首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Powerful VHF radars are capable of almost continuously monitoring the threedimensional velocity vector and the distribution of turbulence in the middle atmosphere, i.e. the stratosphere and mesosphere. Methods of radar investigations of the middle atmosphere are outlined and the basic parameters, mean and fluctuating velocities as well as reflectivity and persistency of atmospheric structures, are defined. Results of radar investigations are described which show that the tropopause level as well as a criterion on the stability of the lower stratosphere can be deduced. Besides mean wind velocities, VHF radars can measure instantaneous velocities due to acoustic gravity waves. The interaction of gravity waves with the background wind is discussed, and it is shown that cumulus convection is an effective source of gravity waves in the lower stratosphere. The vertical microstructure of the stratosphere, manifesting itself in thin stratified sheets in which temperature steps occur, is investigated by applying knowledge from investigations of the oceanic thermocline. Possible origins, like shear generation and lateral convection of the microstructure of the stratosphere, are discussed. Observations of gravity waves in the mesosphere are reviewed and their connection with turbulence structures is pointed out. Finally, some open questions which could be answered by further VHF radar investigations are summarized.  相似文献   

2.
钟玮  陆汉城  张大林 《地球物理学报》2010,53(11):2551-2563
利用非对称波分量分解和小波分析的方法,对准平衡动力模型下非对称强飓风内中尺度波动的空间结构和时间序列特征进行分析.结果表明,平衡流场中1波扰动占主要地位且具有涡旋Rossby波的典型结构特征,准平衡流各波数下扰动的空间分布反映了中尺度波动的混合性质;模式大气和准平衡垂直运动的全局功率谱中,超过信度检验的强波动信号中不仅包含分别表征重力波和涡旋Rossby波的高频和低频波动信号,还存在表征具有物理性质不可分特性的混合涡旋Rossby-重力波的中频波动.混合波的出现建立了不同频段波动之间的能量交换通道,其信号的变化对飓风系统的强弱变化具有一定的指示作用.非平衡垂直运动的波动强信号则主要集中在高频和低频区域,反映了在飓风强度变化情况下,与高频重力波有关的快波调整过程所引起的垂直扰动的振荡和传播.强垂直风切变对飓风内中尺度波动的切向和径向传播具有重要影响,当环境垂直风切变很强时,准平衡1波扰动在径向和切向方向上均呈"驻波"形态,随着环境垂直风切变的减弱,1波扰动以混合波波速逆基本气流传播.  相似文献   

3.
一次暴雨过程中重力波参数演变特征的模拟结果   总被引:4,自引:0,他引:4       下载免费PDF全文
本文利用中尺度数值模式WRF对2003年7月4-5日淮河流域特大暴雨过程进行了数值模拟,并利用高时空分辨率模拟结果资料,提取了暴雨中心区大气重力波频率、周期、水平波长、垂直波长、水平相速和群速等特征参数,分析了暴雨过程中重力波参数随时间的演变特征.结果表明,对此次暴雨强降水过程影响较大的重力波主要是发展的中 α 尺度波和中 β 尺度波,暴雨后期随着重力波的频散,周期和水平波长有减小趋势,频率有增大趋势.非降水区的重力波参数特征和降水中心区有明显不同,大气中小振幅的中 α 尺度和中 β 尺度重力波是否发展和暴雨强降水的发生关系密切.  相似文献   

4.
中层大气重力波的全球分布特征   总被引:6,自引:3,他引:3       下载免费PDF全文
从2002年1月到2009年12月的SABER温度剖面数据提取了可以反映重力波活动的垂直尺度2~10 km的中尺度温度扰动,分析了全球中层大气重力波的分布.重力波扰动在夏季和冬季明显强于春季和秋季,而冬季与夏季相比,在70 km以下的高度夏季弱于冬季,在70 km以上夏季比冬季要强.从全球重力波分布来看,较大值分布在冬...  相似文献   

5.
重力波在中层大气温度波导中的传播模式研究   总被引:2,自引:1,他引:1       下载免费PDF全文
本文给出了重力波在中层大气温度波导中的导制传播模型,并在此模型的基础上详细讨论了重力波部分导制传播下的对称模式与非对称模式,导出了不同模式下相应的特征函数和色散方程,进一步用离散的方法对两类色散方程进行了求解;同时还利用二维全隐欧拉格式(FICE)对重力波在温度波导中的传播进行了模拟,模拟的结果也成功地展现了对称与非对称两种传播模式.研究表明,下边界的扰动能量在向上传播进入波导区域后被俘获,形成导制传播.不同周期的初始扰动,在波导内均会形成对称与非对称形式两种模式的导制传播,由于两者的行进速度不一致,最终会引起两种不同模式的分离.数值模拟中重力波的水平行进速度与线性模型预测值非常接近.波导中不同模式下重力波的水平波长与初始扰动的水平波长非常一致,然而波导区域内重力波的频率与初始扰动的频率无关,频率不同的初始扰动会激发出相同频率的重力波对称与非对称导制传播模式.这表明在确定的温度波导中,水平波数才是决定重力波传播特性的决定因素.进一步的分析显示,初始扰动的水平波数-频率分布越接近完全导制传播的色散关系时,温度波导中更易于生成以该种模式部分导制传播的重力波.  相似文献   

6.
风垂直切变对中尺度地形对流降水影响的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
赵玉春  王叶红 《地球物理学报》2012,55(10):3213-3229
针对长江中下游中尺度地形特点以及暴雨过程发生发展期间风垂直切变的主要观测特征,设计了一系列中尺度地形的三维理想数值试验,分析了干大气地形流和重力波特征,探讨了条件不稳定湿大气地形对流降水的模态分布,在此基础上研究了圆形、直线风垂直切变和切变厚度对中尺度地形对流降水强度和模态分布的影响.结果发现:在 Fr≈1的干大气条件下,气流遇到地形后分支、绕流和爬升现象同时存在,地形激发的重力波在水平和垂直方向上传播,其在迎风坡、背风坡、地形上游和下游的振幅不同,并组织出不同强度的垂直上升运动.在Fr > 1的条件不稳定湿大气下,地形对流降水主要存在三种模态,即迎风坡和背风坡准静止对流降水以及地形下游移动性对流降水,地形对流降水的形成与重力波在低层组织的上升运动密切相关.风垂直切变对地形对流降水的强度和模态分布有重要作用,其中圆形风垂直切变(风随高度旋转)不仅影响地形下游对流降水系统的移动方向,而且影响迎风坡和背风坡山脚处对流降水中心的分布和强度;直线风垂直切变(风随高度无旋转)主要影响地形对流降水的移动速度和强度.风随高度自下而上顺(逆)时针旋转,地形对流系统向下游传播时向右(左)偏移.风垂直切变主要通过影响地形重力波的结构和传播以及对流系统的形成、移动方向和速度,来影响地形对流降水的模态分布,其中对流层中低层的风垂直切变对地形对流降水强度和模态分布有重要影响.  相似文献   

7.
Since gravity waves significantly influence the atmosphere by transporting energy and momentum, it is important to study their wave spectrum and their energy dissipation rates. Besides that, knowledge about gravity wave sources and the propagation of the generated waves is essential. Originating in the lower atmosphere, gravity waves can move upwards; when the background wind field is equal to their phase speed a so-called critical layer is reached. Their breakdown and deposition of energy and momentum is possible. Another mechanism which can take place at critical layers is gravity wave reflection.In this paper, gravity waves which were observed by foil chaff measurements during the DYANA (DYnamics Adapted Network for the Atmosphere) campaign in 1990 in Biscarrosse (44°N, 1°W)—as reported by Wüst and Bittner [2006. Non-linear wave–wave interaction: case studies based on rocket data and first application to satellite data. Journal of Atmospheric and Solar-Terrestrial Physics 68, 959–976]—are investigated to look for gravity wave reflection processes. Following nonlinear theory, energy dissipation rates according to Weinstock [1980. Energy dissipation rates of turbulence in the stable free atmosphere. Journal of the Atmospheric Sciences 38, 880–883] are calculated from foil chaff cloud and falling sphere data and compared with the critical layer heights. Enhanced energy dissipation rates are found at those altitudes where the waves’ phase speed matches the zonal background wind speeds. Indication of gravity wave trapping is found between two altitudes of around 95 and 86 km.  相似文献   

8.
Recent investigations of atmospheric gravity waves (AGW) and travelling ionospheric disturbances (TID) in the Earth’s thermosphere and ionosphere are reviewed. In the past decade, the generation of gravity waves at high latitudes and their subsequent propagation to low latitudes have been studied by several global model simulations and coordinated observation campaigns such as the Worldwide Atmospheric Gravity-wave Study (WAGS), the results are presented in the first part of the review. The second part describes the progress towards understanding the AGW/TID characteristics. It points to the AGW/TID relationship which has been recently revealed with the aid of model-data comparisons and by the application of new inversion techniques. We describe the morphology and climatology of gravity waves and their ionospheric manifestations, TIDs, from numerous new observations.  相似文献   

9.
Lee and mountain waves are dominant dynamic processes in the atmosphere above mountain areas. ST VHF radars had been intensively used to investigate these wave processes. These studies are summarized in this work. After discussing features of long-period quasi-stationary lee waves, attention is drawn to the frequent occurrence of freely propagating waves of shorter periods, which seem to be more common and characteristic for wave processes generated over mountainous areas. Characteristics of these waves such as their relation to the topography and background winds, the possibility of trapping by and breaking in the tropopause region and their propagation into the stratosphere is investigated. These orographically produced waves transport energy and momentum into the troposphere and stratosphere, which is considered an important contribution to the kinetic energy of the lower atmosphere. The occurrence of inertia-gravity waves in the stratosphere had been confused with lee waves, which is discussed in conclusion. Finally further questions on mountain and lee waves are drawn up, which remain to be solved and where investigations with ST radars could play a fundamental role.  相似文献   

10.
In the present paper zonal mean flow excitation by inertial waves is studied in analogy to mean flow excitation by gravity waves that plays an important role for the quasi-biennial oscillation in the equatorial atmosphere. In geophysical flows that are stratified and rotating, pure gravity and inertial waves correspond to the two limiting cases: gravity waves neglect rotation, inertial waves neglect stratification. The former are more relevant for fluids like the atmosphere, where stratification is dominant, the latter for the deep oceans or planet cores, where rotation dominates. In the present study a hierarchy of simple analytical and numerical models of zonally symmetric inertial wave-mean flow interactions is considered and the results are compared with data from a laboratory experiment. The main findings can be summarised as follows: (i) when the waves are decoupled from the mean flow they just drive a retrograde (eastward) zonal mean flow, independent of the sign of the meridional phase speed; (ii) when coupling is present and the zonal mean flow is assumed to be steady, the waves can drive vertically alternating jets, but still, in contrast to the gravity wave case, the structure is independent of the sign of the meridional phase speed; (iii) when coupling is present and time-dependent zonal mean flows are considered the waves can drive vertically and temporarily oscillating mean flows. The comparison with laboratory data from a rotating annulus experiment shows a qualitative agreement. It appears that the experiment captures the basic elements of the inertial wave mean flow coupling. The results might be relevant to understand how the Equatorial Deep Jets can be maintained against dissipation, a process currently discussed controversially.  相似文献   

11.
Thunderstorms and the lightning that they produce are inherently interesting phenomena that have intrigued scientists and mankind in general for many years. The study of thunderstorms has rapidly advanced during the past century and many efforts have been made towards understanding lightning, thunderstorms and their consequences. Recent observations of optical phenomena above an active lightning discharge along with the availability of modern technology both for data collection and data analysis have renewed interest in the field of thunderstorms and their consequences in the biosphere. In this paper, we review the electrification processes of a thunderstorm, lightning processes and their association with global electric circuit and climate. The upward lightning discharge can cause sprites, elves, jets, etc. which are together called transient luminous events. Their morphological features and effects in the mesosphere are reviewed. The wide spectrum of electromagnetic waves generated during lightning discharges couple the lower atmosphere with the ionosphere/magnetosphere. Hence various features of these waves from ULF to VHF are reviewed with reference to recent results and their consequences are also briefly discussed.  相似文献   

12.
The mechanism of generation of internal gravity waves (IGW) by mesoscale turbulence in the troposphere is considered. The equations that describe the generation of waves by hydrodynamic sources of momentum, heat and mass are derived. Calculations of amplitudes, wave energy fluxes, turbulent viscosities, and accelerations of the mean flow caused by IGWs generated in the troposphere are made. A comparison of different mechanisms of turbulence production in the atmosphere by IGWs shows that the nonlinear destruction of a primary IGW into a spectrum of secondary waves may provide additional dissipation of nonsatu-rated stable waves. The mean wind increases both the effectiveness of generation and dissipation of IGWs propagating in the direction of the wind. Competition of both effects may lead to the dominance of IGWs propagating upstream at long distances from tropospheric wave sources, and to the formation of eastward wave accelerations in summer and westward accelerations in winter near the mesopause.  相似文献   

13.
印尼强地震引起的同震形变波   总被引:11,自引:1,他引:10  
牛安福  吉平  高福旺  孟国杰 《地震》2006,26(1):131-137
研究了2004年12月26日及2005年3月29日印尼苏门答腊8.7和8.5级地震引起的同震地倾斜、 地应变、 体应变和重力波变化及衰减过程特征, 给出了不同仪器进行的同类观测同震波衰减特性的差异及不同区域衰减过程相近等特性。 对同震形变波衰减特性的研究有助于认识仪器工作参数、 观测点附近的观测环境等对观测结果的影响及理解强地震衰减过程是有意义的。  相似文献   

14.
This paper is based on a tutorial presentation given at the 2001 CEDAR (Coupling Energetics and Dynamics of Atmospheric Regions) workshop. It gives an overview of chemical and physical processes important in the mesopause region. Topics covered include composition, photochemistry, dynamics and transport, and energy budget. Special emphasis is placed on the role of variations in composition in linking the physical and chemical processes. Examples from numerical models and observations are given to illustrate the points. Two specific cases where composition plays a role are described. The first illustrates that hemispheric differences in CO2 due to transport by the mean circulation enhance the mesopause temperature extremes near solstices. The second shows how transport of chemical species by gravity waves can alter the heating structure in such a way as to destabilize the gravity wave.  相似文献   

15.
Nonlinear dynamics of surface and internal waves in a stratified ocean under the influence of the Earth's rotation is discussed. Attention is focussed upon guided waves long compared to the ocean depth. The effect of rotation on linear processes is reviewed in detail as well as the existing nonlinear models describing weakly and strongly nonlinear dynamics of long waves. The influence of rotation on small-scale waves and two-dimensional effects are also briefly considered. Some estimates of the influence of the Earth's rotation on the parameters of real oceanic waves are presented and related to observational and numerical data.  相似文献   

16.
As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987, Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, Hines, 1997b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) 10-h global-scale inertio gravity waves. Numerical experiments are discussed, which illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations.  相似文献   

17.
The propagation of acoustic gravity waves through steadily convecting plasma in the thermosphere has been analysed theoretically. The growth and damping rates of internal gravity waves due to the feedback effects of wave-modulated Joule heating and Laplace forcing have been calculated. It is found that large convection flow velocities lead to the growth of large-scale internal gravity waves, whilst small- and medium-scale waves are heavily damped, under similar conditions. It has also been shown that wave growth is favoured for waves travelling against the plasma flow direction. The effects of critical coupling when wave phase speeds match the plasma flow speed have also been investigated. The results of these calculations are discussed in the context of the atmospheric energy budget and thermosphere-ionosphere coupling.  相似文献   

18.
我国中高层大气观测研究的新进展   总被引:2,自引:1,他引:2       下载免费PDF全文
中高层大气是与人类生存环境关系极为密切、又易受太阳活动影响的层次,它的研究在日地物理研究中占有特殊的地位.近年来,我国在中高层大气行星波、重力波、光化过程和太阳活动与人类活动影响等方面取得了可喜的进展,获得一系列重要成果;在观测方面,VHF雷达、钠荧光激光雷达、中间层大气毫米波探测和倾斜滤光片光度计等一批新型观测设备投入使用,增强了对中高层大气的探测能力.本文重点介绍了近年来我国在高平流层、中间层和低热层大气方面的主要研究情况.  相似文献   

19.
The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.  相似文献   

20.
The characteristics of the disturbances in the atmosphere and oceans and in other stably stratified and rotating fluids are analyzed according to their phase and group velocities. It is shown that both stable stratification and rotation augment the velocity of the sound waves, and that the internal gravity waves and inertial waves are mutually exclusive when the Brunt-Väisälä frequency is different from the Coriolis parameter. It is also shown that both the barotropic and the internal Rossby waves are well separated from the gravity waves and that they can be represented accurately by the quasi-geostrophic potential vorticity equation, even close to the equator, except for the one member withn=0 which is coupled with an eastward propagating gravity wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号