首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
SeaMARC II sidescan (imagery and bathymetry) and seismic data reveal the morphology, sedimentary processes, and structural controls on submarine canyon development in the central Izu-Bonin forearc, south of Japan. Canyons extend up to 150 km across the forearc from the trench-slope break to the active volcanic arc. The canyons are most deeply incised (1200–1700 m) into the gentle gradients (1–2°) upslope on the outer arc high (OAH) and lose bathymetric expression on the steep (6–18°) inner trench-slope. The drainage patterns indicate that canyons are formed by both headward erosion and downcutting. Headward erosion proceeds on two scales. Initially, pervasive small-scale mass wasting creates curvilinear channels and pinnate drainage patterns. Large-scale slumping, evidenced by abundant crescent-shaped scarps along the walls and tributaries of Aoga Shima Canyon, occurs only after a channel is present, and provides a mechanism for canyon branching. The largest slump has removed >16 km3 of sediment from an 85 km2 area of seafloor bounded by scarps more than 200 m high and may be in the initial stages of forming a new canyon branch. The northern branch of Aoga Shima Canyon has eroded upslope to the flanks of the arc volcanoes allowing direct tapping of this volcaniclastic sediment source. Headward erosion of the southern branch is not as advanced but the canyon may capture sediments supplied by unconfined (non-channelized) mass flows.Oligocene forearc sedimentary processes were dominated by unconfined mass flows that created sub-parallel and continuous sedimentary sequences. Pervasive channel cut-and-fill is limited to the Neogene forearc sedimentary sequences which are characterized by migrating and unconformable seismic sequences. Extensive canyon formation permitting sediment bypassing of the forearc by canyon-confined mass flows began in the early Miocene after the basin was filled to the spill points of the OAH. Structural lows in the OAH determined the initial locus of canyon formation, and outcropping basement rocks have prevented canyon incision on the lower slope. A major jog in the canyon axis, linear tributaries, and a prominent sidescan lineament all trend NW-NNW, reflecting OAH basement influence on canyon morphology. This erosional fabric may reflect joint/fracture patterns in the sedimentary strata that follow the basement trends. Once the canyons have eroded down to more erosion-resistant levels, channel downcutting slows relative to lateral erosion of the canyon walls. This accounts for the change from a narrow canyon axis in the thickly sedimented forearc basin to a wider, more rugged canyon morphology near the OAH. About 9500 km3 of sediment has been eroded from the central, 200 km long, segment of the Izu-Bonin forearc by the formation of Aoga Shima, Myojin Sho and Sumisu Jima canyons. The volume of sediment presently residing in the adjacent trench, accretionary wedge, and lower slope terrace basin accounts for <25% of that eroded from the canyons alone. This implies that a large volume (>3500 km3 per 100 km of trench, ignoring sediments input via forearc bypassing) has been subducted beneath the toe of the trench slope and the small accretionary prism. Unless this sediment has been underplated beneath the forearc, it has recycled arc material into the mantle, possibly influencing the composition of arc volcanism.  相似文献   

2.
The study focuses on the flexural down-warping of oceanic crust related to the Early Cretaceous hotspot volcanic chain in offshore East India, drawing from robust reflection seismic coverage of the 85°E Ridge and associated moats and arches. Seismic data image three moat-filling units including the basal pelagic, landslide and ponded units, representing the sedimentary record preceding, coeval and postponing flexure. Their stacking patterns allow one to understand the flexural history of the oceanic crust reacting to the volcanic load, in space and time. The flexural history of the oceanic crust can be divided into four stages. The first stage is the brittle faulting-assisted flexure reacting to the appearance of the load. It has a short wavelength and controls the development of moat undergoing deposition of the landslide unit. Then follows the long-wavelength flexure, when the arch starts to develop. The flexural arch formation prevents the landslide unit from covering it, while the moat keeps subsiding. The third flexure stage is a short-wavelength deformation when the moat and arch subside together. Accordingly, the syn-flexural landslide unit records an initial rapid and a later slower subsidence. The fourth flexure stage is characterized by the passive infill of moat by sediments of ponded unit, although limited isostatic adjustments can occur, accompanied by mass wasting.  相似文献   

3.
Southwestward volume transport (referred to 1,500 db) out of the Gulf of Alaska seaward of the continental shelf in May 1972 was 12.5 Sv, and nearly 3/4 of this flow occurred within 50 km of the shelf edge. Mean geostrophic velocities of about 50 cm s–1 occurred in a band 20 km wide, which extended 500 km along the shelf edge; a maximum velocity of 98 cm s–1 (nearly 2 knots) was obtained. Bottom flow along the inshore part of the shelf as determined by seabed drifters was generally onshore at 0.5 cm s–1. Evidence is presented of a large cyclonic gyre on the shelf encompassing the Portlock and Albatross Banks, perturbations in surface flow along the shelf edge, and relations between coastal tidal heights and fluctuations in geopotential topography at the shelf edge.  相似文献   

4.
Analysis in both the x—t and —p domains of high-quality Expanded Spread Profiles across the Møre Margin show that many arrivals may be enhanced be selective ray tracing and velocity filtering combined with conventional data reduction techniques. In terms of crustal structure the margin can be divided into four main areas: 1) a thicker than normal oceanic crust in the eastern Norway Basin; 2) expanded crust with a Moho depth of 22 km beneath the huge extrusive complex constructed during early Tertiary breakup; 3) the Møre Basin where up to 13–14 km of sediments overlie a strongly extended outer part with a Moho depth at 20 km west of the Ona High; and 4) a region with a 25–27 km Moho depth between the high and the Norwegian coast. The velocity data restricts the continent-ocean boundary to a 15–30 km wide zone beneath the seaward dipping reflector wedges. The crust west of the landward edge of the inner flow is classified as transitional. This region as well as the adjacent oceanic crust is soled by a 7.2–7.4 km s–1 lower crustal body which may extend beneath the entire region that experienced early Tertiary crustal extension. At the landward end of the transect a 8.5 km s–1 layer near the base of the crust is recognized. A possible relationship with large positive gravity anomalies and early Tertiary alkaline intrusions is noted.  相似文献   

5.
Estimates of the tropospheric lapse rate γ and analysis of its relation to the surface temperature T s in the annual cycle and interannual variability have been made using the global monthly mean data of the NCEP/NCAR reanalysis (1948–2001). The tropospheric lapse rate γ is about 6.1 K/km in the Northern Hemisphere (NH) as a whole and over the ocean and about 6.2 K/km over the continents. The value of γ decreases from 6.5 K/km at low latitudes to 4.5 K/km at polar latitudes. The values of dγ/dT s, the parameter of sensitivity of γ to the variation of T s for the NH in the interannual variability, are found to be about 0.04 km?1 (0.041 km?1 for the NH as a whole, 0.042 km?1 over the ocean, and 0.038 km?1 over the continents). This corresponds to an increase in γ of approximately 0.7% when the surface temperature of the NH is increased by 1 K. Estimates of dγ/dT s vary from about 0.05 km?1 in the subtropics to 0.10 km?1 at polar latitudes. When dγ/dT s is positive, the surface and tropospheric warming means a temperature decrease above a certain critical level H cr. The height of the level H cr with constant temperature, which is defined by the inverse value (dγ/dT s)?1, is about 25 km for the NH as a whole, i.e., above the tropopause. In the subtropics, H cr is about 20 km. At polar latitudes, H cr decreases to about 10 km. Positive values of dγ/dT s characterize a positive climatic feedback through the lapse rate and indicate a general decrease in the static stability of the troposphere during global warming. Along with a general tendency of γ to increase with rising T s, there are regional regimes with the opposite tendency, mainly over the ocean. The negative correlation of γ with T s is found over the oceanic tropics and midlatitudes, in particular, over the oceanic belt around Antarctica.  相似文献   

6.
Reflection profiling in a region of anomalous topography and structure in the Bay of Bengal off Burma has revealed the presence of a large submarine slide (olistostrome) at the base of the continental slope off the Bassein River. The slide overlies a thick section of Bengal Deep-Sea Fan turbidites and has a complex internal structure consisting of two primary elements. The lower element is pervasively disturbed and is interpreted as a mudflow generated at the time of the slide which spread over a large area to as much as 35 km beyond the topographic toe. This mudflow poured into a distributary channel on the Bengal Fan and virtually filled it for 145 km along its length. The upper element comprises a series of relatively coherent blocks of stratified sediments (olistoliths) bounded by curved fault planes. The blocks have been transported as much as 55 km from the original Sunda Trench wall. Their dimensions, up to 360 m thick and 2.8 km between faults, are similar to olistoliths of the slide terrain in the Apennines. The blocks are blanketed by younger slope strata. The total area covered by the slide, including the mudflow, is almost 4,000 km2, and total volume of the slide is over 900 km3. Material of the slide consists of Bengal Fan turbidites offscraped above the Sunda Subduction zone and blanketed by rapidly deposited slope sediments from a western Irrawaddy River distributary (the Bassein River) during Late Quaternary glacial low sea level. This rapid loading, probably coupled with a large earthquake, triggered the slide.  相似文献   

7.
Regulations are being developed through the International Seabed Authority (ISBA) for the exploration and mining of cobalt-rich ferromanganese crusts. This paper lays out geologic and geomorphologic criteria that can be used to determine the size and number of exploration and mine-site blocks that will be the focus of much discussion within the ISBA Council deliberations. The surface areas of 155 volcanic edifices in the central equatorial Pacific were measured and used to develop a mine-site model. The mine-site model considers areas above 2,500 m water depth as permissive, and narrows the general area available for exploration and mining to 20% of that permissive area. It is calculated that about eighteen 100 km2 exploration blocks, each composed of five 20 km2 contiguous sub-blocks, would be adequate to identify a 260 km2 20-year-mine site; the mine site would be composed of thirteen of the 20 km2 sub-blocks. In this hypothetical example, the 260 km2 mine site would be spread over four volcanic edifices and comprise 3.7% of the permissive area of the four edifices and 0.01% of the total area of those four edifices. The eighteen 100 km2 exploration blocks would be selected from a limited geographic area. That confinement area is defined as having a long dimension of not more than 1,000 km and an area of not more than 300,000 km2.  相似文献   

8.
Side-scan sonar mapping and ground-truthing of the Norwegian–Barents–Svalbard continental margin shed new light on shelf glaciation, mass wasting, hydrates, and features like the Håkon Mosby mud volcano (HMMV), reflecting upward mobility of gas, pore fluids, and sediments. Detailed HMMV examination revealed thermal gradients to 10°/m, bottom-water CH4 and temperature anomalies, H2S- and CH4-based chemosynthetic ecosystems, and subbottom methane hydrate (to 25%). Seismic and chemical data suggest HMMV origins at 2–3?km depth within the 6-km-thick depocenter. The HMMV and mound fields bordering the Bjørnøyrenna slide valley and pockmarks bordering the Storegga slide may all have formed in response to sediment failure.  相似文献   

9.
A widespread seamount province, the Rano Rahi Field, is located near the superfast spreading Southern East Pacific Rise (SEPR) between 15°–19° S. Particularly abundant volcanic edifices are found on Pacific Plate aged 0 to 6.5 Ma between 17°–19° S, an area greater than 100,000 km2. The numbers of seamounts and their volume are several times greater than those of a comparablysurveyed area near the Northern East Pacific Rise (NEPR), 8°–17° N. Most of the Rano Rahi seamounts belong to chains, which vary in length from 25 km to >240 km and which are very nearly collinear with the Pacific absolute and relative plate motion directions. Bends of 10°–15° occur along a few of the chains, and some adjacent chains converge or diverge slightly. Many seamount chains have fluctuations in volume along their length, and statistical tests suggest that some adjacent chains trade-off in volume. Several seamount chains split into two lines of volcanoes approaching the axis. In general, seamount chains composed of individual circular volcanoes are found near the axis; the chains consist of variably-overlapping edifices in the central part of the survey; to the west, volcanic ridges predominate. Near the SEPR, the volume of nearaxis seamount edifices is generally reduced near areas of deflated cross-sectional area of the axial ridge. Fresh lava flows, as imaged by sidescan sonar and sampled by dredging, exist around some seamounts throughout the entire survey area, in sharp contrast to the absence of fresh flows beyond 30 km from the NEPR. Also, the increases in seamount abundance and volume extend to much greater crustal ages than near the NEPR. Seamount magnetization analysis is also consistent with this wider zone of seamount growth, and it demonstrates the asynchronous formation of most of the seamount chains and volcanic ridges. The variety of observations of the SEPR seamounts suggests that a number of factors and mechanisms might bring about their formation, including the mantle upwelling associated with superfast spreading, off-axis mantle heterogeneities, miniplumes and local upwelling, and the vulnerability of the lithosphere to penetration by volumes of magma. In particular, we note the association of extensive, recent volcanism with intermediate wavelength gravity lineaments lows on crust aged 6 Ma. This suggests that the lineaments and some of the seamounts share a common cause which may be related to ridge-perpendicular asthenospheric convection and/or some manner of extension in the lithosphere.  相似文献   

10.
Seismic studies offshore southern Chile have revealed the presence of a 70–80 km wide accretionary prism seaward of the Golfo de Penas (GPAP), where the Chile Ridge collided with the South American Plate between 3 and 6 Ma ago. Using the paleo-positions of the Chile Ridge relative to South America, the maximum age of this accretionary prism, which continues to be formed in the aftermath of the ridge–continent collision, has been estimated. Building on these earlier findings, this study presents a mass balance analysis based on a 2D model of accretionary wedge and trench geometry. This model can explain the relative importance of sedimentary fluxes and deformation front migration for the wedge restoration. The proposed model can also serve to evaluate the effects of fluctuations in (1) terrigenous sediment flux related to climate change, and (2) subduction channel thickness on the accretionary prism growth. Notably, the data reveal that the key parameters controlling the rebuilding of the GPAP are the terrigenous sediment flux (75 km2/106 years), the relative advance of the deformation front (39.6 km/106 years), and the thickness of the subduction channel (0.1 km). Moreover, the range of possible solutions for the observed size of the accretionary prism is narrowed by fitting the present-day thickness of sediments at the deformation front. Finally, climate-induced variations in sedimentary fluxes on the margin can affect the rate of growth of the accretionary prism during short periods of time (<100,000 years).  相似文献   

11.
北极海冰正处于快速减退时期,北极海冰体积变化是全球气候变化的重要指示因子。本文利用两种卫星高度计数据(ICESat和CryoSat-2)反演得到的海冰厚度数据,结合星载辐射计提取的海冰密集度数据以及海冰年龄数据,估算了近期的北极海冰体积以及一年冰和多年冰体积变化。CryoSat-2观测时段(2011-2013年)与ICESat观测时段(2003-2008年)相比,北极海冰体积在秋季(10-11月)和冬季(2-3月)分别减少了1 426 km3和412 km3。其中,秋季和冬季的一年冰的体积增加了702 km3和2 975 km3。相反,多年冰分别减少了2 108 km3和3 206 km3。多年冰的大量流失是造成北极海冰净储量下降的主要原因。  相似文献   

12.
Seismic data from a 186 km-long refraction profile in the Santa Barbara Channel have been interpreted using several velocity inversion techniques. Data were obtained during two cruises in 1978 and 1979. Seismic arrivals from fifty explosions of between 1 and 300 lbs. of TNT were recorded by two ocean bottom seismometers, four permanent ocean bottom stations (University of Southern California), and much of the United States Geological Survey/California Institute of Technology southern California seismic network. Travel-time inversion gives a V p of 6.3 km sec-1 at 7.2 km depth above 7.2 km sec-1 at 14.4 km depth at the western end of the channel. At the eastern end, solutions suggest three sediment refractors overlying V p of 6.4 km sec-1 at 7.3 km depth, above 7.0 km sec-1 at 11.6 km depth, above mantle arrivals with V p of 8.3 km sec-1 at 21.8 km depth. The velocity structure determined by these methods suggests that the channel has a sedimentary fill of from 4 to 7 km and a layer of mafic plus ultramafic rock 14 to 17 km thick. The greatest thicknesses of sediments are restricted to east of Point Conception. The velocity data also suggest that the Franciscan formation may not be present beneath the channel. Rather, the crust here may represent a thickened portion of the Coast Range ophiolite.  相似文献   

13.
A spectacular hummocky topography was discovered offshore of the south-eastern slope of the Nisyros island volcano in the eastern sector of the Aegean volcanic arc in 2000–2001, using multibeam bathymetric mapping and seismic profiling, and interpreted as part of a volcanic debris avalanche originating onland. During E/V Nautilus cruise NA011 in 2010, a detailed side-scan sonar and ROV exploration aimed at evaluating the surface morphology of this avalanche field. Combining the new data with selected older datasets reveals that the debris avalanche is characterized by numerous (at least 78) variously sized and shaped hummocks. Some of these are distinctly round, either scattered or aligned in groups, whereas others are elongated in the form of ridges. This is consistent with existing models accounting for variations in the longitudinal and lateral velocity ratio of landslides. Maximum dimensions reach 60 m in height above the sea bottom, 220 m in length and 230 m in width. The structures outline a large tongue-shaped, submarine hummock field of about 22.2 km2, approx. 4.8 km wide and 4.6 km long and with an estimated volume of 0.277 km3. Due to its characteristic shape, the collapsed volcanic flank is interpreted to represent a singular failing event, involving a rapid and virtually instantaneous downslope movement of the slide mass into the sea. Indeed, the H/L (height of 280 m vs. run-out of 7 km) ratio for the Nisyros slide is 0.04; plotted against volume, this falls within the theoretical bounds as well as measured values typical of submarine landslides. The timing of the event is probably related to the extrusion of Nikia lavas and their subsequent failure and formation of a main scarp observed at about 120 m depth on an 8-km-long seismic profile and a map of slope angle distribution, at the depth where the palaeo-coastline was located 40 ka ago. An inferred age of ca. 40 ka for the avalanche awaits confirmation based on dating of core material.  相似文献   

14.
The Krishna–Godavari (KG) offshore basin is one of the promising petroliferous basins of the eastern continental margin of India. Drilling in this basin proved the presence of gas hydrate deposits in the shallow marine sediments beyond 750 m water depths, and provided lithologic and stratigraphic information. We obtained multibeam swath bathymetry covering an area of about 4500 km2 in water depths of 280–1800 m and about 1260 line km of high resolution seismic (HRS) records. The general lithology of midslope deposits is comprised of nannofossil-rich clay, nannofossil-bearing clay and foraminifera-bearing clay. The HRS records and bathymetry reveal evidence of slumping and sliding of the upper and midslope sediments, which result in mass transport deposits (MTD) in the northwestern part of the study area. These deposits exhibit 3–9.5 km widths and extend 10–13 km offshore. The boundaries of the MTDs are often demarcated by sharp truncation of finely layered sediments (FLS) and the MTDs are characterized by acoustically transparent zones in the HRS data. Average thickness of recent MTDs varies with depth, i.e., in the upper slope, the thickness is about 45 m, while in the lower slope it is about 60 m, and in deeper offshore locations they attain a maximum thickness of about 90 m. A direct indication for slumping and mass transportation of deposits is provided by the age reversal in 14C AMS dates observed in a sediment core located in the midslope region. Seismic profiling signatures provide indications of fluid/gas movement. We propose that the presence of steep topographic gradients, high sedimentation rates, a regional fault system, diapirism, fluid/gas movement, and neotectonic activity may have facilitated the slumping/sliding of the upper slope sediments in the KG offshore basin.  相似文献   

15.
《Marine and Petroleum Geology》2012,29(10):1806-1816
The Krishna–Godavari (KG) offshore basin is one of the promising petroliferous basins of the eastern continental margin of India. Drilling in this basin proved the presence of gas hydrate deposits in the shallow marine sediments beyond 750 m water depths, and provided lithologic and stratigraphic information. We obtained multibeam swath bathymetry covering an area of about 4500 km2 in water depths of 280–1800 m and about 1260 line km of high resolution seismic (HRS) records. The general lithology of midslope deposits is comprised of nannofossil-rich clay, nannofossil-bearing clay and foraminifera-bearing clay. The HRS records and bathymetry reveal evidence of slumping and sliding of the upper and midslope sediments, which result in mass transport deposits (MTD) in the northwestern part of the study area. These deposits exhibit 3–9.5 km widths and extend 10–13 km offshore. The boundaries of the MTDs are often demarcated by sharp truncation of finely layered sediments (FLS) and the MTDs are characterized by acoustically transparent zones in the HRS data. Average thickness of recent MTDs varies with depth, i.e., in the upper slope, the thickness is about 45 m, while in the lower slope it is about 60 m, and in deeper offshore locations they attain a maximum thickness of about 90 m. A direct indication for slumping and mass transportation of deposits is provided by the age reversal in 14C AMS dates observed in a sediment core located in the midslope region. Seismic profiling signatures provide indications of fluid/gas movement. We propose that the presence of steep topographic gradients, high sedimentation rates, a regional fault system, diapirism, fluid/gas movement, and neotectonic activity may have facilitated the slumping/sliding of the upper slope sediments in the KG offshore basin.  相似文献   

16.
Sedimentation rates were determined for the northern Gulf of Mexico margin sediments at water depths ranging from 770 to 3560 m, using radiocarbon determinations of organic matter. Resulting sedimentation rates ranged from 3 to 15 cm/kyr, decreasing with increasing water depth. These rates agree with long-term sedimentation rates estimated previously using stratigraphic methods, and with estimates of sediment delivery rates by the Mississippi River to the northern Gulf of Mexico, but are generally higher by 1–2 orders of magnitude than those estimated by 210Pbxs methods. Near-surface slope sediments from 2737 m water depth in the Mississippi River fan were much older than the rest. They had minimum 14C ages of 16–27 kyr and δ13C values ranging from −24‰ to −26.5‰, indicating a terrestrial origin of organic matter. The sediments from this site were thus likely deposited by episodic mass wasting of slope sediment through the canyon, delineating the previously suggested main pathway of sediment and clay movement to abyssal Gulf sediments.  相似文献   

17.
The Rockall Bank Mass Flow (RBMF) is a large, multi-phase submarine slope failure and mass flow complex. It is located in an area where the Feni Drift impinges upon the eastern flank of the Rockall Bank in the NE Atlantic. A 6100 km2 region of slope failure scarps, extending over a wide water depth range and with individual scarps reaching up to 22 km long and 150 m high, lies upslope of a series of mass flow lobes that cover at least 18,000 km2 of the base of slope and floor of the Rockall Trough. The downslope lobe complex has a negative topographic relief along much of its northern boundary, being inset below the level of the undisplaced contourite drift at the base of slope. The southern margin is topographically more subtle but is marked by the sharp termination of sediment waves outside the lobe. Within the lobe complex the southern margin of the largest lobe shows a positive relief along its southern margin. The initial failure is suggested to have occurred along coherent layer-parallel detachment surfaces at depths of up to 100 m and this promoted initial downslope block sliding which in turn transformed into debris flows which moved out into the basin. The remains of a deep erosional moat linked to the onlapping contourite complex bisects the region of failed slope, and post-failure thermohaline currents have continued to modify the mass flow in this area. Differential sedimentation and erosion associated with the moat may have promoted slope instability. Following the major failure phase, continuous readjustments of the slope occurred and resulted in small-volume turbidites found in shallow gravity cores collected on the lobes. The short term trigger for the failure remains uncertain but earthquake events associated with a deep-seated tectonic lineament to the north of the mass flow may have been important. A Late Pleistocene age for the slope failure is likely. The RBMF is unusual in that it records large-scale collapse of a contourite body that impinged on a sediment-undersupplied slope system. Unlike many other large slope failure complexes along the NE Atlantic margin, the RBMF occurs in a region where there was little overloading by glacial sediment.  相似文献   

18.
Some seismic refraction observations undertaken during the IGY are reported here together with a summary of other refraction studies carried out within the Transkei Basin, the Mozambique Ridge and the South African continental shelf area.A 2.5 km section of Cretaceous and younger rocks is associated with profiles observed on the continental shelf; directly below this group are rocks with velocities in the range 4.0–5.5 km s-1, probably representatives of the Karroo and Cape supergroups. The basement material velocity variations were from 5.3 to 6.5 with an average of 5.9 km s-1, and is correlated with granite or Malmesbury Formation plus granite. This crustal structure is similar to that found on the eastern continental shelf of southern South America.The profiles in the Transkei Basin show a thick layer of sediment with velocity range 1.50 to 3.50 km s-1, underlain by a refracting layer in which the average velocity is 4.5 km s-1. The velocity of 6.6 km s-1 obtained for the oceanic layer is similar to the velocities of the crustal layer measured in the Argentine Basin. The mantle velocity (8.1 km s-1) is consistent with the average mantle velocity for the Indian Ocean but significantly lower than the Pacific Ocean average of 8.20 km s-1. The depth to Moho is about 12.0 km and the crustal section is typical oceanic. A plate tectonic model of the early opening of the South Atlantic is used to describe the evolution of the Transkei Basin.On the Mozambique Ridge the thin sediments (0.7 km) are underlain by rocks with velocities averaging 5.6 km s-1. This is more than 1.0 km s-1 faster than the velocity for layer 2 from the Transkei Basin and the Agulhas Plateau, indicating rocks of a younger age or of a different type. Moreover the crustal section of the Ridge has a thickness in excess of 22 km and is in isostatic equilibrium when compared with the adjacent Transkei Basin and Agulhas Plateau. DSDP site 249, situated on the Ridge, penetrated basalt at a depth of 0.4 km. Whether this is continental or oceanic basalt is not known; when this site 249 basalt was compared to the cored basalts of the adjacent Mozambique Basin, inconclusive results were obtained. The essential constitution of the Mozambique Ridge remains an enigma, but solution of this problem is vital for the proper understanding of the Mesozoic history of this oceanic region.  相似文献   

19.
Five seismic refraction lines, 70–90 km long, were shot in the South Florida Platform region of the Gulf of Mexico using digital ocean-bottom seismographs. Apparent velocities and depths were calculated from the refracted arrivals using a flat-layer model for the region. The two dominant refractors have apparent compressional-wave velocity ranges of 5.6 to 5.9 km s–1 and 6.2 to 6.7 km s–1. On the Sarasota Arch, the depth to the top of a 5.8–5.9km/s layer is 3–4 km below sea level. This depth corresponds to the depth to the crystalline basement. The basement dips to the north and to the south from the arch, with velocity of the upper crust increasing from 5.8–5.9 km s–1 to a maximum of 6.7 km s–1 at a depth of 6.3 km. Under the continental slope, the crust has presumably been thinned and extended. The deepest refractor has an apparent velocity of about 7.5 km s–1 at a depth of 25 km. The thickness of the crustal section and the absence of any mantle arrivals in these long refraction profiles on the platform suggest that thick continental crust underlies the South Florida Platform. A north-south cross-section through the platform suggests the presence of two structural highs separated by a portion of the South Florida Basin, which contains at least 5 km of sediment.  相似文献   

20.
We have developed and run a model with sufficiently high resolution (9 km and 45 levels) and a large enough spatial domain to allow for realistic representation of flow through the narrow and shallow straits in the northern Bering Sea. This is potentially important for quantification of long-term mean and time-dependent ocean circulation, and water mass and property exchanges between the Pacific and Arctic Oceans. Over a 23 year interval (1979–2001), mean transport through Bering Strait is estimated to be 0.65 Sv. Comparison of our model results with published observations indicates that ocean circulation is not only variable at seasonal to interdecadal scales but it is also responsive to short-term atmospheric forcing. One of such events occurred during the winter of 2000–2001 with reversed oceanic flow in some areas and much reduced sea-ice cover. Analyses of eddy kinetic energy fields identify some high biological productivity regions of the Chirikov Basin coincident with persistent high energy (up to 2700 cm2 s−2 in the surface layer and up to 2600 cm2 s−2 at mid-depth) throughout the annual cycle. Model output in the Bering Strait region is validated against several time series of moored observations of water mass properties. Comparison with shipboard observations of near-bottom salinity from late winter through autumn indicates that the model reasonably represents the major water-mass properties in the region. The modeled vertical water-column structure in the northern Bering Sea allows increased understanding of the mechanisms of water transformation and transport northward through Bering Strait into the Chukchi and Beaufort Seas. We conclude that the long-term model results for the northern Bering Sea provide important insights into the ocean circulation and fluxes and they are a useful frame of reference for limited observations that are short-term and/or cover only a small geographic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号