the proposed approach.  相似文献   

16.
The cross‐calibration of different vintage data is an important prerequisite in attempting to determine the time‐lapse seismic effects induced by hydrocarbon production in a reservoir. This paper reports the preprocessing and cross‐calibration procedures adopted to modify the data of four seismic vintages (1982, 1989, 1992 and 1999) from the Oseberg field in the North Sea, for optimal conditions for a time‐lapse seismic amplitude analysis. The final results, in terms of time‐lapse variations, of acoustic impedance and of amplitude‐versus‐offset, are illustrated for selected data sets. The application of preprocessing to each individual vintage data set reduces the effects of the different acquisition and noise conditions, and leads to consistency in the amplitude response of the four vintages. This consistency facilitates the final amplitude cross‐calibration that is carried out using, as reference, the Cretaceous horizon reflections above the Brent reservoir. Such cross‐calibration can be considered as vintage‐consistent residual amplitude correction. Acoustic impedance sections, intercept and gradient amplitude‐versus‐offset attributes and coherent amplitude‐versus‐offset estimates are computed on the final cross‐calibrated data. The results, shown for three spatially coincident 2D lines selected from the 1982, 1989 and 1999 data sets, clearly indicate gas‐cap expansion resulting from oil production. Such expansion is manifested as a decrease in acoustic impedance and a modification of the amplitude‐versus‐offset trends in the apical part of the reservoir.  相似文献   

17.
Time‐lapse refraction can provide complementary seismic solutions for monitoring subtle subsurface changes that are challenging for conventional P‐wave reflection methods. The utilization of refraction time lapse has lagged behind in the past partly due to the lack of robust techniques that allow extracting easy‐to‐interpret reservoir information. However, with the recent emergence of the full‐waveform inversion technique as a more standard tool, we find it to be a promising platform for incorporating head waves and diving waves into the time‐lapse framework. Here we investigate the sensitivity of 2D acoustic, time‐domain, full‐waveform inversion for monitoring a shallow, weak velocity change (?30 m/s, or ?1.6%). The sensitivity tests are designed to address questions related to the feasibility and accuracy of full‐waveform inversion results for monitoring the field case of an underground gas blowout that occurred in the North Sea. The blowout caused the gas to migrate both vertically and horizontally into several shallow sand layers. Some of the shallow gas anomalies were not clearly detected by conventional 4D reflection methods (i.e., time shifts and amplitude difference) due to low 4D signal‐to‐noise ratio and weak velocity change. On the other hand, full‐waveform inversion sensitivity analysis showed that it is possible to detect the weak velocity change with the non‐optimal seismic input. Detectability was qualitative with variable degrees of accuracy depending on different inversion parameters. We inverted, the real 2D seismic data from the North Sea with a greater emphasis on refracted and diving waves’ energy (i.e., most of the reflected energy was removed for the shallow zone of interest after removing traces with offset less than 300 m). The full‐waveform inversion results provided more superior detectability compared with the conventional 4D stacked reflection difference method for a weak shallow gas anomaly (320 m deep).  相似文献   

18.
Combined time‐lapse reservoir simulation and seismic modelling has been performed on both 1D and 3D models of a channelized turbidite reservoir. The models have been built using core, log, laboratory and seismic data from the Nelson Field (central North Sea) as a template. Oil and water movement in the main channels, channel margins and interchannel regions is investigated, with a particular focus being the effect of poor net‐to‐gross. The analysis confirms that saturation effects dominate the response whilst stress‐sensitivity effects play a minor role. The trough–peak signature in the seismic difference volumes formed by the sweep of the water can be continued and mapped slightly further than the channel margins. This characteristic 4D signature remains roughly intact, despite the complicated depositional architecture, and accurately delineates the area of moved fluid, but it needs additional calibration to combat the detrimental influence of the low net‐to‐gross. Signal strength is largely dependent on reservoir quality, but is also compromised by the net‐to‐gross, fluid distribution and, more critically, by the exact timing of the seismic survey. For example, a region of bypassed oil zone remains undetected as it forms early during the production. This work demonstrates that to understand fully the 4D signature at a quantitative level requires adequate knowledge of the fluid properties, but also, more critically, the geology.  相似文献   

19.
An approximation is developed that allows mapped 4D seismic amplitudes and time‐shifts to be related directly to the weighted linear sum of pore pressure and saturation changes. The weights in this relation are identified as key groups of parameters from a petroelastic model and include the reservoir porosity. This dependence on groups of parameters explains the inherent non‐uniqueness of this problem experienced by previous researchers. The proposed relation is of use in 4D seismic data feasibility studies and inversion and interpretation of the 4D seismic response in terms of pore pressure and water saturation changes. A further result is drawn from analysis of data from the North Sea and West Africa, which reveals that the relative interplay between the effects of pore pressure and saturation changes on the seismic data can be simplified to the control of a single, spatially variant parameter CS/CP. Combining these results with those from published literature, we find that CS/CP = 8 appears to be a generality across a range of clastic reservoirs with a similar mean porosity. Using this CS/CP value, an in situ seismic‐scale constraint for the rock stress sensitivity component of the petroelastic model is constructed considering this component carries the largest uncertainty.  相似文献   

20.
A method to provide an improved time‐lapse seismic attribute for dynamic interpretation is presented. This is based on the causal link between the time‐lapse seismic response and well production activity taken over time. The resultant image is obtained by computing correlation coefficients between sequences of time‐lapse seismic changes extracted over different time intervals from multiply repeated seismic and identical time sequences of cumulative fluid volumes produced or injected from the wells. Maps of these cross‐correlations show localized, spatially contiguous signals surrounding individual wells or a specific well group. These may be associated with connected regions around the selected well or well group. Application firstly to a synthetic data set reveals that hydraulic compartments may be delineated using this method. A second application to a field data set provides empirical evidence that a connected well‐centric fault block and active geobody can be detected. It is concluded that uniting well data and time‐lapse seismic using our proposed method delivers a new attribute for dynamic interpretation and potential updating of the model for the producing reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号