首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北京气候中心大气模式对季节内振荡的模拟   总被引:6,自引:1,他引:6  
董敏  吴统文  王在志  张芳 《气象学报》2009,67(6):912-922
对北京气候中心大气模式(BCC AGCM2.0.1)模拟热带季节内振荡的能力进行了检验.北京气候中心新一代气候模式(BCC AGCM2.0.1)是在原中国国家气候中心模式的基础上参考NCAR CAM3改进形成的.新模式中引进了一个新的参考大气和参考面气压.因此原模式的预报量中的气温(T)和地面气压(p_s)则变为它们对参考大气气温的偏差和对参考面气压的偏差.模式还加入了新的Zhang-Mcfarlane对流参数化方案,并对其参数计算方法进行调整和改进.此外还对模式边界层处理、雪盖计算等进行了改进.上述模式在实测的月海温作为下边界条件的情况下运行52年(1949年9月-2001年10月).然后对运行结果中的季节内振荡的状况进行分析,主要结果如下:NCAR CAM3模式模拟热带季节内振荡的能力很差,主要表现在模拟的热带季节内振荡强度很弱;东移波与西移波的强度很接近,而实际观测中是东移波的能量要远大于西移波;季节内振荡的季节变化及空间分布与观测相差很远.北京气候中心大气模式(BCC AGCM2.0.1)模拟热带季节内振荡的能力有显著的提高.模拟的热带季节内振荡很明显,强度接近于观测结果;模拟东移波的能量要大于西移波,这与观测较为一致;季节内振荡的季节变化和空间分布与观测相差不大.总的来看,BCC AGCM2.0.1模式在模拟热带季节内振荡方面比CAM3模式有明显的改进.  相似文献   

2.
Daily mean outputs for 12 yr (1978-1989) from two general circulation models (SAMIL-R42L9 and CAM2.0.2) are analyzed and compared with the corresponding NCEP/NCAR reanalysis dataset, and results in two models show clearly that the root-mean square errors (RMSEs) from the simulation of intraseasonal oscillation can take 30-40 percent of the total RMSE, particularly, the distributions of the RMSE in simulating intraseasonal oscillation are almost identical with that of the total RMSE. The maximum RMSE of intraseasonal oscillation height at 500 hPa is shown in the middle latitude regions, but there are also large RMSEs of intraseasonal oscillation wind over the tropical western Pacific and tropical Indian Oceans. The simulated ISO energy in the tropic has very large difference from the result of the NCEP/NCAR reanalysis dataset which means the simulation of tropical atmospheric ISO still possesses serious insufficiency. Therefore, intraseasonal oscillation in the weather and climate numerical simulation is very important, and thus, how to improve the ability of the GCM to simulate the intraseasonal oscillation becomes very significant.  相似文献   

3.
大气季节内振荡的耦合模式数值模拟   总被引:17,自引:5,他引:17  
李薇  俞永强 《大气科学》2001,25(1):118-132
分析GOALS/LASG海气耦合模式10年积分200hPa纬向风场的逐日输出结果,引用1980~1989年期间逐日的NCEP/NCAR再分析资料作为实测对照,结果显示该耦合模式抓住了热带大气低频振荡(IO)的基本时空分布特征,模拟IO的强度较多数大气模式强而接近真实,但空间一致性仍不清晰,典型周期不够显著。NCEP资料与耦合模式都反映模拟IO的季节变化与其年际变化有关,模拟较强IO的年份表现IO的季节变化特征也较真实。模拟IO的年际变化与热带东太平洋的SST呈明显的负相关变化。SST暖异常的年份,IO活动较弱。IO变化滞后于SST异常60天左右的相关性最显著。对比单独积分GOALS/LASG的大气模式的结果,发现二者的主要差别在于耦合模式再现IO的季节性特征更真实,反映了海气耦合对IO变化的调制作用。利用海气耦合模式,理解IO对流活动与上层海洋的相互作用过程,是真实描述IO必要的手段。  相似文献   

4.
Tropical intraseasonal oscillation (including the Madden-Julian oscillation) is an important element of the atmospheric circulation system. The activities and anomalies of tropical intraseasonal oscillations affect weather and climate both inside and outside the tropical region. The study of these phenomena therefore represents one of the frontiers of atmospheric sciences. This review aims to synthesize and summarize studies of intraseasonal oscillation (ISO) by Chinese scientists within the last 5-10 years. We focus particularly on ISO's mechanisms, its numerical simulations (especially the impacts of diabatic heating profiles), relationships and interactions with ENSO (especially over the western Pacific), impacts on tropical cyclone genesis and tracks over the northwestern Pacific, and influences on the onset and activity of the South and East Asian monsoons (especially rainfall over China). Among these, focuses of ongoing research and unresolved issues related to ISO are also discussed.  相似文献   

5.
热带大气10~20天振荡的大气环流模式数值模拟   总被引:5,自引:0,他引:5  
利用大气环流模式对热带大气10~20天振荡进行了数值模拟研究,其结果同观测资料分析基本一致。模式资料的功率谱及动能的分析表明,10~20天振荡确实比30~60天振荡更突出地存在于热带大气中。同热带大气30~60天振荡的结构有些不同,对于在热带10~20天振荡,除纬向1波外,纬向2波也很明显;流动的斜压结构特征欠佳;系统以较快速度沿赤道西移。暖SST事件对热带大气10~20天振荡的影响也进行了模拟,对结果的比较分析表明,暖STT将使10~20天大气振荡减弱,使其结构更趋正压性。  相似文献   

6.
Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999,the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associated with global warming are analyzed and compared in this study.It is found that during the last 20 years,the ISO has weakened in the central equatorial Pacific Ocean,but becomes more active in the central Indian Ocean and the Bay of Bengal;under the background of the global warming,increase in the amplitude of ISO intensity suggests that the ISO has become more active than before,with an obvious seasonal cycle,i.e.,strong during winter and spring,but weak during summer and autumn;the energy of the upper tropospheric zonal winds has more concentrated in wave numbers 1-3,and the frequency of ISO tended to increase. Comparison between the results of control experiment and CO_2 increase (1% per year) experiment of FGOALS-1.0g (developed at LASG) with the first and second 20-yr observations,is also performed. respectively.The comparative results show that the spatial structure of the ISO was well reproduced,but the strength of ISO was underestimated.On the basis of space-time spectral analysis,it is found that the simulated ISO contains too much high frequency waves,leading to the underestimation of ISO intensity due to the dispersion of ISO energy.However,FGOALS-1.0g captured the salient features of ISO under the global warming background by two contrast experiments,such as the vitality and frequency-increasing of ISO in the central Indian Ocean and the Bay of Bengal.  相似文献   

7.
The ability of AGCM to simulate the tropical intraseasonal oscillation (ISO) has been studied using the output of global spectral model (ALGCM (R42L9)) of the Institute of Atmospheric Physics, Chinese Academy of Sciences, and the outoput is compared with the results from NCEP/NCAR reanalysis for the year 1978-1989. The model displays an evident periodic signal of the tropical ISO. Basic propagating characters of the tropical ISO are captured, and changes in phase speed between Eastern and Western Hemispheres are also well presented, and the simulation of eastward propagation is better than that of westward propagation. This model has increased the ability to simulate the strength of the tropical ISO, especially at 200 hPa, and basically simulates the horizontal structure of wind characterized by the convergence in low-level and divergence in upper-level. The vertical structure of the zonal wind is also well reproduced. Moreover, observed results show that the representing of seasonal preference to form strong ISO in winter and spring is related to ISO's interannual variability, but it is shown in this model with strong ISO in winter and summer and weak ISO in spring and autumn. Structures of some physical elements such as vertical velocity, divergence, specific humidity, etc., and the special distribution of ISO have also differences with these from NCEP reanalysis data, which make it clear to develop this model to simulate the structure and spatial distribution of the ISO.  相似文献   

8.
热带季节内振荡模拟研究的若干进展   总被引:2,自引:5,他引:2  
董敏  李崇银 《大气科学》2007,31(6):1113-1122
大气季节内振荡(ISO)在长期天气和气候变化中有重要作用,它是20世纪70~80年代以来大气科学领域的重要研究课题。本文简要介绍近年来季节内振荡的数值模拟研究的成果和进展,包括数值模式模拟季节内振荡能力的进展; 模式模拟ISO能力对模式中对流参数化方案的敏感性;ISO模拟结果与基本态的关系;外强迫对模拟结果的影响; ENSO与ISO关系的模拟研究,以及全球变暖对ISO影响的模拟研究等。最后,对今后的研究工作提出了一些建议。  相似文献   

9.
This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model(BCC-CSM) and its four component models(atmosphere,land surface,ocean,and sea ice).Two recent versions are described:BCC-CSM1.1 with coarse resolution(approximately 2.8125°×2.8125°) and BCC-CSM1.1(m) with moderate resolution(approximately 1.125°×1.125°).Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation.Both models well simulate the concentration and temporal evolution of atmospheric CO_2 during the 20th century with anthropogenic CO2 emissions prescribed.Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase five(CMIP5) in support of the Intergovernmental Panel on Climate Change(IPCC) Fifth Assessment Report(AR5).These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections.Simulations of the 20th century climate using BCC-CSMl.l and BCC-CSMl.l(m) are presented and validated,with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales.Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed.Both BCC-CSMl.l and BCC-CSMl.l(m) perform well when compared with other CMIP5 models.Preliminary analyses indicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSMl.l,particularly on regional scales.  相似文献   

10.
The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)--SAMIL (Spectral Atmospheric Model of IAP LASG). Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme (MCA) and the Zhang-McFarlane (ZM) scheme. MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme. MJO produced by the ZM scheme is too weak and shows little propagation characteristics. Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation. These two cumulus schemes produced different vertical structures of the heating profile. The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA, which maybe contributes greatly to the failure of simulating a reasonable MJO. Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in. The diabatic heating profile plays an important role in the performance of the GCM. Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere (UH), middle troposphere (MH), and lower troposphere (LH). Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale, while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward. It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels, especially in the middle levels, while westward propagating disturbances  相似文献   

11.
The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscilla tion)to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)-SAMIL(Spectral Atmospheric Model of IAP LASG).Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme(MCA)and the Zhang-McFarlane(ZM)scheme.MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme.MJO produced by the ZM scheme is too weak and shows little propagation characteristics.Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation.These two cumulus schemes produced different vertical structures of the heating profile.The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA,which maybe contributes greatly to the failure of simulating a reasonable MJO.Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in.The diabatic heating profile plays an important role in the performance of the GCM.Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere(UH), middle troposphere(MH),and lower troposphere(LH).Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale,while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward.It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels,especially in the middle levels,while westward propagating disturbances axe more prone to be produced when the maximum heating appears very high.  相似文献   

12.
The present study investigates modulation of western North Pacific(WNP) tropical cyclone(TC) genesis in relation to different phases of the intraseasonal oscillation(ISO) of ITCZ convection during May to October in the period 1979-2008.The phases of the ITCZ ISO were determined based on 30-80-day filtered OLR anomalies averaged over the region(5-20 N,120-150 E).The number of TCs during the active phases was nearly three times more than during the inactive phases.The active(inactive) phases of ISO were characterized by low-level cyclonic(anticyclonic) circulation anomalies,higher(lower) midlevel relative humidity anomalies,and larger(smaller) vertical gradient anomalies of relative vorticity associated with enhanced(weakened) ITCZ convection anomalies.During the active phases,TCs tended to form in the center of the ITCZ region.Barotropic conversion from the low-level mean flow is suggested to be the major energy source for TC formation.The energy conversion mainly depended on the zonal and meridional gradients of the zonal flow during the active phases.However,barotropic conversion weakened greatly during the inactive phases.The relationship between the meridional gradient of absolute vorticity and low-level zonal flow indicates that the sign of the absolute vorticity gradient tends to be reversed during the two phases,whereas the same sign between zonal flow and the absolute vorticity gradient is more easily satisfied in the active phases.Thus,the barotropic instability of low-level zonal flow might be an important mechanism for TC formation over the WNP during the active phases of ISO.  相似文献   

13.
外强迫对热带季节内振荡影响的模拟研究   总被引:3,自引:2,他引:3  
应用经过修改的NCAR CCM3模式和CAM2模式进行的数值实验结果以及NCEP的GFS模式的输出结果讨论了海温等外强迫作用对热带季节内振荡的影响.结果表明,热带季节内振荡是热带大气固有的内部变率.它是由大气内部过程的相互作用决定的.但外强迫对热带季节内振荡的强度、传播方向等有明显的影响.当外强迫没有变化时,模式可以模拟出与观测近似的低频振荡.当作为外强迫的海温和太阳辐射有年内季节变化时,模式模拟的季节内振荡则明显减弱.当海温与辐射不仅有季节变化而且有年际变化时,模式模拟的季节内振荡会进一步减弱.具有长周期的外强迫还会削弱季节内振荡中东移波动的能量而增加静止波的强度.在与海洋模式耦合的状态下,模式不受来自海洋的外强迫影响,而是与海洋构成一个耦合系统,可以产生最强的季节内振荡.  相似文献   

14.
贾小龙  李崇银  凌健 《大气科学》2008,32(5):1037-1050
基于与NCEP资料结果的比较,研究了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的大气环流模式SAMIL对夏季南亚季风区季节内振荡(ISO)向北传播特征的模拟,并结合目前对ISO北传机制的理解对模拟结果进行了分析讨论。SAMIL在夏季南亚地区模拟出相当强度的季节内振荡的活动,并且模拟的ISO也表现出与NCEP资料相似的从赤道向北传播的特征,但传播的速度要慢于NCEP资料的结果。模拟的北传ISO具有与NCEP资料相似的结构特征,涡度和水汽场明显的呈经向不对称,涡度和水汽的正异常位于ISO对流的北面,最大的上升运动和最强的行星边界层辐合也位于ISO对流的北面。ISO 结构的经向不对称性正是模式模拟的ISO具有向北传播特征的原因;而模式对夏季南亚季风区高低层风场和行星边界层水汽的合理模拟起了关键的作用。同时,根据关于ISO北传机理的已有研究,模式的结果也表明南亚地区夏季风场的垂直结构是那里ISO向北传播的重要机制。  相似文献   

15.
In this study,we evaluate the forecast skill of the subseasonal-to-seasonal(S2S)prediction model of the Beijing Climate Center(BCC)for the boreal summer intraseasonal oscillation(BSISO).We also discuss the key factors that inhibit the BSISO forecast skill in this model.Based on the bivariate anomaly correlation coefficient(ACC)of the BSISO index,defined by the first two EOF modes of outgoing longwave radiation and 850-hPa zonal wind anomalies over the Asian monsoon region,we found that the hindcast skill degraded as the lead time increased.The ACC dropped to below 0.5for lead times of 11 days and longer when the predicted BSISO showed weakened strength and insignificant northward propagation.To identify what causes the weakened forecast skill of BSISO at the forecast lead time of 11 days,we diagnosed the main mechanisms responsible for the BSISO northward propagation.The same analysis was also carried out using the observations and the outputs of the four-day forecast lead that successfully predicted the observed northward-propagating BSISO.We found that the lack of northward propagation at the 11-day forecast lead was due to insufficient increases in low-level cyclonic vorticity,moistening and warm temperature anomalies to the north of the convection,which were induced by the interaction between background mean flows and BSISO-related anomalous fields.The BCC S2S model can predict the background monsoon circulations,such as the low-level southerly and the northerly and easterly vertical shears,but has limited capability in forecasting the distributions of circulation and moisture anomalies.  相似文献   

16.
Using the ERA-40 data and numerical simulations, this study investigated the teleconnection over the extratropical Asian-Pacific region and its relationship with the Asian monsoon rainfall and the climatological characteristics of tropical cyclones over the western North Pacific, and analyzed impacts of the Tibetan Plateau (TP) heating and Pacific sea surface temperature (SST) on the teleconnection. The Asian-Pacific oscillation (APO) is defined as a zonal seesaw of the tropospheric temperature in the midlatitudes of the Asian-Pacific region. When the troposphere is cooling in the midlatitudes of the Asian continent, it is warming in the midlatitudes of the central and eastern North Pacific; and vice versa. The APO also appears in the stratosphere, but with a reversed phase. Used as an index of the thermal contrast between Asia and the North Pacific, it provides a new way to explore interactions between the Asian and Pacific atmospheric circulations. The APO index exhibits the interannual and interdecadal variability. It shows a downward trend during 1958-2001, indicating a weakening of the thermal contrast, and shows a 5.5-yr oscillation period. The formation of the APO is associated with the zonal vertical circulation caused by a difference in the solar radiative heating between the Asian continent and the North Pacific. The numerical simulations further reveal that the summer TP heating enhances the local tropospheric temperature and upward motion, and then strengthens downward motion and decreases the tropospheric temperature over the central and eastern North Pacific. This leads to the formation of the APO. The Pacific decadal oscillation and El Nino/La Nina over the tropical eastern Pacific do not exert strong influences on the APO. When there is an anomaly in the summer APO, the South Asian high, the westerly jet over Eurasia, the tropical easterly jet over South Asia, and the subtropical high over the North Pacific change significantly, with anomalous Asian monsoon rainfall and tropical cyclon  相似文献   

17.
西北太平洋台风活动与大气季节内振荡   总被引:4,自引:1,他引:4  
李崇银  潘静  田华  杨辉 《气象》2012,38(1):1-16
本文综合介绍了大气季节内振荡与西北太平洋台风活动关系的最新研究结果。主要内容是:大气MJO的活动对西北太平洋台风的生成有比较明显的调制作用,在MJO的活跃期与非活跃期西北太平洋生成台风数的比例为2:1;而在MJO活跃期,对流中心位于赤道东印度洋(即MJO第2~3位相)与对流中心在西太平洋地区(即MJO第5~6位相)时的比例也为2:1。在MJO的不同位相,西太平洋地区的动力因子和热源分布形势有很明显不同。在第2~3位相,各种因子均呈现出抑制西太平洋地区对流及台风发展的态势;而在第5~6位相则明显促进对流的发生发展。这说明MJO在不断东移的过程中,将影响和改变大气环流形势,最终影响台风的生成。对多台风年与少台风年850 hPa的30~60 d低频动能距平合成分析表明,在多台风年有两个低频动能的大值区,其中最显著的是低频动能正异常位于菲律宾以东15°N以南的西北太平洋地区,此区域正好为季风槽所在的位置。而少台风年的情况与多台风年相反,从阿拉伯海东部经印度半岛、孟加拉湾一直到我国南海地区,都是低频动能的大值区,最大的低频动能中心位于印度半岛和我国南海南部;而菲律宾以东的西北太平洋是低频动能的负距平区,季风槽偏弱,对台风生成发展不利。200 hPa速度势场清楚表明,多台风年(少台风年)在菲律宾以东的西北太平洋上表现为高层辐散(辐合),增强(减弱)该地区的上升气流,有利于(不利于)台风的生成。大气季节内振荡(ISO)对西北太平洋台风路径影响的研究表明,大气ISO)流场对台风路径预报有重要参考意义。其结果表明,台风生成时850 hPa低频气旋(LFC)的正涡度带(特别是最大正涡度线)走向往往预示着台风的未来走向;200 hPa的低频环流形势对台风的路径也有一定的指示作用,与200 hPa低频反气旋(LFAC)相联系的200 hPa强低频气流对台风起着引导气流的作用。  相似文献   

18.
夏季中国东部降水季节内振荡的区域模式模拟   总被引:2,自引:1,他引:2  
赵崇博  周天军  李博 《大气科学》2011,35(6):1033-1045
利用中国科学院大气物理研究所大气科学与地球流体力学国家重点实验室( LASG)发展的区域气候模式CREM,对中国东部夏季降水的季节内振荡(ISO)进行了模拟研究,通过与格点和卫星观测降水资料及NCEP2再分析资料的对比,评估了该模式的优缺点.结果表明,该模式对东部季风区ISO具有较强的模拟能力.模式能够模拟出中国东部夏...  相似文献   

19.
Abstract The authors evaluate the performance of models from Coupled Model Intercomparison Project Phase 5(CMIP5)in simulating the historical(1951-2000)modes of interannual variability in the seasonal mean Northern Hemisphere(NH)500 hPa geopotential height during winter(December-January-February,DJF).The analysis is done by using a variance decomposition method,which is suitable for studying patterns of interannual variability arising from intraseasonal variability and slow variability(time scales of a season or longer).Overall,compared with reanalysis data,the spatial structure and variance of the leading modes in the intraseasonal component are generally well reproduced by the CMIP5 models,with few clear differences between the models.However,there are systematic discrepancies among the models in their reproduction of the leading modes in the slow component.These modes include the dominant slow patterns,which can be seen as features of the Pacific-North American pattern,the North Atlantic Oscillation/Arctic Oscillation,and the Western Pacific pattern.An overall score is calculated to quantify how well models reproduce the three leading slow modes of variability.Ten models that reproduce the slow modes of variability relatively well are identified.  相似文献   

20.
ITCZ的季节内振荡及其与热带气旋发生阶段性的关系   总被引:4,自引:0,他引:4  
刘舸  孙淑清  张庆云 《大气科学》2009,33(4):879-889
利用中国气象局提供的热带气旋资料和NCEP/NCAR再分析等资料, 研究了热带辐合带(Intertropical Convergence Zone, 简称ITCZ)上对流强度的季节内振荡特征及其与热带气旋生成频数阶段性变化的关系, 并进一步研究了它与越赤道气流、 赤道西风和ITCZ北侧偏东风季节内振荡的关系。研究发现: (1) ITCZ对流强度的变化有明显的30~60 d振荡, 西太平洋 (5°N~20°N, 120°E~150°E) 范围内的热带气旋约有2/3发生在30~60 d振荡的活跃位相。(2) ITCZ季节内振荡在热带地区表现为向东传播的特征, 而在副热带地区 (25°N~35°N) 表现出清晰的西传特征。在ITCZ季节内振荡较强年, 振荡在由赤道传播至15°N左右时, 与北面向南传播的振荡在该纬度附近汇合, 对流强度增强, 使热带气旋在此期间频繁发生。而在弱年, 振荡由赤道一直向北传播至30°N附近, 15°N附近的ITCZ对流较弱, 热带气旋生成偏少。(3) 赤道西风、105°E~110°E越赤道气流和ITCZ北侧的偏东风气流本身也存在30~60 d振荡。这三支气流的30~60 d振荡与ITCZ的季节内强弱变化密切相关。然而, 相比之下偏东风气流的30~60 d振荡和ITCZ对流强弱的30~60 d振荡对应关系略差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号