首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
—?Joint Research Program of Seismic Calibration of the International Monitoring System (IMS) in Northern Eurasia and North America has been signed by the Nuclear Treaty Programs Office (NTPO), Department of Defense USA, and the Special Monitoring Service (SMS) of the Ministry of Defense, Russian Federation (RF). Under the Program historical data from nuclear and large chemical explosions of known location and shot time, together with appropriate geological and geophysical data, has been used to derive regional Pn/P travel-time tables for seismic event location within the lower 48 States of the USA and the European part of the RF. These travel-time tables are up to 5?seconds faster in shields than the IASPEI91 tables, and up to 5?seconds slower in the Western USA. Relocation experiments using the regional Pn travel-time curves and surrogate networks for the IMS network generally improved locations for regional seismic events. The distance between true and estimated location (mislocation) was decreased from an average of 18.8?km for the IASPEI91 tables to 10.1?km for the regional Pn travel-time tables. However, the regional travel-time table approach has limitations caused by travel-time variations inside major tectonic provinces and paths crossing several tectonic provinces with substantially different crustal and upper mantle velocity structure.¶The RF members of the Calibration Working Group (WG): Colonel Vyacheslav Gordon (chairman); Dr. Prof. Marat Mamsurov, and Dr. Nikolai Vasiliev. The US members of the WG: Dr. Anton Dainty (chairman), Dr. Douglas Baumgardt, Mr. John Murphy, Dr. Robert North, and Dr. Vladislav Ryaboy.  相似文献   

2.
四川地区地壳上地幔速度结构的初步研究   总被引:26,自引:6,他引:26       下载免费PDF全文
赵珠  张润生 《地震学报》1987,9(2):154-166
本文使用10个工业爆破和154个天然地震,以及四川台网50个台站记录的 P 波组到时等资料,以龙门山断裂和二次大地构造单元分界线为界(图1),得出四川东部盆地和西部高原不同的地壳上地幔平均速度模型.若简单地采用双层地壳模型,则东部地壳厚40-41km,壳下 P 波速度为8.15-8.2km/s,壳内上层平均速度为5.82-5.9km/s,厚18km,下层平均速度为6.47-6.54km/s,厚22-23km;西部地壳厚61-64km,壳下 P 波速度为7.8-7.84km/s,壳内上层平均速度为5.82-5.98km/s,厚27-28.5km,下层平均速度为6.94-7.0km/s,厚34-35.5km.此模型为四川地区走时表提供了依据,也为研究地壳上地幔结构与地震的关系,研究我国大陆地块的构造演化及形成等,提供了有用的约束.   相似文献   

3.
—?During 1997 and 1998, twelve chemical explosions were detonated in boreholes at the former Soviet nuclear test site near the Shagan River (STS) in Kazakhstan. The depths of these explosions ranged from 2.5 to 550 m, while the explosive yield varied from 2 to 25 tons. The purpose of these explosions was for closure of the unused boreholes at STS, and each explosion was recorded at local distances by a network of seismometers operated by Los Alamos National Laboratory and the Institute of Geophysics for the National Nuclear Center (NNC). Short-period, fundamental-mode Rayleigh waves (Rg) were generated by these explosions and recorded at the local stations, resultingly the waves exhibited normal dispersion between 0.2 and 3 seconds. Dispersion curves were generated for each propagation path using the Multiple Filter Analysis and Phase Match Filtering techniques. Tomographic maps of Rg group velocity were constructed and show a zone of relatively high velocities for the southwestern (SW) region of the test site and slow propagation for the northeastern (NE) region. For 0.5?sec Rg, the regions are separated by the 2.1?km/sec contour, as propagation in the SW is greater than 2.1?km/sec and less in the NE region. At 1.0 sec period, the 2.3?km/sec contour separates the two regions. Finally, for 1.5 and 2.0 sec, the separation between the two regions is less distinct as velocities in the NE section begin to approach the SW except for a low velocity region (<2.1?km/sec) near the center of the test site. Local geologic structure may explain the different regions as the SW region is composed predominantly of crystalline intrusive rocks, while the NE region consists of alluvium, tuff deposits, and Paleozoic sedimentary rocks. Low velocities are also observed along the Shagan River as it passes through the SW region of the test site for shorter period Rg (0.5–1.0?sec). Iterative, least-squares inversions of the Rg group velocity dispersion curves show shear-wave velocities for the southwestern section that are on average 0.4?km/sec higher than the NE region. At depths greater than 1.5?km the statistical difference between the models is no longer significant. The observed group velocities and different velocity structures correlate with P-wave complexity and with spatial patterns of magnitude residuals observed from nuclear explosions at STS, and may help to evaluate the mechanisms behind those observations.  相似文献   

4.
This work presents the results of reinterpretation of the deep seismic sounding (DSS) data for the Stepnoe-Bakuriani profile and the southern part of the Volgograd-Nakhichevan profile, carried out using new processing methods. Both the profiles cut the trend of the Greater Caucasus. They were acquired in the 1960s by multichannel continuous profiling, which provided high-quality records; however, only the travel-time curves for the main wave types have survived till now. The waves recorded on these profiles have a rather complex origin and their processing by the methods existing at that time was a challenge. At present, the modern computer technologies allowed us to invert the preserved travel-time curves for the velocity models of the Earth??s crust and the very tops of the mantle down to 80 km. It is shown that the crustal thickness increases under the Greater Caucasus up to 50?C60 km and this increase is not gradual, as implied in the previous reconstructions, but occurs through a system of deep dislocations. Traced by the oblique reflections and sharply contrasting seismic velocities, these dislocations extend into the crust. An extended, north-dipping boundary is revealed at a depth of 50?C80 km. The velocity model of the Greater Caucasian crust exhibits slightly decreased velocities compared to the surrounding platform regions. At the same time, the velocities sharply increase in the middle and even upper parts of the crust in the Kura depression.  相似文献   

5.
An investigation of travel-time residuals of P waves as compared to an average global travel-time curve with a base-line determined shows that about 400–500 km of the upper mantle at the boundary with the crust and a similar thickness of the lower mantle at the boundary with the core are laterally inhomogeneous. The upper mantle both under continents and under oceans consists of crust-mantle blocks distinguished by longitudinal wave velocity, surface tectonics and intensity of the heat flow. It has been revealed that within individual crust-mantle blocks there is an azimuthal relationship of P-wave travel-time indicative of possible anisotropy of upper mantle elastic properties down to depths of the order of several hundred kilometers.  相似文献   

6.
Using the P-and S-wave arrivals from the 150 earthquakes distributed in Tibetan Plateau and its neighboring areas, recorded by Tibetan seismic network, Sichuan seismic network, WWSSN and the mobile network situated in Tibetan Plateau, we have obtained the average P-and S-wave velocity models of the crust and upper mantle for this region:
(1)  The crust of 70 km average thickness can be divided into two main layers: 16 km thick upper crust with P-wave velocity 5.55 km/s and S-wave velocity 3.25 km/s; and 54 km thick lower crust with P-wave velocity 6.52 km/s and S-wave velocity 3.76 km/s.
(2)  The p-wave velocity at the upper most mantle is 7.97 km/s, and the S-wave 4.55 km/s. The low velocity layer in the upper mantle occurs approximately at 140 km deep with a thickness of about 55–62 km. The prominent velocity gradient beneath the LVZ is comparable to the gradient above it.
The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 573–579, 1992.  相似文献   

7.
—?In order to improve on the accuracy of event locations at teleseismic distances it is necessary to adequately correct for lateral variations in structure along the ray paths, either through deterministic model-based corrections, empirical path/station corrections, or a combination of both approaches. In this paper we investigate the ability of current three-dimensional models of mantle P-wave velocity to accurately locate teleseismic events. We test four recently published models; two are parameterized in terms of relatively long-wavelength spherical harmonic functions up to degree 12, and two are parameterized in terms of blocks of constant velocity which have a dimension of a few hundreds of km. These models, together with detailed crustal corrections, are used to locate a set of 112 global test events, consisting of both earthquakes and explosions with P-wave travel-time data compiled by the Internation al Seismological Centre (ISC). The results indicate that the supposedly higher resolution block models do not improve the accuracy of teleseismic event locations over the longer wavelength spherical harmonic models. For some source locations the block models do not predict the range of observed travel-time residuals as well as the longer wavelength models. The accuracy of the locations largely varies randomly with geographic position although events in central Asia are particularly well located. We also tested the effect of reduced data sets on the locations. Multiple location iterations using 30 P-wave travel times indicate that teleseismic events may be located within an area of 1000?km2 of the true location 66% of the time with only the model-based corrections, and increasing to 75% if calibration information is available. If as few as 8 phases are available then this is possible only 50% of the time. Further refinement in models and/or procedure, such as the addition of P n phases, azimuth data, and consideration of P-wave anisotropy may provide further improvement in the teleseismic location of small events.  相似文献   

8.
We present a 3D model of shear velocity of crust and upper mantle in China and surrounding regions from surface wave tomography.We combine dispersion measurements from ambient noise correlation and traditional earthquake data.The stations include the China National Seismic Network,global networks,and all the available PASSCAL stations in the region over the years.The combined data sets provide excellent data coverage of the region for surface wave measurements from 8 to 120 s,which are used to invert for 3D shear wave velocity structure of the crust and upper mantle down to about150 km.We also derive new models of the study region for crustal thickness and averaged S velocities for upper,mid,and lower crust and the uppermost mantle.The models provide a fundamental data set for understanding continental dynamics and evolution.The tomography results reveal significant features of crust and upper mantle structure,including major basins,Moho depth variation,mantle velocity contrast between eastern and western North China Craton,widespread low-velocity zone in midcrust in much of the Tibetan Plateau,and clear velocity contrasts of the mantle lithosphere between north and southern Tibet with significant E–W variations.The low velocity structure in the upper mantle under north and eastern TP correlates with surface geological boundaries.A patch of high velocity anomaly is found under the eastern part of the TP,which may indicate intact mantle lithosphere.Mantle lithosphere shows striking systematic change from the western to eastern North China Craton.The Tanlu Fault appears to be a major lithosphere boundary.  相似文献   

9.
There is broad agreement among various seismological studies that the upper mantle has two regions where high positive velocity gradients or transition zones exist. The presence of these zones implies that two major triplications should exist in the travel-time curve for distances less than 30°. Approximately 200 earthquakes from the New Guinea, New Britain, and Solomon Island regions recorded at the Warramunga Array were analyzed using adaptive processing methods in an attempt to identify the positions of the later arrival branches. From measurements made along the first 20 sec of the arrivals, a retrogade travel-time branch associated with the “650-km” discontinuity was clearly identified as extending from 21° to 26°, and some evidence was found near 16° for the lower portion of the triplication associated with the “400-km” discontinuity. A careful search revealed however that the upper portions of the replicated travel-time branches were missing. There were no observed values ofdt/dΔ in the 12–13 sec/deg range for Δ greater than 20°. In this study it was found that if anelastic effects (Q) were not taken into consideration or ifQ were kept constant, the models derived from observed travel-time data all predicted large amplitude arrivals where non existed. The difficulty with the first triplication was resolved by the introduction of a lowQ region at depths of 85–315 km. This region may be associated with “the low-velocity region” but it is not necessary to decrease the P velocity to explain the observations.The difficulty with the second triplication was resolved by the introduction of a layer at a depth of 575–657 km which has no velocity gradient and a value ofQ significantly less than that for the material just below the “650-km” discontinuity. This layer may well represent the return path for an upper mantle convection cell.  相似文献   

10.
Rayleigh Wave Group Velocity Tomography of Siberia, China and the Vicinity   总被引:7,自引:0,他引:7  
—Rayleigh waves are used in a tomographic inversion to obtain group velocity maps of East Asia (40° E–160° E and 20° N–70° N). The period range studied is 30 to 70 seconds. Seismograms used for this study were recorded at CDSN stations, at a temporary broadband seismic array in Tibet, at several SRO stations, and Kirnos-equipped stations established in Asia by the former Soviet Union, in Siberia, in the Sakhalin and in Mongolia. Altogether more than 1200 paths were available in the tomographic inversion. The study area includes the Angara craton, the geologically ancient core of Asia, and the subsequently accreted units, the Altaids (a Paleozoic collision complex), the Sino-Korean platform (a chain of Archaen terranes separated by belts of active structures), the south China platform (a collage of Precambrian, Paleozoic and Mesozoic metamorphic and igneous terranes), as well as the Tibetan plateau (an active tectonic feature created in late Cenozoic through collision of the Indian subcontinent and the Asian continent). Many of these main units are recognizable in the tomographic images as distinctive units; Tibet appears as a prominent low velocity (about ?15% from the average) structure, with western and central Tibet often appearing as the areas with the lowest velocities, the Central Asian fold-belt, and the Angara craton are consistently high group velocity areas. Some lesser tectonic features are also recognizable. For example, Lake Baikal is seen as a high velocity feature at periods greater than 40 seconds. However, the high group velocity feature does not stop near the southern end of Lake Baikal; it extends south-southwestward across Mongolia. The North China Plain, a part of the platform where extensional tectonics dominate, is an area of high velocities as a result of relatively thin crust. The south China block, the least tectonically active region of China, is generally an area of high velocity. For periods longer than 40 seconds, a NNE trending high group velocity gradient clearly exists in eastern China; the velocities are noticeably higher in the east. From the group velocity maps, average dispersion curves at twelve locations were determined and inverted to obtain velocity structures. Main results of group velocity inversion include: (1) a Tibetan crust of around 60?km thick, with low crustal and upper mantle shear velocities, at 3.3?km/s and 4.2?km/s, respectively; (2) with the Moho constrained at 40–43?km, the Angara craton and the Central Asian foldbelt have a V S in excess of 4.6?km/s; (3) relatively low shear velocities are obtained for tectonically active areas. In many parts of the study area, where Precambrian basement is exposed, the process in the crust and upper mantle due to recent tectonic activities have modified the crust and upper mantle velocity structures under the Precambrian terranes, they are no longer underlain by high velocity crust and mantle.  相似文献   

11.
This paper presents the results of a seismological investigation of the Voronezh shield. The use of industrial quarry blasts, as the most economic seismic energy source, and telemetric arrays of the Taiga type for deep seismic sounding observations has enabled the Geophysical Research Group of the Voronezh State University to obtain complete and valid information concerning the deep structure of the shield.Seismic records of refracted and reflected P and S phases from the intracrustal and subcrustal discontinuities allow the determination of independent and compatible velocity models VP(Z) and VS(Z).Analysis of the travel-time and amplitude curves derived from the deep seismic sounding data reveals a complex and inhomogeneous structure of the Voronezh shield lithosphere. The major discontinuities are found in the middle part of the consolidated crust. Several rather thick layers can be resolved, which are separated by first-order seismic boundaries.In the consolidated crust beneath the southeastern part of the shield at depths from 6–7 to 11–13 km, a low-velocity layer is clearly established from the compressional wave data. Within the low-velocity channel, VP appears to decrease by 5–6%. The low-velocity channel in the uppermost consolidated crust is assumed to be due to metamorphogeneous granitization. This is revealed by the Precambrian basement structure.Poisson's ratio calculated from the compatible velocity models VP(Z) and VS(Z) shows a systematic increase down to the crustal basement and becomes discontinuous only in the low-velocity channel. At the top of the mantle, Poisson's ratio decreases on all the deep seismic sounding profiles. The systematic variation of Poisson's ratio is related to changes in the composition and mineralogy of the Voronezh shield lithosphere.  相似文献   

12.
—?Seismic event locations based on regional 1-D velocity-depth sections can have bias errors caused by travel-time variations within different tectonic provinces and due to ray-paths crossing boundaries between tectonic provinces with different crustal and upper mantle velocity structures. Seismic event locations based on 3-D velocity models have the potential to overcome these limitations. This paper summarizes preliminary results for calibration of IMS for North America using 3-D velocity model. A 3-D modeling software was used to compute Source-Station Specific Corrections (SSSCs(3-D)) for Pn travel times utilizing 3-D crustal and upper mantle velocity model for the region. This research was performed within the framework of the United States/Russian Federation Joint Program of Seismic Calibration of the International Monitoring System (IMS) in Northern Eurasia and North America.¶An initial 3-D velocity model for North America was derived by combining and interpolating 1-D velocity-depth sections for different tectonic units. In areas where no information on 1-D velocity-depth sections was available, tectonic regionalization was used to extrapolate or interpolate. A Moho depth map was integrated. This approach combines the information obtained from refraction profiles with information derived from local and regional network data. The initial 3-D velocity model was tested against maps of Pn travel-time residuals for eight calibration explosions; corrections to the 3-D model were made to fit the observed residuals. Our goal was to find a 3-D crustal and upper mantle velocity model capable predicting Pn travel times with an accuracy of 1.0–1.5 seconds (r.m.s.).¶The 3-D velocity model for North America that gave the best fit to the observed travel times, was used to produce maps of SSSCs(3-D) for seismic stations. The computed SSSCs(3-D) vary approximately from +5 seconds to ?5 seconds for the western USA and the Pre-Cambrian platform, respectively. These SSSCs(3-D) along with estimated modeling and measurement errors were used to relocate, using regional data, an independent set of large chemical explosions (with known locations and origin times) detonated within various tectonic provinces of North America. Utilization of the 3-D velocity model through application of the computed SSSCs(3-D) resulted in a substantial improvement in seismic event location accuracy and in a significant decrease of error ellipse area for all events analyzed in comparison both with locations based on the IASPEI91 travel times and locations based on 1-D regional velocity models.  相似文献   

13.
The Rayleigh wave phase and group velocities in the period range of 24–39 sec, obtained from two earthquakes which occurred in northeastern brazil and which were recorded by the Brazilian seismological station RDJ (Rio de Janeiro), have been used to study crustal and upper mantle structures of the Brazilian coastal region. Three crustal and upper mantle models have been tried out to explain crustal and upper mantle structures of the region. The upper crust has not been resolved, due basically to the narrow period range of the phase and group velocities data. The phase velocity inversions have exhibited good resolutions for both lower crust and upper mantle, with shear wave velocities characteristic of these regions. The group velocity data inversions for these models have showed good results only for the lower crust. The shear wave velocities of the lower crust (3.86 and 3.89 km/sec), obtained with phase velocity inversions, are similar to that (=3.89 km/sec) found byHwang (1985) to the eastern South American region, while group velocity inversions have presented shear velocity (=3.75 km/sec) similar to that (=3.78 km/sec) found byLazcano (1972) to the Brazilian shield. It was not possible to define sharply the crust-mantle transition, but an analysis of the phase and group velocity inversions results has indicated that the total thickness of the crust should be between 30 and 39 km. The crustal and upper mantle model, obtained with phase velocity inversion, can be used as a preliminary model for the Brazilian coast.  相似文献   

14.
We have studied the lateral velocity variations along a partly buried inverted paleo–rift in Central Lapland, Northern Europe with a 2D wide-angle reflection and refraction experiment, HUKKA 2007. The experiment was designed to use seven chemical explosions from commercial and military sites as sources of seismic energy. The shots were recorded by 102 stations with an average spacing of 3.45 km. Two-dimensional crustal models of variations in P-wave velocity and Vp/Vs-ratio were calculated using the ray tracing forward modeling technique. The HUKKA 2007 experiment comprises a 455 km long profile that runs NNW–SSE parallel to the Kittilä Shear Zone, a major deformation zone hosting gold deposits in the area. The profile crosses Paleoproterozoic and reactivated Archean terranes of Central Lapland. The velocity model shows a significant difference in crustal velocity structure between the northern (distances 0–120 km) and southern parts of the profile. The difference in P-wave velocities and Vp/Vs ratio can be followed through the whole crust down to the Moho boundary indicating major tectonic boundaries. Upper crustal velocities seem to vary with the terranes/compositional differences mapped at the surface. The lower layer of the upper crust displays velocities of 6.0–6.1 km/s. Both Paleoproterozoic and Archean terranes are associated with high velocity bodies (6.30–6.35 km/s) at 100 and 200–350 km distances. The Central Lapland greenstone belt and Central Lapland Granitoid complex are associated with a 4 km-thick zone of unusually low velocities (<6.0 km/s) at distances between 120 and 220 km. We interpret the HUKKA 2007 profile to image an old, partly buried, inverted continental rift zone that has been closed and modified by younger tectonic events. It has structural features typical of rifts: inward dipping rift shoulders, undulating thickness of the middle crust, high velocity lower crust and a rather uniform crustal thickness of 48 km.  相似文献   

15.
—More than 60 events recorded by four recently deployed seismic broadband stations around Scotia Sea, Antarctica, have been collected and processed to obtain a general overview of the crust and upper mantle seismic velocities.¶Group velocity of the fundamental mode of Rayleigh waves in the period between 10 s to 30–40 s is used to obtain the S-wave velocity versus depth along ten different paths crossing the Scotia Sea region. Data recorded by two IRIS (Incorporated Research Institutions for Seismology) stations (PMSA, EFI) and the two stations of the OGS-IAA (Osservatorio Geofisico Sperimentale—Instituto Antarctico Argentino) network (ESPZ, USHU) are used.¶The Frequency-Time Analysis (FTAN) technique is applied to the data set to measure the dispersion properties. A nonlinear inversion procedure, "Hedgehog," is performed to retrieve the S-wave velocity models consistent with the dispersion data.¶The average Moho depth variation on a section North to South is consistent with the topography, geological observations and Scotia Sea tectonic models.¶North Scotia Ridge and South Scotia Ridge models are characterised by similar S-wave velocities ranging between 2.0 km/s at the surface to 3.2 km/s to depths of 8 km/s. In the lower crust the S-wave velocity increases slowly to reach a value of 3.8 km/s. The average Moho depth is estimated between 17 km to 20 km and 16 km to 19 km, respectively, for the North Scotia Ridge and South Scotia Ridge, while the Scotia Sea, bounded by the two ridges, has a faster and thinner crust, with an average Moho depth between 9 km and 12 km.¶On other paths crossing from east to west the southern part of the Scotia plate and the Antarctic plate south of South Scotia Ridge, we observe an average Moho depth between 14 km and 18 km and a very fast upper crust, compared to that of the ridge. The S-wave velocity ranges between 3.0 and 3.6 km/s in the thin (9–13 km) and fast crust of the Drake Passage channel. In contrast the models for the tip of the Antarctic Peninsula consist of two layers with a large velocity gradient (2.3–3.0 km/s) in the upper crust (6-km thick) and a small velocity gradient (3.0–4.0) in the lower crust (14-km thick).  相似文献   

16.
Long-range seismic sounding carried out during the last few years on the territory of the U.S.S.R. has shown a basic inhomogeneity of the uppermost mantle, as well as evidence of regularities in the distribution of its seismic parameters. The following data were used: times and apparent velocities of P- and S-waves for investigation of mantle velocities, converted waves for seismic discontinuity model studies and wave attenuation for Q-factor estimation. Strong regularities were distinguished in the distribution of average seismic velocities for the uppermost mantle, in their dependence on the age and type of geostructure and on their position relative to the central part of the continent. Old platforms and the inner part of the continent are marked by velocities under the Mohorovi?i? discontinuity of more than 8.2–8.3 km s?1, young platforms and outer parts of the continent by 8.0–8.2 km s?1, and orogenic and rift zones by 7.8–8.0 km s?1. The difference becomes more pronounced at a depth of about 100–200 km: for the old platform mantle velocities of 8.5–8.6 km s?1 are typical; beneath the orogenic and rift areas, inversion zones with velocities less than 7.8 km s?1 are observed.The converted waves show fine inhomogeneities of the crust and uppermost mantle, the presence of many discontinuities with positive and negative changes of velocity, and anisotropy of seismic waves in some of the layers. Wave attenuation allowed the determination of the Q-factor in the mantle. It varied from one region to another but a close relation between Q and P-wave velocity is the main cause of its variation.  相似文献   

17.
The S wave velocity distribution in the Earth’s crust and the first two hundred kilometers of the upper mantle is inferred from data of a seismological linear network including 18 broadband stations installed in the framework of the international teleseismic experiment carried out in 2003 in the south of Siberia and in Mongolia. Models were constructed by using P-to-S received function inversion beneath each station. Vertical cross sections of S wave velocities from the surface to depths of 65 and 270 km covering the entire 1000-km profile are constructed by the linear spline interpolation of individual velocity models. The vertical sections are also represented as anomalies relative to the standard velocity model. The most intense low velocity anomalies (from ?3 to ?6%) in the crust and upper mantle are identified beneath the Sayan, Khamar-Daban, and Khangai highlands and the Djida fold zone and agree both with other geophysical data and with the distribution of Late Cenozoic volcanic fields. The results of this work suggest that the activation of Mongolian-Siberian highlands is largely connected with uplift of the asthenosphere to the base of the crust.  相似文献   

18.
—?We test how well low-magnitude (m bLg 1.8 to 2.6), 25-ton chemical explosions at Balapan, Kazakhstan, can be located using IMS stations and standard earth models, relying on precisely determined relative arrival times of nearly similar, regional and teleseismic waveforms. Three 1997 Balapan explosions were recorded by a number of currently reporting and surrogate IMS stations. Three regional stations and two teleseismic arrays yielded consistent waveforms appropriate for relative picking. Master-event locations based on the AK135 model and ground-truth information from the first, shallowest and best-recorded explosion, fell under 1 km from known locations, for depths constrained to that of the master event. The resulting 90% confidence ellipses covered 12–13?km2 and contained the true locations; however, results for depth constrained to true depth were slightly less satisf actory. From predictions based on ground truth, we found a P g -coda phase at Makanchi, Kazakhstan to be misidentified and poorly modeled. After accounting for this, 90% ellipses shrank to 2–3?km2 and true-depth mislocation vectors became more consistent with confidence-ellipse orientations. These results suggest that a high level of precision could be provided by a tripartite array of calibration shots in cases where models are poorly known. We hope that the successful relocation of these small Balapan shots will support the role of calibration explosions in verification monitoring and special event studies, including on-site inspection.  相似文献   

19.
The preliminary interpretation of deep seismic sounding in western Yunnan   总被引:2,自引:0,他引:2  
The preliminary interpretation of Project western Yunnan 86–87 is presented here. It shows that there obviously exists lateral velocity heterogeneity from south to north in western Yunnan. The depth of Moho increases from 38 km in the southern end of the profile to 58 km in its northern end. The mean crustal velocity is low in the south, and high in the north, about 6.17–6.45 km/s. The consolidated crust is a 3-layer structure respectively, the upper, middle and lower layer. P 1 0 is a weak interface the upper crust, P 2 0 and P 3 0 are the interfaces of middle-upper crust and middle-lower crust respectively. Another weak interface P 3 0′ can be locally traced in the interior of the lower crust. Interface Pg is 0–6 km deep, interface P 1 0 9.2–16.5 km deep, and interfaces P 2 0 and P 3 0 respectively 17.0–26.5 km, 25.0–38.0 km deep. The velocity of the upper crust gradually increases from the south to the north, and reaches its maxmium between Nangaozhai and Zhiti, where the velocity of basement plane reaches 6.25–6.35 km/s, then it becomes small northward. The velocity of the middle crust varies little, the middle crust is a low velocity layer with the velocity of 6.30 km/s from Jinhe-Erhai fault to the north. The lower crust is a strong gradient layer. There exists respectively a low velocity layer in the upper mantle between Jinggu and Jingyunqiao, and between Wuliangshan and Lancangjiang fault, the velocity of Pn is only 7.70–7.80 km/s, it is also low to the north of Honghe fault, about 7.80 km/s. Interface P6/0 can be traced on the top of the upper mantle, its depth is 65 km in the southern end of the profile, and 85 km in the northern end. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 427–440, 1993.  相似文献   

20.
Summary Distribution of compressional-wave velocities in the mantle is determined fromdT/d measurements using the Uppsala seismograph array station (UPSAS). Short-period vertical-component seismograms from 181 events in the epicentral distance range 16°–100° have been used. The velocity distribution shows anomalous variations at depths of 750, 1500, 1800, 2300 and 2550 km. Evidence of lateral heterogeneity beneath the northern part of the Asian continent, in the depth range 1700–2300 km, is discussed. Computed travel times, based on this velocity-depth relation, are tested by an examination of travel-time residuals from the Long Shot and Milrow explosions on Amchitka, Aleutian Islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号