首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
粗粒土的颗粒级配、形状和密实度都是影响其孔隙结构,进而影响其渗透特性的重要因素。但长期以来,对颗粒形状影响的关注度较少,其主要原因在于不容易定量描述颗粒形状及其影响的孔隙结构特征。选取已获取长宽比和圆形度的不规则形状碎石、规则形状的球和八面体颗粒分别装填试样,针对颗粒级配和颗粒形状的差异,开展孔隙结构特征和渗透性的对比研究。通过CT扫描试样内部结构图像,重构试样的三维孔隙结构并计算孔隙比表面积。通过渗透试验测得试样的渗透系数。结果表明:试样孔隙比表面积是表达孔隙结构特征的有效参数,在相同级配和孔隙率的条件下,试样孔隙比表面积随颗粒圆形度和趋近球形程度的增加而减小;相同级配和孔隙率的条件下,渗透系数随孔隙比表面积的减小而增大,随颗粒圆形度增大而增大;球形颗粒试样的渗透性最强,试样颗粒越偏离球形,孔隙系统中水流阻力越大,试样渗透性越弱。  相似文献   

2.
李杨  佘成学 《岩土力学》2018,39(8):2951-2959
围绕堆石料单粒强度尺寸效应的颗粒流模拟方法展开研究。首先,基于FISH二次开发建立了堆石料的随机不规则单粒模型,充分考虑堆石料的形状特征和破碎现象;然后,建立了堆石料单粒强度尺寸效应的等效模拟方法,以单粒强度随其粒径的变化规律为基础,推导了堆石料模型中细观黏结强度与堆石料等效粒径的负指数经验公式;其次,基于建立的数值模型对堆石料的室内单粒压缩试验进行仿真模拟,验证数值模型的正确性和合理性,并对较大粒径堆石料的单粒强度进行模拟预测,突出数值试验的优势;最后,基于建立的数值模型对相同粒径不同形状特征堆石料的单粒强度分布特征进行模拟研究。研究结果表明:(1)堆石料内部缺陷含量和尺寸随粒径增加对其单粒强度所产生的尺寸效应,可通过堆石料模型中细观强度参数随粒径折减进行等效模拟;(2)形状特征对堆石料的破裂机制具有重要影响,方形颗粒为压剪破裂,单粒强度较高,而随机不规则颗粒和圆形颗粒为拉剪或劈裂,单粒强度相对较低;(3)拉剪或劈裂条件下,堆石料形状越不规则,其单粒强度的离散程度越高,反之则离散程度越低。相关研究成果可为进一步研究荷载作用下堆石体内各粒径段堆石料的破碎量奠定基础,从而更加真实地反映堆石体的级配演化规律。  相似文献   

3.
About 400 pumice clasts collected from the Central Indian Ocean Basin(CIOB)were studied for their morphology and were classified based on their shape and size.A majority of the samples range between<1 cm and 36 cm and in the Zinggs shape diagram plot in the equant and oblate fields.The Corey Shape Factor for most of the samples is close to 0.7,which is common for volcaniclastic material. The physical properties such as density,specific gravity,void ratio,porosity,moisture content and degree of saturation...  相似文献   

4.
The results of experiments on a 40 cm × 40 cm grate-discharge ball mill have been analysed for variation of mill hold-up weight of solids with solids feed rate, weight percent solids, mean feed particle size, material specific gravity and work-index. It is shown that mill hold-up weight is independent of the material specific gravity and mean feed particle size, and it varies linearly with solids feed rate and weight percent solids, at least over the range of practical interest. The variations in the transport behaviour of different materials have been attributed to the differences in the size distribution of the mill hold-up solids. It is shown that work-index can be used as the material characteristic for the development of an empirical correlation. Variation of mean residence time of solids with solids feed rate and weight-percent solids is also discussed.  相似文献   

5.
Determination of crushing strength of granular material is very important for assessing its suitability in various engineering and industrial applications. Laboratory investigations that would yield stress–strain behaviour, and hence, crushing strength of the granular material are extremely cumbersome and time consuming. Also, results obtained from these experiments get influenced by the aspect ratio of the sample, its density, strain rate, size and shape of the grains etc. These difficulties can be overcome by developing a generalized mathematical model, which is primarily based on the physical properties of the granular material such as particle-size and specific gravity, for estimating its crushing strength. With this in view, experiments were conducted on different types of granular materials such as sands, cenospheres (which are found in fly ash and bottom ash) and glass beads, and the results were used for developing such a model. Details of the testing methodology adopted to achieve this are also presented in this paper and validation of the proposed model has been done based on the experimental results and the results reported in the literature.  相似文献   

6.
The effect of mineral grain shape and specific gravity on trend-surface gradients of mineral concentrations was investigated. Trend surfaces were computed by least-square procedures, and the influence of different combinations of grain shape and specific gravity was checked using a set of linear hypotheses in the form of an analysis of variance.  相似文献   

7.
Pollen was collected from modern alluvium and from the atmosphere to document the nature and amount of paleoenvironmental information reflected by alluvial pollen chronologies. Results indicate that pollen in alluvium is a homogeneous mixture derived almost entirely from the floodplain itself. The few pollen grains derived from nonfloodplain plant communities and preserved in alluvial sediments are so well mixed that their frequencies no longer reflect the geographic distribution of the specific plant communities in which they originated. In contrast, the abundance of alluvial pollen grains, derived from the major floodplain taxa (Chenopodiineae, Ambrosia type), varies with summer and winter climate. This annual variation is preserved in alluvial pollen assemblages through a combination of processes within sedimentation basins involving discontinuous deposition events and mechanical pollen degradation. The high-frequency, wide-amplitude pollen variance in alluvial pollen assemblages contrasts with the low-frequency, narrow-amplitude pollen variance in sediments of lakes and ponds. The slight geographic variance in alluvial pollen assemblages, in contrast to the large variance in soil pollen, allows use of alluvial pollen to infer climate throughout the watershed in which pollen is sampled.  相似文献   

8.
ABSTRACT A measure of grain shape is needed for incorporation in calculations of the behaviour of grain populations (for example during transport by fluids). Many shape measures have been proposed, most of them for application to single grains rather than to populations. In this paper three such shape parameters are evaluated for samples taken by size fraction from each of three parent sands. The chosen parameters are the maximum projection sphericity of Sneed & Folk (based on triaxial measurements made on the grains), the dynamic shape factor of Briggs (based on settling velocity in water), and rollability, after Winkelmolen (based on rolling behaviour in a specially mounted rotating cylinder).
It is shown that the Sneed & Folk parameter and rollability both discriminate clearly between the shape characteristics of the three sands over the size range 150-500 μm. Moreover the discrimination of the two parameters is mutually consistent. However, dynamic shape factor gives results which for sizes smaller than 300 μm are inconsistent with those of the other two methods and which do not discriminate reliably between the populations. This is inevitable because the differences between drag on spheres and on other shapes become very small at Reynolds Numbers corresponding to those which obtain in settling tests on grains smaller than 300 μm.  相似文献   

9.
朱宣清  何乃华 《沉积学报》1984,2(3):118-123
比重是物质的重要物性之一,是物质成分和结构的反映。不同矿物的比重可以相差若干倍,因而用以鉴定矿物的种类。在河流动力学有关基本原理和计算公式中,比重是一种重要的因素,在沉积岩石学中被视为沉积物的沉积三要素(粒度、比重和形状)之一。我们对滹沱河现代沉积物进行沉积构造、粒度、矿物成分和扫描电镜等项分析的同时,对沉积物的比重作了一些分析,探讨了沉积物的比重在河流沉积体系中的变化情况。  相似文献   

10.
大型板状交错层理内部沉积物的分异   总被引:2,自引:0,他引:2  
王泽中 《矿物岩石》1997,17(1):71-76
本文对取自长江上荆江三八滩大型板状交错层理内部同一细层不同部位的5个样品进行了粒度分析和矿物鉴定,结果表明,在同一细层内沉积物有明显的分异作用。细层中上部以中等粒径、低密度的颗粒为主,分选好。细层的下部和底部主要聚集沉积物的粗尾和细尾部分,因而分选较差。此外,密度较大的矿物亦趋于聚集在细层的底部。沉积物的这种分异主要是因为在沙波运移过程中矿物沿背流面发生重力分异且在背流面附近存在回流所致。大型板状交错层理内部沉积物的这种分异作用对认识其储集性能的层内非均质性有重要的意义  相似文献   

11.
Image analysis methods are commonly employed to determine the size and shape of particles. Although commercial and non-commercial tools enable detection and measurement of grains from images, they do not provide good results in the case of images acquired during extensive in situ Martian investigations. Within the confines of the Mars Exploration Rover (MER) mission and the Mars Science Laboratory (MSL) mission thousands of images of sand grains were captured, and hitherto, they are the only source of ground-truth data on Martian sand particles. Therefore, a new approach is proposed to analyze such images. The semi-automatic algorithm allows fast detection and measurement of the size and shape of Martian grains from images obtained by the Microscopic Imager (MI) and the Mars Hand Lens Imager (MAHLI). The method was evaluated on 76 images of terrestrial and Martian deposits. The results for the terrestrial samples were compared to those from sieve analysis, as well as with ImageJ and Malvern Morphologi G3 systems. The method provides similar results to those from the other methods. It does not have any limitation on the size of grains, and permits separation of touching particles.  相似文献   

12.
The observed size in the thin-section is less than the true grain sizes of the clastic rock as the thin-section plane does not necessarily pass through the centre of gravity of the grains. Correction factors based on probability theory give corrected arithmetic moments of the size distribution in the clastic rock from the observed arithmetic moments of the size distribution in the thin-section. The corrected arithmetic moments so obtained are transformed to their equivalent corrected phi moments which are useful to generate the unknown size distribution of the clastic rock by the help of Edgeworth's series.  相似文献   

13.
颗粒形状是影响碎石料密实特性及力学、渗流特性的因素之一。选取粒径为2~5 mm和5~10 mm的两组灰岩碎石颗粒样本作为研究对象,采用影像测量仪和特制夹具,获取不同旋转角度下的颗粒轮廓影像;使用图形处理软件获得颗粒几何尺寸测值;计算获得各旋转角度下常用颗粒形状评定参数值,运用其平均值进行统计分析,避免了依据单一角度测值评定伴随的人为因素影响。结果表明,灰岩碎石颗粒与标准圆有较大差异, 且粒径大者差异性更明显;两组样本颗粒形状参数均服从偏态分布;长宽比、扁平度和球形度能够更敏感地反映颗粒偏离球形颗粒的程度,而长宽比和球形度便于获取,因而更具优势。  相似文献   

14.
作者以鄂尔多斯地区奥陶系丰富的重力流沉积为例,借助非牛顿流体力学的基本原理,对重力流运动的特点和类型作了进一步的探讨,重力流运动的特点是:具层移(流)运动、有旋性、挤压性、涡旋性、惯性、颗粒上浮性、颗粒下沉、颗粒碰撞、剪切作用和下切作用。重力流可分为:滑动流、混合流、碎石(屑)流、颗粒流、液化流和浊流。  相似文献   

15.
16.
Important to grain entrainment by a flowing fluid is the pivoting angle of the grain about its contact point with an underlying grain. A series of experiments has been undertaken to determine how this angle depends on grain shape (rollability and angularity), on the ratio of the size of the pivoting grain to those beneath, and on factors such as imbrication. The experiments involved gravel-sized spheres (ball-bearings and marbles), natural pebbles selected for their approximately triaxial ellipsoid shapes, and angular crushed basalt pebbles. The pivoting angles for these grains were measured on an apparatus consisting of a board which can be progressively inclined, the angle of the board being equal to the pivoting angle at the instant of grain movement. The pivoting angles of spheres showed reasonable agreement with a theoretically derived equation, showing much better agreement than in previous studies which utilized sand-sized spheres. A series of measurements with spheres ranging from sand to gravel sizes reveals that the pivoting angles decrease with increasing particle size. Our results are therefore consistent with the earlier studies limited to sand-size spheres. The cause of this size dependence is unknown since moisture and electrostatic binding can be ruled out. Similar size dependencies are also found for the ellipsoidal pebbles and angular gravel. The experiments with ellipsoidal pebbles demonstrated a strong shape dependence for the pivoting angle, being a function of the ratio of the pebble's smallest to intermediate axial diameters. This ratio controls the grain's ability to roll and pivot; with small ratios of these diameters the pebbles tended to slide out of position, whereas with ratios closer to unity (circular cross-section) true pivoting took place and the angles were smaller. Experiments with flat pebbles placed in an imbricated arrangement yielded much larger angles than when the pebbles lay in a horizontal position, the pivoting angle being increased approximately by the imbrication angle. The angular crushed gravel also required high pivoting angles, apparently due to interlocking of the grains resulting from their angularity. Other factors being equal, the measurements of pivoting angles demonstrate that the order of increasing difficulty of entrainment is spheres, ellipsoidal grains, angular grains, and imbricated grains. The results obtained here make possible the quantitative evaluation of these shape effects on grain threshold, as well as evaluation of the selective entrainment of grains from a bed of mixed sizes.  相似文献   

17.
It is well known that sediment sorting according to size, shape and density occurs, but the exact mechanisms involved are poorly understood. To assess the effects of size and density, sand-size spheres of two densities were transported and deposited under controlled flume conditions. Observations on the motion of discrete particles show that grains smaller than bed-roughness grains move continuously and have the same transport velocities regardless of density. For grains near and slightly larger than the roughness, movement is intermittent and, for a given size, heavy particles move more slowly than lights. For grains much larger than bed roughness grains, movement is continuous over the rough surface and light and heavy grains have nearly the same transport velocities. Analyses of bulk sediment deposited from plane-bed transport, show that the size and proportion of heavies decreases and that of lights increases with distance transported. For ripple bed transport, however, the size relations between associated light and heavy grains remains essentially unchanged with transport distance and the proportion of light and heavy grains is extremely variable. These results suggest that size-density sorting in plane-bed transport is a function of the transportabilities identified in the discrete grain studies but that sorting in ripple-bed transport is related to deposition on, and recycling through, the bed forms. Application of these findings to the concept of hydraulic equivalence implies that some indication of bed configuration may be necessary for the concept to be useful.  相似文献   

18.
The 3D shape, size and orientation data for white mica grains sampled along two transects of increasing metamorphic grade in the Otago Schist, New Zealand, reveal that metamorphic foliation, as defined by mica shape‐preferred orientation (SPO), developed rapidly at sub‐greenschist facies conditions early in the deformation history. The onset of penetrative strain metamorphism is marked by the rapid elimination of poorly oriented large clastic mica in favour of numerous new smaller grains of contrasting composition, higher aspect ratios and a strong preferred orientation. The metamorphic mica is blade shaped with long axes defining the linear aspect of the foliation and intermediate axes a partial girdle about the lineation. Once initiated, foliation progressively intensified by an increase in the aspect ratio, size and alignment of grains, although highest grade samples within the chlorite zone record a decrease in aspect ratio and reduction in SPO strength despite continued increase in grain size. These trends are interpreted in terms of progressive competitive anisotropic growth of blade‐shaped grains so that the fastest growth directions and blade lengths tend to parallel the extension direction during deformation. The competitive nature of mica growth is indicated by the progressive increase in size and resultant decrease in number of metamorphic mica with increasing grade, from c. 1000 relatively small mica grains per square millimetre of thin section at lower grades, to c. 100 relatively large grains per square millimetre in higher grade samples. Reversal of SPO intensity and grain aspect ratio trends in higher grade samples may reflect a reduction in the strain rate or reduction in the deviatoric component of the stress field.  相似文献   

19.
Short-range variation of measurements of a soil characteristic is a function of the support (i.e., size, shape, and orientation of the physical sample taken at a sample point) of the soil samples. This short-range variance often shows up as a substantial component of the nugget effect in experimental semivariograms or estimated generalized covariance functions. Proper choice of support may substantially reduce short-range variance (or nugget) of measurements made at sample points and thereby reduce estimation variance in point or block kriging based on these measurements. Appropriate variance formulas and an example are given for determination of support when support is an array of vertical cores (or bucket auger samples) of equal depth and diameter.  相似文献   

20.
Measured variations of pivoting angles with grain size, shape (‘reliability’ and angularity) and imbrication are employed in analyses of grain threshold to examine how these factors influence selective grain entrainment and sorting. With a bed of uniform grain sizes, as employed experimentally to establish the standard threshold curves such as that of Shields, the threshold condition depends on grain shape and fabric. The analysis demonstrates quantitatively that there should be a series of nearly-parallel threshold curves depending on grain pivoting angles. For a given grain size, the order of increasing flow strength required for entrainment is spheres, smooth ellipsoids (depending on their ‘reliability’), angular grains, and imbricated ellipsoids (depending on their imbrication angles). The relative threshold values for these different grain shapes and fabric are predicted according to their respective pivoting angles, but remain to be directly tested by actual threshold measurements. The pivoting angle of a grain also depends on the ratio of its size to those it rests upon. This dependence permits an evaluation of selective entrainment by size of grains from a bed of mixed sizes, the condition generally found in natural sediments. The pivoting model predicts systematic departures from the standard threshold curves for uniform grain sizes. Such departures have been found in recent studies of gravel threshold in rivers and offshore tidal currents. The pivoting model is compared with those threshold data with reasonable agreement. However, more controlled measurements are required for a satisfactory test of the model. It is concluded that variations in pivoting angles for grain entrainment are significant to the processes of selective sorting by grain size and shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号